دوره 26، شماره 1 - ( 1-1397 )                   جلد 26 شماره 1 صفحات 161-178 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه لرستان
چکیده:   (651 مشاهده)
افیولیت کرمانشاه واقع در کمربند افیولیتی بیرونی زاگرس با اجزاء مختلف گوشته­ای و پوسته­ای، بازمانده­ای از شاخه جنوبی اقیانوس نئوتتیس در ایران به شمار می­آید. نمودارهای تقسیم­بندی کانی­ها بیانگر ترکیب فورستریتی الیوین در دونیت، هارزبورژیت و لرزولیت­ها و ترکیب کریزولیتی الیوین در ورلیت­ها و نیز برای ارتوپیروکسن و کلینوپیروکسن­ها به ترتیب نشان دهنده ترکیب انستانیتی و دیوپسید تا اوژیتی هستند. شواهد بافتی چون تیغه­های جدایشی کلینوپیروکسن در ارتوپیروکسن و دانه­های زنجیر مانند اسپینل در کانی­های موجود در سنگ­های فامافیک منطقه­های صحنه، هرسین- نورآباد و میانراهان شواهدی از سرد شدن همراه با کاهش فشار، گدازه­بخشی و واکنش مذاب/سنگ را نشان می­دهند. مودال بسیار پایین کلینوپیروکسن، الیوین غنی از منیزیم و مقدار بالای Cr# و نسبت  Cr/Alدر اسپینل­های مناطق مورد بررسی همگی نشان­دهنده نرخ ذوب­بخشی بالا برای هارزبورژیت و دونیت­ها هستند. مقادیر Al2O3، TiO2 و FeO/MgO محاسبه شده در گدازه مولد اسپینل­­ها و همه نمودارهای تعیین کننده محیط زمین­ساختی­ماگمایی نشان می­دهند که پریدوتیت منطقه­های مورد بررسی از ماگماهای بونینیتی جلوی قوس (مانند پیکریت­ها و تولئیت­های جزایر قوسی) در موقعیت SSZ شکل گرفته­اند.     
متن کامل [PDF 3898 kb]   (154 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: ۱۳۹۶/۱۲/۹ | پذیرش: ۱۳۹۶/۱۲/۹ | انتشار: ۱۳۹۶/۱۲/۹

فهرست منابع
1. [1] Dilek Y., Furnes H., "Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere", Geological Society of America Bulletin 123 (2011) 387–411. [DOI:10.1130/B30446.1]
2. [2] Whitechurch H., Omrani J., Agard P., Humbert F., Montigny R., Jolivet L., "Evidence for Paleocene–Eocene evolution of the foot of the Eurasian margin (Kermanshah ophiolite, SW Iran) from back–Arc to arc: implications for regional geodynamics and obduction", Lithos 182-183 (2013) 11–32. [DOI:10.1016/j.lithos.2013.07.017]
3. [3] Saccani E., Allahyari K., Beccaluva L., Bianchini G., "Geochemistry and petrology of the Kermanshah ophiolites (Iran): implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean", Gondwana Research 24 (2013), 392–411. [DOI:10.1016/j.gr.2012.10.009]
4. [4] Allahyari K., Saccani E., Rahimzadeh B., Zeda O., "Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): new evidence for boninitic magmatism in intra-oceanic forearc setting in the Neo-Tethys between Arabia and Iran", Journal of Asian Earth Sciences, 79 (2014), 312–328. [DOI:10.1016/j.jseaes.2013.10.005]
5. [5] Aswad K.J.A., Aziz N.R.H., Koyi H.A., "Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq", Geological Magazine, 148 (2011), 802–818. [DOI:10.1017/S0016756811000422]
6. [6] Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monie P., Meyer B., Wortel R., "Zagros orogeny:a subduction-dominated process", Geological Magazine, 148 )2011( 692–725.
7. [7] Xiao W., Santosh M., "The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth", Gondwana Research, 25 (2014) 1429–1444. [DOI:10.1016/j.gr.2014.01.008]
8. [8] Ao S., Xiao W., Khalatbari Jafari M., Talebian M., Chen L., Wan B., Ji W., Zhang Z., "U–Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolite (Iran): From continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern Neo-Tethys", Gondwana Research 31 (2016) 305–318. [DOI:10.1016/j.gr.2015.01.014]
9. [9] Zarei Sahamieh R., Moradpour A., "Geochemistry and petrology of Harsin-Sahneh ophiolitic complex (NE of Kermanshah-west of Iran) an evidence of Southern Neo-Tethys Ocean tectonic", Arabian Journal of Geosciences 8 (2015) 8347–8360. [DOI:10.1007/s12517-015-1775-x]
10. [10] Mousavi S. A., Aliani F., Maani Jo M., Sepahi Garo A.A., "Petrology and Geochemistry of the pillow lava, mafic and felsic rocks in Sahneh- Harsin Ophiolite sequence, North East of Kermanshah", Iranian Journal of Crystallography and Mineralogy 2(2013) 253-266.
11. [11] Zarei Sahamieh R., Moradpour A., "Geochemistry and petrology of the Harsin-Sahneh ophiolitic complex (NE Kermanshah-West of Iran) Implication for the tectonic of Southern Neo-Tethys", Iranian Journal of Crystallography and Mineralogy 2(2015) 331-344.
12. [12] Shahidi M., Nazari H., "Geological map of Harsin", 1/100.000 scale. Geological Survey of Iran, Tehran, 1997.
13. [13] Rafia R., Shahidi A., "Geological map of Mianrahan", 1/100.000 scale. Geological Survey of Iran, Tehran, 1999.
14. [14] Braud J., "Geological map of Kermanshah", 1/250.000 scale. Tehran: Geological Survey of Iran, 1978.
15. [15] Ricou L.E., Braud J., Brunn J.H., "Le Zagros. Livre à la Mémoire de Albert F. de Lapparent. Soc", Geologique de France, Mémoire hors-série 8 (1977) 33–52.
16. [16] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist, 95(2010) 185-187. [DOI:10.2138/am.2010.3371]
17. [17] Deer W. A., Howie R. A., Zussman J., "An introduction to the rock forming minerals", 2nd edition Pearson Education Limited, United Kingdom, 1992.
18. [18] Morimoto N., "Nomenclature of pyroxenes" , Canadian Mineralogist 27(1989) 143-156. [DOI:10.2465/minerj.14.198]
19. [19] Arai S., "Characterisation of spinel peridotites by olivine–spinel compositional relationships: review and interpretation", Chemical Geology 113(1994) 191–204. [DOI:10.1016/0009-2541(94)90066-3]
20. [20] Dick H.J.B., Bullen T., "Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas", Contributions to Mineralogy and Petrology 86(1984) 54–76. [DOI:10.1007/BF00373711]
21. [21] Barnes S.J., Roeder P.L., "The range of spinel composition in terrestrial mafic and ultramafic rocks", Journal of Petrology 42(2001) 2279–2302. [DOI:10.1093/petrology/42.12.2279]
22. [22] Parkinson I.J., Pearce J.A., "Peridotites from the Izu–Bonin–Mariana forarc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a suprasubduction zone setting", Journal of Petrology 39(1998)1577–1618. [DOI:10.1093/petroj/39.9.1577]
23. [23] Tamura A., Arai S., "Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle", Lithos 90(2006) 43–56. [DOI:10.1016/j.lithos.2005.12.012]
24. [24] Rollinson H., "The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions", Contribution to Mineralogy and Petrology 156(2008) 273–288. [DOI:10.1007/s00410-008-0284-2]
25. [25] Droop G.T.R., "A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stochiometric criteria", Mineralogical Magazine 51(1987) 431–435. [DOI:10.1180/minmag.1987.051.361.10]
26. [26] Pearce J.A., Norry M.J., "Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks", Contributions to Mineralogy and Petrology 69(1979) 33–47. [DOI:10.1007/BF00375192]
27. [27] Wang C.S., Li Y., Liu Z.F., Liu X.H., Tang J.X., Hébert R., Dubois, C., Huot V., "Yarlung-Zangbo ophiolites revisited: from geological survey to mineral records", Acta Geology Sinica 79(2005) 323–330. [DOI:10.1007/s10114-004-0493-1]
28. [28] Maurel C., Maurel P., "Etude expérimental de la distribution de l'aluminium entre bain silicate basique et spinelle chromifère. Implications pétrogenetiques: teneur en chrome des spinelles", Bulletin de Mineralogie 105(1982) 197–202.
29. [29] Augé T., "Chromite deposits in the northern Oman ophiolite", mineralogical constraints Mineralium Deposita 22(1987) 1–10. [DOI:10.1007/BF00204235]
30. [30] Xu-Ping L., Hong-Kai C., Ze-Li W., Li-Jun W., Jing-Sui Y., Rolinson P., "Spinel peridotite, olivine websterite and the textural evolution of the Purang ophiolite complex, western Tibet", Journal of Asian Earth Sciences 110 (2015) 55-71 [DOI:10.1016/j.jseaes.2014.06.023]
31. [31] Seyler M., Lorand J.-P., Dick H.J.B., Drouin M., "Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge", Contributions to Mineralogy and Petrology153(2007) 303–319. [DOI:10.1007/s00410-006-0148-6]
32. [32] Neumann E.R., "Ultramafic and mafic xenoliths from Hierro, Canary Islands: evidence for melt infiltration in the upper mantle", Contributions to Mineralogy and Petrology 106 (1991) 236–252. [DOI:10.1007/BF00306436]
33. [33] Saumur B.M., Hattori K., "Zoned Cr-spinel and ferritchromite alteration in forearc mantle serpentinites of the Rio San Juan Complex, Dominican Republic", Mineralogy Magazine. 77(2013) 117–136. [DOI:10.1180/minmag.2013.077.1.11]
34. [34] Siena F., Coltorti M., "Thermobarometric evolution and metasomatic processes of upper mantle in different tectonic settings; evidence from spinel peridotite xenoliths", European Journal of Mineralogy 5(1993)1073–1090. [DOI:10.1127/ejm/5/6/1073]
35. [35] O'Driscoll B., Emeleus C.H., Donaldson C.H., Daly J.S., "Cr-spinel seam petrogenesis in the rum layered suite, NW Scotland: cumulate assimilation and in situ crystallization in a deforming crystal mush", Journal of Petrology 51(2010) 1171–1201. [DOI:10.1093/petrology/egq013]
36. [36] Pearce J.A., Barker P.F., Edwards S., Parkinson I.J., Leat P.T., "Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic", Contributions to Mineralogy and Petrology 139 (2000) 36–53. [DOI:10.1007/s004100050572]
37. [37] Bézard R., Hébert R., Wang Ch., Dostal J., Dai J., Zhong H., "Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet", Lithos 125(2011) 347–367. [DOI:10.1016/j.lithos.2011.02.019]
38. [38] Kamenetsky V.S., Crawford A.J., Meffre S., "Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks", Journal of Petrology 42(2001) 655–671. [DOI:10.1093/petrology/42.4.655]
39. [39] Choi S.H., Shervais J.W., Mukasa S.B., "Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite", Contributions Mineralogy and Petrology 156(2008) 551–576. [DOI:10.1007/s00410-008-0300-6]
40. [40] Dilek Y., Thy P., "Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: model for multi-stage early arc-forearc magmatism in Tethyan subduction factories", Lithos 113(2009) 68–87. [DOI:10.1016/j.lithos.2009.05.044]
41. [41] Cameron W.E., "Petrology and origin of primitive lavas from the Troodos ophiolite Cyprus", Contributions to Mineralogy and Petrology 89(1985) 239-255. [DOI:10.1007/BF00379457]
42. [42] Page P., Barnes S.J., "Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Québec, Canada", Economic Geology 104(2009) 997-1018. [DOI:10.2113/econgeo.104.7.997]
43. [43] Presnall D.C., Hoover J.D., "High pressure phase equilibrium constraints on the origin of mid-ocean ridge basalts", Geochemical Society Special Paper 1(1987) 75-89.
44. [44] Ishikawa T., Nagaishi K., Umino S., "Boninitic volcanism in the Oman ophiolite: implications for thermal condition during transition from spreading ridge to arc", Geology 30(2002) 899–902. https://doi.org/10.1130/0091-7613(2002)030<0899:BVITOO>2.0.CO;2 [DOI:10.1130/0091-7613(2002)0302.0.CO;2]