Volume 26, Issue 2 (7-2018)                   www.ijcm.ir 2018, 26(2): 369-382 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Petrography, geochemistry and tectonic setting of volcanic rocks in the Shah Soltan Ali area (Southwest of Birjand). www.ijcm.ir 2018; 26 (2) :369-382
URL: http://ijcm.ir/article-1-1104-en.html
Abstract:   (3237 Views)
The volcanic rocks of Shah Soltan Ali area are located about 85 km southwest of the Birjand city at the eastern margin of the Lut block. Petrographic studies indicate that volcanic rocks consist of basalt to andesite. The main minerals are plagioclase, pyroxene and hornblende. Biotite  and olivine observed rarely. The minor minerals are apatite and zircon. volcanic rocks show weak to strong propylitic alteration. Geochemical studies show that volcanic units are metaluminous, high calc-alkalic to shoshonitic related to subduction zone. They formed in a continental arc tectonic setting. Enrichment in large ion lithophile elements, such as Rb, Sr, K, and Cs, and depletion in high field strength elements, e.g., Nb, Ti, Zr with negative anomaly of Nb indicate magma formed in subduction zone. Based on some ratios, such as Ta/Yb ,Th/Yb ,Ba/La and Th/Nd, magma has originated from metasomatized mantel and slab-drive fluids had played a significant role in the enrichment of Mantle. (La/Yb)N ratio with REE pattern indicate low amount of garnet in source. The magmatic source of volcanic rocks had been generated from 5% to 20% of partial melting of garnet-spinel lherzolite.
Full-Text [PDF 134 kb]   (741 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Vassigh H., Soheili M., "Geological map of Sar-E-chah-E-Shur (sheet 7754), Scale 1:100000", Geological Survey of Iran (1975).
2. [2] Karimpour M.H., Stern C.R., Farmer L., Saadat S., Malekezadeh shafaroudi A., ˝Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran˝, Geopersia 1(2011) 19-36.
3. [3] Eftekharnejad G., "Notes on the formation of flysch sedimentary basins in Eastern Iran and its relation to plate tectonic theory, in Stocklin, Eftekharnejad, and Hoshmandzadeh, eds., Primarily investigation on the geology of Lut block, Eastern Iran", Geological Survey of Iran, Report 22 (1973) 67–71.
4. [4] Aghanabati A., "Geology of Iran", Geological Survey of Iran, Tehran, (2005) 538 pp, (Persian book).
5. [5] Karimpour M. H., Malekezadeh shafaroudi A., Mazaheri S. A., Hidarian, M. R., "Magmatism and different mineralization of Cu-Au-Sn-W in Lut block", The 15th Conference of Iranian Society of Crystallography and Mineralogy, Ferdowsi University of Mashhad, Iran (2007) 598-604.
6. [6] Pang K.N., Chung S.L., Zarrinkoub M.H., Khatib M.M., Mohammadi S.S., Chiu H.Y., Chu C.H., Lee H.Y., Lo C.H., ˝Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: magma genesis and tectonic implications˝, Lithos, 180 (2013) 234-251. [DOI:10.1016/j.lithos.2013.05.009]
7. [7] Malekzadeh shafaroudi A., Karimpour M.H., Mazaheri S.A., "Geology, alteration, mineralization and geochemistry of MA-II region, Maherabad porphyry copper-gold prospect area, South Khorasan province", Iranian Journal of crystallography and mineralogy 17 (2010) 639-654, (in Persian with English abstract).
8. [8] Abdi M., Karimpour M.H.,˝Petrochemical Characteristics and Timing of Middle Eocene Granitic Magmatism in Kooh-Shah, Lut Block, Eastern Iran˝, Acta Geological SINICA, 87 (2013) 1032-1044. [DOI:10.1111/1755-6724.12108]
9. [9] Malekzadeh shafaroudi A., Karimpour M.H., Stern C.R., ˝ The Khopik porphyry copper prospect, Lut Block, Eastern Iran. Geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies˝, Ore Geology, 65 (2015) 522 – 544. [DOI:10.1016/j.oregeorev.2014.04.015]
10. [10] McKenzi D., O'Nions R.K., ˝Partial melt distribution from inversion of rare earth element concentrators˝, Journal of Petrology, 32 (1991) 1021-1091. [DOI:10.1093/petrology/32.5.1021]
11. [11] Shelly D., ˝Igneous and Metamorphic Rocks under the Microscope: Classification, Textures, Microstructures and Mineral Preferred Orientation˝, Springer, London (1993) 445.
12. [12] Kawabata H., Shuto K., ˝Magma mixing recorded in intermediate rocks associated with high-Mg andesites from the Setouchi volcanic belt, Japan: implications for Archean TTG formation˝, Journal of Volcanology and Geothermal Research, 140 (2005) 241-271. [DOI:10.1016/j.jvolgeores.2004.08.013]
13. [13] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist, Volume 95 (2010) 185–187. [DOI:10.2138/am.2010.3371]
14. [14] Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B., ˝A chemical classification of volcanic rocks based on the total alkali-silica diagram˝, Journal of petrology, 27 (1986) 745-750. [DOI:10.1093/petrology/27.3.745]
15. [15] Winchester J.A., Floyd P.A.,˝Geochemical discrimination of different magma series and their differentiation protextures and setting of VMS mineralization in the Pilbara ducts using immobile elements˝, Journal of Chemical Geology 20 (1977) 325-344. [DOI:10.1016/0009-2541(77)90057-2]
16. [16] Pearce, J.A., ˝Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. (Ed.), Andesites˝, Wiley, (1982) 525-548.
17. [17] Shand S.J., ˝Eruptive rocks; their genesis, composition, classification and their relation to ore-deposits˝, Hafner Publishing Company, New York, (1947) 448.
18. [18] Boynton W.V., ˝ Cosmochemistry of the rare earth elements; meteorite studies. In: P. Henderson (Editor), The rare earth element geochemistry˝, Elsevier, Amsterdam, (1984) 115-1522. [DOI:10.1016/B978-0-444-42148-7.50008-3]
19. [19] Wilson M., ˝Igneous petrogenesis. Uniwin Hyman, London˝, 466 pp.
20. [20] Rollinson, H., ˝ Using geochemical data: evolution, presentation, interpretation˝, Longman Scientific and Technical, (1989) 248.
21. [21] Helvacı C., Ersoy E.Y., Sözbilir H., Erkül F., Sümer Ö., Uzel B., ˝Geochemistry and 40Ar/39Ar geochronology of Miocene volcanic rocks from the Karaburun Peninsula: Implications for amphibole-bearing lithospheric mantle source, western Anatolia˝, Volcanology and Geothermal Research 185 (2009) 181–202. [DOI:10.1016/j.jvolgeores.2009.05.016]
22. [22] Gill R., ˝Igneous rocks and processes˝, Wiley-Blackwell, New Jersey, (2010) 428.
23. [23] Sun S.S., McDonough W.F., ˝Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins˝, Geological Society of London (1989) 313–345. [DOI:10.1144/GSL.SP.1989.042.01.19]
24. [24] Sajjona F.G., Maury R.C., Bellon H., Cotten J., Defant M., ˝High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines)˝, Journal of petrology, 37 (1996) 693-726. [DOI:10.1093/petrology/37.3.693]
25. [25] Nicholson K. N., Black P. M., Hoskin P. W. O., Smith I. E. M., "Silicic volcanism and back-arc extension related to migration of the Late Cainozoic Astralian-Pacific plate boundary. In: Asiabanha. A., Ghasemi. H. and Meshkin. M., 2009. Paleogene continental-arc type volcanism in NorthQazvin, North Iran", facies analysis and geochemistry. Schweizerbartsche Verlagsbuchhandlung. v. 186/2; (2004) p. 201-214.
26. [26] Tamura Y., Yuhara M., Ishii T., Irino N., Shukuno H., ˝ Andesites and Dacites from Daisen Volcano, Japan: Partal-to-Total remelting of an andesite Magma Body ˝, Journal of Petrology. V. 44; n. 12(2003) 2243-2260. [DOI:10.1093/petrology/egg076]
27. [27] Tepper J.H., Nelson B.K., Bergantz G.W., Irving, A.J.,˝Petrology of the Chilliwack atholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity˝, Contributions to Mineralogy and Petrology, 113 (1993) 333-351. [DOI:10.1007/BF00286926]
28. [28] Peters T.J., Menzies M., Thirlwall M., Kyle, P., ˝Zuni-Bandera volcanism, Rio Grande, USA – melt formation in garnet- and spinel facies mantle straddling the asthenosphere-lithosphere boundary˝, Lithos, 102 (2008) 295–315. [DOI:10.1016/j.lithos.2007.08.006]
29. [29] Dampare S.B., Shibata T., Asiedu D.K., Osae S., Banoeng-Yakubo B., ˝Geochemistry of Paleoproteozoic metavolcanic rocks from the southern Ashanti volcanic belt, Ghana: Petrogenetic and tectonic setting implication˝, Percambrian Res, 162 (2008) 403-423. [DOI:10.1016/j.precamres.2007.10.001]
30. [30] Edward C.M.H., Menzies M.A., Thirlwall M.F., Morrid J.D., Leeman W.P., Harmon R.S., ˝The transition to potassic alkaline volcanism in island arcs: the Ringgite-Beser Complex, East Java˝, Journal of Petrology, 35(1994): 1557-1595. [DOI:10.1093/petrology/35.6.1557]
31. [31] Saunders A.D., Storey M., Kent R.W., Norry M.J., ˝Consequences of plume–lithosphere interactions. In: B.C. Storey, T. Alabaster and R.J. Pankhurst (Editors), Magmatism and the Causes of Continental Break-up˝, Geological Society London Special Publication, (1992) 41–60. [DOI:10.1144/GSL.SP.1992.068.01.04]
32. [32] Nagudi N., Koberl Ch., Kurat G., ˝Petrography and Geochemistry of the sigo granite, Uganda and implications for origin˝, Journal of African earth Sciences, 36 (2003) 1-14. [DOI:10.1016/S0899-5362(03)00014-9]
33. [33] Walker J.A., Patino L.C., Carr M.J., Feigenson M.D., ˝Slab control over HFSE depletions in central Nicaragua˝ Earth and Planetary Science Letters, 192 (2001) 533-543. [DOI:10.1016/S0012-821X(01)00476-9]
34. [34] Gust D.A., Arculus R.A., Kersting A.B., ˝Aspects of magma sources and processes in the Honshu arc˝, The Canadian Mineralogist, 35 (1977) 347-365.
35. [35] Thieblemont D.,Tegyey M., ˝Geochemical discrimination of differentiated magmatic rocks attesting for the variable origin and tectonic setting of calc-alkaline magmas˝, Comptes Rendus De L Academie Des Sciences Serie II, 319 (1994) 87-94.
36. [36] Asiabanha, A., Bardintzeff, J.M., Kananian, A., Rahimi, G., ˝Post-Eocene volcanics of the Abazar district, Qazvin, Iran: Mineralogical and geochemical evidence for a complex magmatic evolution˝, Journal of Asian Earth Sciences, 45 (2012) 79–94. [DOI:10.1016/j.jseaes.2011.09.020]
37. [37] Kuscu, G.G., Geneli, F., ˝Review of post-collisional volcanism in the central Anatolian volcanic province(Turkey), with special reference to the Tepekoy volcanic complex˝, International Journal of Earth Sciences, 99 (2010) 593-621. [DOI:10.1007/s00531-008-0402-4]
38. [38] Pearce J.A., ˝Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Continental basalts and mantle xenoliths (Eds. Hawkesworth, C. J. and Norry, M. J.)˝ (1983) 230-249.
39. [39] Stern R.J., ˝Subduction zones˝ Reviews of Geophysics 40 (2002) 1012-1054. [DOI:10.1029/2001RG000108]
40. [40] McCulloch M.T., Gamble J.A., ˝Geochemical and geodynamical constraints on subduction zone magmatism˝, Earth and Planetary Science Letters 102 (1991) 358-374. [DOI:10.1016/0012-821X(91)90029-H]
41. [41] Wood D.A., ˝The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province˝, Earth Planet. Sci. Lett., 50 (1980) 11-30. [DOI:10.1016/0012-821X(80)90116-8]
42. [42] Aldanmaz E., Pearce J.A., Thirlwall M.F., Mitchell J.G., ˝Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey˝ Journal of Volcanology and Geothermal Research, 102 (2000) 67–95. [DOI:10.1016/S0377-0273(00)00182-7]
43. [43] Shaw D.M., ˝Trace element fractionation during anataxis˝, Geochimica et Cosmochimica Acta, 34 (1970) 237-243. [DOI:10.1016/0016-7037(70)90009-8]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb