Volume 26, Issue 3 (10-2018)                   www.ijcm.ir 2018, 26(3): 651-664 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi Moghadam P, Mortazavi M, Poosti M, Ahmadi pour H. Geochemistry and petrogenesis of The Hormuz Formation diabase rocks, Hormozgan province (south Iran) . www.ijcm.ir. 2018; 26 (3) :651-664
URL: http://ijcm.ir/article-1-1148-en.html
University of Hormozgan
Abstract:   (53 Views)
The Hormuz Formation is a sequence of lithologically various evaporitic–volcanic rocks in salt domes where the volcanic rocks are dominantly acidic, generally with less than one third basic volcanics. It was formed in the Late Proterozoic (640–620 Ma)/Neoproterozoic–Early Cambrian, as a result of sub-basin rifting in the northern part of the Arabian plate, throughout most of the Persian Gulf Basin and the equivalent Ara salt in Oman. Diabase is the most common basic rock of the Hormuz Formation. In the field, the studied diabases are seen as stock-like outcrops and dykes which are extremely altered. These rocks contain plagioclase, pyroxene and less olivine as primary minerals which are transformed to various secondary minerals and the diabases primary textures are ophitic, porphyritic and microlitic flow. 22 samples of these diabases from 7 salt domes of southern Iran were analyzed by XRF and ICP-MS methods and then studied. On geochemical diagrams, these rocks plot in the field of tholeiitic basalts and mid-oceanic ridge basalts (MORB). According to values of major and rare elements, these diabases have undergone fractional crystallization within a magma chamber or en route to the surface. Due to REE pattern and values of these samples, the parental rock of the magma which produced them has experienced intermediate degrees of partial melting and these diabases have undergone low degrees of crustal contamination during magmatic evolution. According to values of rare elements ratios, they were probably generated from a depleted to transitional mantle source derived from a garnet-free, spinel peridotite source region. Therefore, the Hormuz Formation diabases are products of the Neoproterozoic to Early Cambrian rifting of the northern part of the Arabian plate. They have similar chemical compositions as Archean tholeiitic basalts and show all the features of a greenstone but whether or not they are on a Phanerozoic greenstone belt, needs further tectonic studies.
Full-Text [PDF 122 kb]   (31 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/09/24 | Accepted: 2018/09/24 | Published: 2018/09/24

References
1. [1] Momenzadeh M., Heidari E., "Ore-Hydrocarbon Resources and Alkaline Magmatism of Late Proterozoic-Early Cambrian in Iran: A Genetic Interpretation", Carbonates and Evaporates 10(1) (1995) 79-88. [DOI:10.1007/BF03175242]
2. [2] McQuillan H., "The role of basement tectonics in the control of sedimentary facies, structural patterns and salt plug emplacements in the Zagros fold belt of southwest Iran", Journal of Southeast Asian Earth Sciences 5(1) (1991) 453-63. [DOI:10.1016/0743-9547(91)90061-2]
3. [3] Faramarzi N.S., Amini S., Schmitt A.K., Hassanzadeh J., Borg G., McKeegan K., Razavi S.M.H., Mortazavi S.M., "Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: A new record of Cadomian arc magmatism in the Hormuz Formation", Lithos 236–237 (2015) 203–211. [DOI:10.1016/j.lithos.2015.08.017]
4. [4] Bosak P., Garos J., Spudil J., Sulovsky P., Vaclavek V., "Salt plugs in the East Zagros, Iran: Results of Regional Geological Reconnaissance", Geolines, (Praha) (1998) 7.
5. [5] Atapour H., Aftabi A., "Rapitan-type banded iron formation at Hormuz Island, Iran", Geological Survey of Iran, The 30th Symposium, Programme with Abstracts with English abstract (2012).
6. [6] Ghaderi A., "Petrography and geochemistry of the basic rocks of Moran salt dome and Tang Zagh iron ore deposit", Thesis for Master Degree in Petrology, Hormozgan University, Faculty of Sciences, Department of Geology (2015).
7. [7] Reyesi S., "Lithological analysis of Siah tagh salt dome and its economic potential using ASTER data, Lar, South Fars province", Thesis for Master Degree, Economic Geology, Shiraz University, Faculty of Sciences (2012).
8. [8] Gansser A., "The enigma of the Persian salt dome inclusions", Eclogae Geologicae Helvetiae. Symposium on Swiss Molasse Basin 85 (1992).
9. [9] Rahnama-Rad J., Farhoudi G., Ghorbani H., Habibi Mood Sh., Derakhshani R., "Pierced salt domes in the Persian Gulf and in the Zagros mountain ranges in southern Iran and their relationship to hydrocarbon and basement tectonics", Iranian Journal of Earth Sciences 1 (2009) 57-72.
10. [10] Talbot C.J., Jarvis R.J., "Age, budget and dynamics of an active salt extrusion in Iran", Journal of Structural Geology 6(5) (1984) 521-533. [DOI:10.1016/0191-8141(84)90062-2]
11. [11] Talbot C.J., "Extrusions of Hormuz salt in Iran. In: Blundell D. J. & Scott A. C. (eds) Lvell: the Past is the Key to the Present", Geological Society, London, Special Publications, 143 (1998) 315-334.
12. [12] Talbot C.J., Farhadi R., Aftabi P., "Potash in salt extruded at Sar Pohl diapir, Southern Iran", Ore Geology Reviews (2008).
13. [13] Talbot C., Aftabi P., Chemia Z., "Potash in a salt mushroom at Hormoz Island, Hormoz Strait, Iran", Ore Geology Reviews 35 (2009) 317–332. [DOI:10.1016/j.oregeorev.2008.11.005]
14. [14] Bosák P., Bruthans J., Filippi M., Svoboda T., Smíd J., "Karst and caves in salt diapirs, SE Zagros Mts. (Iran)", Acta Carsologica 28/2(2) (1999) 41-75.
15. [15] Ghazban F., Al-Aasm I.S., "Hydrocarbon-induced diagenetic dolomite and pyrite formation associated with the Hormoz Island salt dome, offshore Iran", Journal of Petroleum Geology 33(2) (2010) 183-196. [DOI:10.1111/j.1747-5457.2010.00472.x]
16. [16] Edgell H.S., "Salt tectonism in the Persian Gulf Basin", Salt Tectonics, Geological Society Special Publication 100 (1996) 129-151. [DOI:10.1144/GSL.SP.1996.100.01.10]
17. [17] Kent P.E., "The Emergent Hormoz Salt Plugs of Southern Iran", Journal of Petroleum Geology 2(2) (1979) 117-144. [DOI:10.1111/j.1747-5457.1979.tb00698.x]
18. [18] Jahani S., Callot J.P., Letouzey J., Frizon de Lamotte D., "The eastern termination of the Zagros Fold-and-Thrust Belt, Iran: Structures, evolution, and relationships between salt plugs, folding, and faulting", TECTONICS 28 (2009). [DOI:10.1029/2008TC002418]
19. [19] Reuning L., Schoenherr J., Heimann A., Urai J. L., Littke R., Kukla P.A., Rawahi Z., "The surface-piercing salt domes in the Ghaba Salt Basin (Oman): A comparison to the intra-salt hydrocarbon play of the Ara Group", Geophysical Research Abstracts 11 (2009).
20. [20] Taghipour S., Taghipour B., "Mineralogical studies of metasomatic minerals within volcanic rocks of High Zagros salt domes", Iranian Journal of Crystallography and Mineralogy 4(17) (2009) 535-550.
21. [21] Mo'eiri M., Ahmadinejad y., "The phenomenon of diapirism and its effect on the pollution of the Dehram salt river", Geographical research, 56(2006) 33-45.
22. [22] Motamedi H., Pourkaramani M., "The role of intermediate gap levels in changing the folding style on the old height Gavbandi (southern Zagros fold - thrust belt)", Science Journal of Islamic Azad University, 61(2006).
23. [23] Rostami A., Baz Amad M., Haj Alilu B., Moazzen M., "Study of the Geochemical behaviour of rare earth minerals in the Hormoz Island Apatite", Journal of Economic Geology 1(6) (2014).
24. [24] Pourkaseb H., Rangzan K., Charchi A., Saiedi S., "Mineralogical studies of Igneous rocks in Jahani salt dome (Firuzabad),with emphasis on their economic importance", Second National Conference of the Iranian Economic Geology Society (2012).
25. [25] Husseini M.I., Husseini S.I., "Origin of the Infracambrian Salt Basins of the Middle East", Geological Society, London, Special Publications 50 (1990) 279-292. [DOI:10.1144/GSL.SP.1990.050.01.14]
26. [26] National Geosciences Database, http://ngdir.ir/GeoportalInfo/PSubjectInfoDetail.asp?PID=725&index=7 (2015).
27. [27] Aghanabati A., Fotouhi V., Escandari S., "The geological and Exploratory activities carried out in provinces and the third five years program", ministry of mine and industries, the
28. [28] Irvine T.N., Baragar W.R.A., "A guide to the chemical classification of the common volcanic rocks", Canadian Journal of Earth Sciences 8 (1971) 523–548. [DOI:10.1139/e71-055]
29. [29] Miyashiro A., "Volcanic rock series in island arcs and active continental margins", American Journal of Science 274 (1974) 321–355. [DOI:10.2475/ajs.274.4.321]
30. [30] Hou T., Zhang Z., Santosh M., Encarnacion J., Wang M., "The Cihai diabase in the Beishan region, NW China: Isotope geochronology, geochemistry and implications for Cornwall-style iron mineralization", Journal of Asian Earth Sciences 70–71 (2013) 231–249. [DOI:10.1016/j.jseaes.2013.03.016]
31. [31] Gursu S., Goncuoglu M.C., "Early Cambrian back-arc volcanism in the western Taurides, Turkey: implication for rifting along the northern Gondwanan margin", Geol. Mag. 142(5) (2005) 617-631. [DOI:10.1017/S0016756805000919]
32. [32] Mason B., Moore C.B., translated by: Bahrami M., "Principles of geochemistry", Payam Noor University, first edition (2005). [33] Gardien V., Lecuyer C., Moyen J.F.,
33. [34] Munyanyiwa H., "Geochemical study of the Umkondo dolerites and lavas in the Chimanimani and Chipinge Districts (eastern Zimbabwe) and their regional implications", Journal of African Earth Sciences 26(2) (1999) 349-365 [DOI:10.1016/S0899-5362(99)00009-3]
34. [35] Li X.H., Li W.X., Li Z.X, Liu Y., "850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia", Lithos 102 (2008) 341–357. [DOI:10.1016/j.lithos.2007.04.007]
35. [36] Sun S. S., McDonough W. F. "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes", Geological Society, London, Special Publications 42 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
36. [37] Worthing M.A., "Petrology and geochronology of a Neoproterozoic dyke swarm from Marbat, South Oman", Journal of African Earth Sciences 41 (2005) 248–265. [DOI:10.1016/j.jafrearsci.2005.04.003]
37. [38] Yang X., Zhang Z., Guo S., Chen J., Wang D., "Geochronological and geochemical studies of the metasedimentary rocks and diabase from the jingtieshan deposit, north Qilian, NW China: Constraints on the associated banded iron formations", Ore Geology Reviews (2015).
38. [39] Srivastava R.K., Jayananda M., Gautam G.C., Gireesh V., Samal A.K., "Geochemistry of an ENE–WSW to NE–SW trending ~2.37 Ga mafic dyke swarm of the eastern Dharwar craton, India: Does it represent a single magmatic event?", Chemie der Erde (2013).
39. [40] Rollinson H.R., translated by: Karimzadeh Samarin A., "Using Geochemical Data: Evaluation, Presentation, Interpretation", Tabriz University Press, first edition (2002).
40. [41] Dervishzadeh A., "Geological features of the Persian Gulf Infracambrian salts", Collection articles of Diapirism Symposium with a Special approach to Iran, first Cover (1990).
41. [42] Neumann E.R., Svensen H., Galerne C.Y., Planke S., "Multistage evolution of dolerites in the Karoo Large Igneous Province, Central South Africa", Journal of petrology 52(5) (2011) 959-984 [DOI:10.1093/petrology/egr011]
42. [43] Wang Q.H., Yang H., Yang D.B., Xu W.L., "Mid-Mesoproterozoic (~1.32 Ga) diabase swarms from the western Liaoning region in the northern margin of the North China Craton: Baddeleyite Pb–Pb geochronology, geochemistry and implications for the final breakup of the Columbia supercontinent", Precambrian Research 254 (2014) 114–128 [DOI:10.1016/j.precamres.2014.08.005]
43. [44] Sacks de Campos R., Philipp R.P., Massonne H.J., Chemale F.Jr., "Early post-collisional Brasiliano magmatism in Botuverá region, Santa Catarina, southern Brazil: Evidence from petrology, geochemistry, isotope geology and geochronology of the diabase and lamprophyre dikes", Journal of South American Earth Sciences 37 (2012) 266-278. [DOI:10.1016/j.jsames.2012.02.005]
44. [45] Best M.G., "Igneous and Metamorphic Petrology", Blackwell Science Ltd 2 (2003).
45. [46] Komiya T., "Material circulation model including chemical differentiation within the mantle and secular variation of temperature and composition of mantle", Physics of the Earth and Planetary Interiors 146 (2004) 333–367. [DOI:10.1016/j.pepi.2003.03.001]
46. [47] Momenzadeh M., Walther H.W., "Mineral Deposits and Metallogenic Epochs in the Area of the Geotraverse across Iran-a Review", N. Jb. Geol. Palaont. Abh. 168 (1984) 468-478. [DOI:10.1127/njgpa/168/1984/468]

Add your comments about this article : Your username or Email:
CAPTCHA code

© 2018 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb