Volume 25, Issue 4 (1-2018)                   www.ijcm.ir 2018, 25(4): 811-822 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Safikhani M, Hajialioghli R, moayed M. Mineralogy and mineral chemistry of andesites in comparison with their magmatic enclaves from the Ghikhlar area (East Azarbaidjan). www.ijcm.ir. 2018; 25 (4) :811-822
URL: http://ijcm.ir/article-1-998-en.html
University of Tabriz
Abstract:   (820 Views)
The Ghikhlar area is located at the NW Marand town, East Azarbaidjan. The wide range of Plio-Quaternary volcanic activites with volcanic and associated volcano-clastic rocks having compositions mainly as andesite to silica-undersaturated rocks (leucite basanite, leucite-tephrite and tephrite) have been covered mostly the rock units prior to the Cenozoic. The phenocrysts in andesites are amphibole, plagioclase and clinopyroxene which occurred in microcrystalline and microlithic matrix. The main characteristic of these rocks is bearing various enclaves as autholiths and xenoliths. The clinopyroxenes in the host andesite and cumulative enclaves are diopside to augite. The autholithic andesitic and dioritic enclaves indicates compositions as augite and dipside, respectively. Investigation of mineral chemistry and magmatic features for the host andesitic rocks and their enclaves are the main goal of this research. Variety of magmatic enclaves are including homogenic, cumulative and gabbroic ones. They all show similar mineralogy with host andesitic rocks whereas they are different texturally. Homogenic and gabbroic enclaves are more fine and coarse grained than host andesite, respectively. Cumulative enclave has been formed as aggregation of coarse grained ferromagnesian crystals similar with phenocrysts of andesite. On the basis of mineral chemistry data, composition of the host andesite as well as homogenic and cumulative enclaves are subalkaline with arc magmatic tectonic setting feature. However gabbroic enclave with alkaline characteristic corresponds to interior plate tectonic setting. Considering mineralogy, textural evidence and mineral chemistry data from the host andesite and their magmatic enclaves it can be concluded that the homogenic and cumulative enclaves are autoliths. The homogenic enclave corresponds to chilled margin of magma reservoir which disjoined during upward ascending of andesitic magma and their falling into magma chamber. Cumulative enclave resulted from aggregation of magmatic minerals in the magma chamber. About genesis of the gabbroic enclave it seems that gabbroic enclave has exotic genesis. Gabbroic rocks fall into andesitic magma during magma passing upward.
Full-Text [PDF 124 kb]   (237 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/11/25 | Accepted: 2017/11/25 | Published: 2017/11/25

1. [1] Didier J., Barbarin B., "Granites and their enclaves: Development in petrology", Elsevier, Amsterdam, London (1973) 393pp.
2. ]2[ موذن م.، موید م.، حسین زاده ق.، "پتروگرافی و پترولو ژی دایک لامپروفیری قخلار (غرب کرند)"مجموعه مقالات هفتمین همایش انجمن زمین شناسی ایران، دانشگاه اصفهان (1382).
3. ]3[ خضرلو ع.، "ژئوشیمی و پترولوژی سنگهای آتشفشانی و ولکانی کلاستیک شمال غرب مرند،"پایان نامه کارشناسی ارشد، دانشگاه تبریز (1385) 146 ص.
4. ]4[ احمدزاده غ. ر.، "مطالعه پترولوژیکی سنگهای آتشفشانی شمال غرب مرند با نگرشی ویژه به سنگهای آلکالن منطقه" رساله دکتری، دانشگاه تبریز (1388).
5. [5] Eftekharnezhad j., "Brief history and structural development of Azarbaijan" Geological Survey of Iran, International Report (1975) 8pp.
6. [6] Stocklin j., "Structural history and tectonics of Iran: A review", American Association Petroleum Geologists Bulletion 52 (1968) 1229-1285.
7. ]7[ نبوی م. ح.، "دیباچه ای بر زمین شناسی ایران" سازمان زمین شناسی کشور (1355) 381 ص.
8. [8] Didon F., Gemain M.Y., "Le Asabalan, volcano Plio-Quaternaire de Azerbaijan oriental (Iran), Stude geologique et petrographique du l edifice et de son environment regional" (1976) These, 3 eme cycle, universite Grenoble, France.
9. ]9[ اسکویی ع.، حاج علیلو، ب.، "گزارش نقشه زمین شناسی 100000/1 قره ضیاءالدین" سازمان زمین شناسی کشور (1376) تهران.
10. ]10[ پرکنی م.، "بررسی ولکانیسم کواترنری در غرب و شمال غرب زنجیره" پایان نامه کارشناسی ارشد پترولوژی (1377) دانشگاه تبریز.
11. [11] Kretz R., "Symbols for rock-forming minerals", American Mineralogist 68 (1983) 277-279.
12. [12] Lacroix A., "Sur les enclaves acides des roches volcaniques d,Auvergne" Bulletin des services de la carte géologique de la France 2 (1890) 25-56.
13. [13] Vernon R.H., "Restite, Xenoliths and microgranitoid enclave in granites", Journal andProceeding of the Royal Society of New South Wales 116 (1983) 77-103.
14. [14] Dahlquist J.A., "Mafic microgranular enclaves: early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina", Journal of South American Earth Sciences 15 (2002) 643–655.
15. [15] Bonin B., "The enclaves of alkaline anorogenic granites: an overview", In: Didier J.,Barbarin B., (eds) Enclaves and Granite Petrology: Developments in Petrology 13. Amsterdam:Elsevier (1991) 179–189.
16. [16] Donaire T., Pascual E., Pin C., Duthou J.L., "Microgranular enclave as evidence of rapid cooling in granitoid rocks: the case of the Los Pedroches granodiorite, Iberian Massif, Spain", Contribution to Mineralogy and Petrology 149 (2005) 247-265. [DOI:10.1007/s00410-005-0652-0]
17. [17] Morimoto N., Kitamura M., "Q-J diagram for classification of pyroxenes" Journal of Japanese of Mineralogy and Petrology Economic Geology 78 (1983) 141 p.
18. [18] Morimoto N., Fabrise J., Ferguson A., Ginzburg I. V., Ross M., Seifert F.A., Zussman J., Akoi K., Gottardi G., "Nomenclature of pyroxenes", Mineralogical Magazine 52 (1988) 535 – 550. [DOI:10.1180/minmag.1988.052.367.15]
19. [19] Schweitzer E. L., Papike J. J., Bence, E. "Statistical analysis of Clinopyroxenes from deep-sea basalts" American Mineralogist 64 (1979) 501-513.
20. [20] Deer W.A., Howie R.A., Zussman J., "An Introduction to the rock – forming minerals", Longman, London (1991) 528 p.
21. [21] Leake B.E., Wolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., whittaker E.J.W., Youzhi G., "Nomenclature of Amphiboles", Report of the subcommittee on Amphiboles of the international Mineralogical Association commission on new minerals and mineral names, European Journal of Mineralogy 9 (1997) 623-651. [DOI:10.1127/ejm/9/3/0623]
22. [22] Le Bas M.J., "The role of aluminum in igneous: Clinopyroxenes with relation to their parentage", American Journal of Science 260 (1962) 267-288.
23. [23] Nisbet E.G., Pearce J.A., "Clinopyroxene composition of mafic lavas from different tectonic settings", Contributions to Mineralogy and Petrology 63 (1977) 161-173. [DOI:10.1007/BF00398776]
24. [24] Letterrier J., Maury R.C., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series", Earth and Planetary Science Letters 59 (1982) 139–154. [DOI:10.1016/0012-821X(82)90122-4]

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb