بررسی شیمی کانی، دما- فشار و دگرگونی زمین-ساختی گارنت آمفیپولیت‌های تخت سلیمان، شمال غرب تکاب

رباب حاجی على اوغلو

گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز

(دریافت مقاله: ۱۳۸۵/۰۶/۰۲، نسخه نهایی: ۱۳۸۵/۰۵/۲۵)

چکیده: مجموعه دگرگونی تخت سلیمان با طیف سنگ‌شناسی گسترده شامل انواع سنگ‌های دگرگونی رسی، باریک و مرمور بوده که در شرایط رخساخت شیست سری‌تای آمفیپولیت و گراتولیت دگرگونی شد. سنگ‌های آمفیپولیت در درجه دگرگونی‌های بالا دیده شده و میکانیسم‌های متنوعی در این ارتباط تشکیل شدهاند. کانی‌های دگرگونی اوج در کارنت آمبیپولیت‌های فشار بالا به طور کامل توسط سیمپلیکتیک دما فشار متوسط پلاژیوکلار-جوارنیلدینگ یا گروه دیگر است. شرایط دما و فشار دگرگونی پسودونه (M1) در کارنت آمبیپولیت P-T دارای دوره شیست فشار و ترکیب شیمی‌مست کننده نیستند. شرایط دما و فشار پسودونه در P-T (M2a) و (M2b) مرحله سردردگی در طی بالا آماده و فرسایش سنگ‌ها، تأثیر بزرگی در پژوهش P-T در این ارتباط داشته است. با این حال، می‌تواند داشته باشد که اکتیویت‌های P-T به طور کامل توسط P-T نیستند و از این عامل تأثیر داشته باشد.

واژه‌کلیدی: گارنت آمفیپولیت، شیمی‌کانی، دما-فشار، گروگان گراتولیت، تخت سلیمان

پیش‌نگاه: مقدمه

مقدمه: منطقه تخت سلیمان در شمال شرق تکاب در استان آذربایجان غربی واقع شده است. این منطقه در تقسیم‌بندی ساختاری ایران در منطقه‌های ایران مرکزی [1] و منطقه سندی-سرجان [2] در نظر گرفته شده است. مجموعه دگرگونی Tخت سلیمان به طور اولیه در سنگ‌های دگرگونی درجه متوسط تا درجه بالا شامل شیست سری‌تای آمبیپولیت‌های فشاری-دگرگونی، گراتولیت، ...

hajialioghli@tabrizu.ac.ir
امفیبولیتهای هستند. در برخی نمونه‌ها کارتن‌های دنیا درشت در مقادیر بسیار غنی با چشم‌گیر مسالم ماهی‌شکل می‌شود. سنگ‌های امفیبولیت در طولی که در درجه دگرگونی‌های بالا ذوب شده و میکمات‌های مافیک تشکیل شده‌اند. رخ‌منون سنگ‌های دگرگونی‌منسوب به کامبرین [5] در جنوب منطقه دیده می‌شود. این سنگ‌ها شامل سلیسیت، فیلیت به رنگ سیاه تمایل به خاکستری یا میان‌رازه‌های توف، میان‌زمینیت و لاشه‌های تارک دولومیت است. توده‌های آشیان بر ترکیب گرانیتون‌های گیت‌های داخل مجموعه سنگ‌های دگرگونی قدمی نفوذ کرده‌اند. زمان جایگزینی این توده‌ها در داخل سنگ‌های دگرگونی در بررسی‌های پیشین به پراکندهای (معادل با گرانیت دوران [4]) و مزوزولیت [5] نسبت داده شده است اما انتخابی و تشکیل سنگ‌های تا به حال به طور دقیق مشخص نشده است. به نظر می‌رسد که بخشی از این سنگ‌ها انتمالاً در ارتباط با ذوب‌بخشی امفیبولیت‌ها و میکمات‌های مافیک تشکیل شده باشد. سن‌سنجی U-Pb زیرک در لوکلوم، سن میکمات‌های مافیک حاصل از ذوب‌بخشی امفیبولیت‌ها را گونه‌سی‌میوس منشی کرده است [6].

شکل 1 نقشه زمین‌شناسی منطقه برگرفته از مرجع [5].
روش پژوهش
سنگهای گرانت امپیبولیت با استفاده از دستگاه رژیم‌دار زکلکترونی SXR100 در مرکز مطالعات زمین‌شناسی و پنالمان آلمان (GFZ) تنظیم آماده شدند.

100 نانومتر تا 15 کیلووات (Fe2+/Fe3+) هیدروژن شدیدتر است.

سنگ‌گزاری گرانت امپیبولیت با استفاده از دستگاه رژیم‌دار زکلکترونی SXR100 در مرکز مطالعات زمین‌شناسی و پنالمان آلمان (GFZ) تنظیم آماده شدند.

100 نانومتر تا 15 کیلووات (Fe2+/Fe3+) هیدروژن شدیدتر است.

سنگ‌گزاری گرانت امپیبولیت با استفاده از دستگاه رژیم‌دار زکلکترونی SXR100 در مرکز مطالعات زمین‌شناسی و پنالمان آلمان (GFZ) تنظیم آماده شدند.

100 نانومتر تا 15 کیلووات (Fe2+/Fe3+) هیدروژن شدیدتر است.

کاتئ شیمی کاتئ‌های درگونی شامل گرانت، آمفیبول، پلازیوکلاز و اپیدوت در نمونه معرف از سنگ‌های گرانت آمفیبولیت با استفاده از ریزبردازشگر تجزیه شد. داده‌های تجزیه ریزبردازشگر کاتئ‌های معرف در جدول 1 ارائه شده است. آمفیبول: فرمول آمفیبول بر اساس 23 گستره و 13 کاتئون مشابه شده است کاتئ‌های آمفیبول تجزیه شده در انواع سنگ‌های آمفیبولیت از نوع سدیمی-کلسیمی می‌باشد که در (Na, Ca) آلیاژ (Ca/Si) توزیع ترکیب‌های اصلی با نسبت مولی (M) است.

فلدسپار: فرمول فلدسپار بر اساس 5 کاتئون و 8 گستره محاسبه شده است. ترکیب کاتئ‌های پلازیوکلاز تجزیه شده در اصل قنی از تشکیل دهنده آئورتیت با مقادیر فری آلیت است (شکل 4 اف). عضو فعلی فلدسپار با نسبت مولی در McCarthy سی(Na, Ca) توزیع ترکیب‌های آلیت پلازیوکلاز در سنگ‌های گرانت آمفیبولیت و کلئینوپروکس-گارنت.

شکل 2 (اف) برگوگرا یا پورفیرولاسته‌های از کاتئ‌های آمفیبول، پورفیرولاسته‌های آمفیبولیت در تصویر رنگ متغیر از آمفیبول‌های دانریز کشیده است. برگوگرت را نشان می‌دهند. (ب) اولین خوردگی گرانت در بخش میانی به کاتئ‌های پلازیوکلاز و زولیتیت تجزیه شده است. (ت) پورفیرولاسته‌های برگوگرت با رنگ نوری متغیر از هسته و حاشیه گرانت در هسته گرانت در ادخال های بسیار زیاد از فراوان اپیدوت است. در صورتی که داشته‌ای ادخال‌های کوارتز در انداره‌های نسبتاً درخت است. (ث) ادخال هروبرنگ در این‌کوارتز در پورفیرولاسته‌های گرانت، (ج) سیپیکنت دما پایین هورنلاند و پلازیوکلاز در اطراف پورفیرولاسته‌های گرانت. همه تقارن در حالت T به شده.
امفیبولیت به طور متوسط در حدود 75-95% است. مقدار بالای تشکیل دهنده An در کانی‌های امفیبولیز سنجیده در Ca فراوانی و بالاتر با دوگروت اوج است. مقدار بالای Ca در تحلیل ادعایی معرفی می‌شوند.

جدول 1: داده‌های مختلف از تجزیه‌ریزی‌داری کانی‌های دوگروتی امفیبولیت‌های تخت سیلانی.

<table>
<thead>
<tr>
<th>ماده</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Fe</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Mg</th>
<th>K/Na</th>
<th>Mg/Fe</th>
<th>Al/Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>1.16</td>
<td>0.14</td>
<td>0.12</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.10</td>
<td>0.14</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>Ti</td>
<td>0.16</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>Al</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>Fe</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>Ca</td>
<td>1.16</td>
<td>0.14</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>Na</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>K</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>Mg</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
</tr>
<tr>
<td>K/Na</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
</tr>
<tr>
<td>Al/Fe</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
</tr>
</tbody>
</table>
نمونه‌های کانی‌های گزارنده: در سطح اصلی‌تر، تکمیل گزارنده سه‌گونه‌ای فرمولی است که از ترکیبات FeO، Mg، Ca، Mn، Al، Si، O را در آن دارا می‌باشد.

شکل ۲ (الف و ب): ترکیب آمپیلوپلی در نمونه‌های بندی (۱۰۰) و ت (ب و ت) ترکیب آمپیلوپلی در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۳ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Alm-Or-Ab-An, Prp-Grs-Sps و Prp-Alm-Sps.

شکل ۴ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۵ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۶ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۷ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۸ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۹ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۱۰ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۱۱ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۱۲ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۱۳ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۱۴ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۱۵ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۱۶ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۱۷ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۱۸ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۱۹ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۲۰ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۲۱ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۲۲ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۲۳ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۲۴ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۲۵ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۲۶ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۲۷ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۲۸ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۲۹ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.

شکل ۳۰ (الف و ب): ترکیب پلاژیوکلاز در نمونه‌های Ti-Si و Ti-AlIV.
درشت بلور گرانی‌های دست‌گذاری مورد بررسی قرار گرفت به‌خاطر افت دقت بررسی‌های اصلاح شده با جوش‌های بی‌گرندیسی (annealing) ناگهان و تاپیستن در نیم‌گرانی‌ها احتمالاً در ارتباط با وجود انرژی‌های انتقال ترکیبی که با ترکیبی پیش‌آمدهای این دستگاه مطابقت دارد.

بررسی ترکیبی خلیفه‌های گلاس و مقدار Fe به‌طور میان‌رده‌ای قابل قبول و با جوش‌های خودرودی (انرژی انتقال) تعیین شد. تعداد این انتقال‌ها در حدود ۲۰–۳۵ میلی‌سیلوئید است.

بررسی آمپلیتودهای آمپلیتود پیش‌آمدهای این دستگاه نشان می‌دهد که این انتقال‌ها در حدود ۲۰–۳۵ میلی‌سیلوئید است.

در نتیجه، این دستگاه می‌تواند به‌عنوان یک دستگاه جدید برای ترکیبی خلیفه‌های گلاس و مقدار Fe به‌طور میان‌رده‌ای قابل قبول و با جوش‌های خودرودی (انرژی انتقال) تعیین شود. تعداد این انتقال‌ها در حدود ۲۰–۳۵ میلی‌سیلوئید است.

در نتیجه، این دستگاه می‌تواند به‌عنوان یک دستگاه جدید برای ترکیبی خلیفه‌های گلاس و مقدار Fe به‌طور میان‌رده‌ای قابل قبول و با جوش‌های خودرودی (انرژی انتقال) تعیین شود. تعداد این انتقال‌ها در حدود ۲۰–۳۵ میلی‌سیلوئید است.

در نتیجه، این دستگاه می‌تواند به‌عنوان یک دستگاه جدید برای ترکیبی خلیفه‌های گلاس و مقدار Fe به‌طور میان‌رده‌ای قابل قبول و با جوش‌های خودرودی (انرژی انتقال) تعیین شود. تعداد این انتقال‌ها در حدود ۲۰–۳۵ میلی‌سیلوئید است.

در نتیجه، این دستگاه می‌تواند به‌عنوان یک دستگاه جدید برای ترکیبی خلیفه‌های گلاس و مقدار Fe به‌طور میان‌رده‌ای قابل قبول و با جوش‌های خودرودی (انرژی انتقال) تعیین شود. تعداد این انتقال‌ها در حدود ۲۰–۳۵ میلی‌سیلوئید است.

در نتیجه، این دستگاه می‌تواند به‌عنوان یک دستگاه جدید برای ترکیبی خلیفه‌های گلاس و مقدار Fe به‌طور میان‌رده‌ای قابل قبول و با جوش‌های خودرودی (انرژی انتقال) تعیین شود. تعداد این انتقال‌ها در حدود ۲۰–۳۵ میلی‌سیلوئید است.
entityشکل ۶ دما‌شماری و مسیر ساختار تخویض اختلالات P-T در گارانت آمفوریبولیت‌های تخت سیلیمان.

ماتریسیک است (۱۵). شرایط توده‌ای موره برخی به دولی گارانت آمفوریبولیت‌هایی در گارانت اوج درگوگوئی منفیگرافی نیست. بر اساس میزان ارتباطی و منطقه‌بندی شیمی‌کالی‌های پورفوریولاست‌ها گازنت درگوگوئی پسونده سیلیمانی گارانت آمفوریبولیت تخت سیلیمان در دو مرحله قابل بررسی است (شکل ۶). درگوگوئی پسونده در شرایط کاهش فشار (M۲ب) افزایش Fe و Ca، Mg جزئی و کاهش مقداری در گازنت-پورفوریولاست‌های کاهش از نمونه‌های این مرحله از درگوگوئی پسونده در سیلیمانی الایول بررسی است. شرایط فشار و دما در مرحله کاهش فشار پس از اوج درگوگوئی پیشونده (M۲ب) بر اساس ترکیب آبی و Fe و Ca در درگوگوئی هسته‌های پورفوریولاست گازنت و کاهش به سیلیمان هسته‌های پورفوریولاست و آمفوریبول در سیلیمانی ریزدانه شد. دمای سطح درگوگوئی گازنت-پورفوریولاست بر اساس کالری‌سنجی مراجع (۱۶، ۱۷) شرایط دما در درگوگوئی تا به طور یکسان در حداکثر ۴۹۰ درجه سانتی‌گراد در شرایط درگوگوئی Hbl-Pl-Qtz

در کالری‌سنجی دما به دست آمد. جدول ۲ شرایط فشار و دما محاسبه شده در سیلیمانی گازنت آمفوریبولیت تحت P-T سیلیمان را نشان می‌دهد. مسیر ساختار تخویض P-T درگوگوئی در گارانت آمفوریبولیت‌های تخت سیلیمان.

M2-a stage: Grt (inner)+ Amph (core)+ Pl (inclusion in Grt)
M2-b stage: Grt (rim)+ Amph and Pl intergrowth

diagram
جدول 2: شرایط دما و فشار در گزارش آمیفیلیت‌های نئو سیلتاین

<table>
<thead>
<tr>
<th>نوع سنگ</th>
<th>P (kbar)</th>
<th>T (°C)</th>
<th>Retrograde met.</th>
</tr>
</thead>
<tbody>
<tr>
<td>گرانت-آمیفیلیت</td>
<td>640 (Pe), 690 (G&P), 700 (Ra, 00)</td>
<td>8 (K&S, 89), 7 (K&S, 90), 8 (J&R)</td>
<td>M2-a</td>
</tr>
<tr>
<td>650 (P), 570 (G&P)</td>
<td>5.5 (K&S, 89), 6 (K&S, 90)</td>
<td>M2-b</td>
<td></td>
</tr>
</tbody>
</table>

دلمان: Hbl-Grt [G&P: [16]; Pe: [22]; Ra, 00: [17]]; Hbl-Pl [P: [18]; S[22]].

بررسی تغییرات T-P درگونی

بر اساس شواهد بافتی و کاندیداسی در گزارش آمیفیلیت‌های مواد بررسی، تغییرات T-P درگونی سنجگی در سه مرحله شامل (1) اوج درگونی (2) درگونی پسرونده در شرایط کاهش فشار و (3) درگونی پسرونده در شرایط سردشنجی در بررسی شده است. مثال اوج درگونی آمیفیلیت- P-T درگونی شوری با دلیل نبود کاندیداسی در گرانت-آمیفیلیت و تشخیص ویژگی‌های پورفویولاسیت گرانت و آمیفیلیت مشخص نیست. شواهد بافتی سیمپلیت‌های دمای بایبی هوریلوت-بلاژیوکلاز اطراف پورفویولاسیت از شواهد بافتی نشان دهنده رخداد در گرانت-آمیفیلیت پسرونده در سنگ‌های مواد بررسی هستند.

سیمپلیت‌های هوریلوت-بلاژیوکلاز در اطراف پورفویولاسیت کاری ما در قرار از پاکت که نشان دهنده شکست گرانت در شرایط P-T کاهش فشار است [15, 26]. نخستین قسمت مسیر یک تا 5 کیلومتر (مرحله M1) شیب تند P=5.5-6 کیلومتر در سه دهنه بالا امتداد سنجگی همراه با کاهش فشار است که این مرحله احتمالاً از ارتباط با عملکرد گسل های تراستی طی ضخیم-شدگی پوسته‌ی [16-20] در منطقه روی داده است. این مرحله بالا امتداد سنجگی درگونی تبدیل شده در آب‌د و یوست زیرین که تا حدود 22 کیلومتر (مزاییت دامنه کم) همراه بوده است (شکل 2، انازه به نسبت درشت کاهی در بافت سیمپلیت‌های احتمالاً از ارتباط با نرخ نسبتاً زیاد سردشنجی که بالا امتداد سنجگی یوست زیرین در منطقه 400- 500 °C تا 5.5-6 کیلومتر شیب تند P=5-2 کیلومتر P-T شرایط دما از 150-200 °C تا 50-60 °C

بررسی سنجگی درگونی زمین‌ساختی

زمان ارتباط درگونی های اوج در گرانت-آمیفیلیت‌های موردد به بررسی می‌تواند به طور دقیق مشخص نیست. سن سنجی U-Pb هزینه‌ی زیرکین
Mergele (M₃w) در حدود 450-700 °C و در
mergele (M₃b) در حدود 550-600 °C است. (۲) میزان شاهد بافتی کانی شناسی و محاسبات
پیمان می‌باشد که این بخش از تغییرات در مورد
پررسی به صورت زیر تفسیر می‌شود: نسبت تغییرات dP/dφ کاهش
پیشنهاد می‌شود که شیب بردار نسبت dP/dφ مشاهده نمی‌گردد.
فقط را نشان می‌دهد که احتمالاً طی این بافت کانی، زمین ساختی
سنگ‌ها در ارتباط با عملکرد گسیل‌های تراستی در طی ضخیم-
شگی پیوسته و برخورد فارنهای نیست داشته است. در این
mergele اقامطاً سنگ‌های ناگهانی در ناحیه مرسوم
(۷۲ کیلومتر) با تغییرات دمای در همراه به
است. در قسمت دوم پیوسته پیوند شدت
1-7.8 kbar و ۵۱-۵۰ °C.
در ارتباط با سنگ‌های طی بلافاصله
آب‌انبار و نارک‌شکنگی و فرسایش پیوسته به
است. به نظر
می‌رسد که این
سنگ‌های گمان شده تغییرات ام‌باییتی مورد
بررسی در مجموعه دستگاه تغییراتی به مدل ضخیم
سنگ‌های پیوسته و نارک‌شکنگی در پی آن فارنهای کشش
بعد از فشاران مرتب با پیوسته نتوانسته در طی فاز ورودی
همجعیت دارد.

قردستانی
مولفه از آقایان دکتر محسن مینه و دکتر احمد چهارگیویی به
جهت راهنمایی علمی ارزشمندی نشان و قدردانی می-
نماید. همچنین از دوازده محتمل جمله به جهت ارائه نظره
نظرات سازنده سیاسی‌گرای می‌شور.

مراجع
[۱] Berberian M., King G.C.P., “Towards a
genealogy and tectonic evolution of Iran”,
210–265.
belt of Iran: New data and interpretations”,
[۳] Stocklin J., “Structural history and tectonics of
Iran: a review”, American Association of
Petroleum”, Geologists Bulletin 52 (1968) 1229–
1258.

[15] Zhang K.J., “North and South China collision along the eastern and southern north China

