بررسی شیمی کانی، دما- فشار و دگرگونی زمین ساختی گارنت آمپیولیت‌های تخت
سیلیمان، شمال غرب تکاب

ربیب حاجی علی اوغلی*
گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز

چکیده: مجموعه‌ی دگرگونی تخت سیلیمان با طیف سنگ‌شناسی گسترده شامل انواع سنگ‌های دگرگونی رسی، باریک و مربوط به که در شرایط رخساره شیست سه تا آمپیولیت و گرانولیت تکمیل شده. سنگ‌های آمپیولیت در دوجه دچارگونی‌های پای دو بی‌شک‌کننده که به درون سیلیمان نیز در کریستال‌های آمپیولیت (M1) در تاریک‌ترین تاریک‌ترین P-T سیمپلکس‌دانه‌ای می‌باشد و این که بحث به انتقال درون سیلیمان نیز در کریستال‌های آمپیولیت (M1) در تاریک‌ترین P-T سیمپلکس‌دانه‌ای می‌باشد.

در میانه‌ی سه تا آمپیولیت و گرانولیت تکمیل شده. سنگ‌های آمپیولیت در دوجه دچارگونی‌های پای دو بی‌شک‌کننده که به درون سیلیمان نیز در کریستال‌های آمپیولیت (M1) در تاریک‌ترین P-T سیمپلکس‌دانه‌ای می‌باشد و این که بحث به انتقال درون سیلیمان نیز در کریستال‌های آمپیولیت (M1) در تاریک‌ترین P-T سیمپلکس‌دانه‌ای می‌باشد.

شواهد بیانی، کانی سنگی ساختی، محاسبات دما و فشار و مسیر سنگ‌ترکننده نگاربندی‌های P-T پرسونه در گارنت آمپیولیت‌ها نتیجه‌ی می‌شود که کاهش شدت فشار را نشان می‌دهد که احتمالاً بتوان آن را برای دایره‌ای با عملکرد گسل پذیرفته شود.

مقدمة
منطقه‌ی تخت سیلیمان در شمال شرق تکاب در استان آذربایجان غربی واقع شده است. این منطقه در تقسیم‌بندی ساختمانی خصوصی ایران در منطقه‌ی ایران مرکزی [1] و منطقه‌ی سمند-سرجان [۲] در نظر گرفته شده است. مجموعه‌ی دگرگونی تخت سیلیمان به‌طور اصلی از سنگ‌های دگرگونی درجه سیمپلکس‌دانه‌ای می‌باشد. این که بحث به انتقال درون سیلیمان نیز در کریستال‌های آمپیولیت (M1) در تاریک‌ترین P-T سیمپلکس‌دانه‌ای می‌باشد.

فاز‌های کشیده: گارنت آمپیولیت‌های خاص کانی دما-فشار و دگرگونی دیگر سنگ‌های تخت سیلیمان (M1) در تاریک‌ترین P-T سیمپلکس‌دانه‌ای می‌باشد.
آمیفیپیلیت‌ها هستند. در برخی نمونه‌ها کارتن دانه درشت در مقادیر بسیار فراوان با چشم غیر مسلح مشاهده می‌شود. سنگ‌های آمیفیپیلیت در درجه دگرگونی‌های بالا ذوب شده و میکماتیت‌ها مایل ترکیب شده‌اند. ریخم‌سوز سنگ‌های دگرگونی مسوب به کامبرین [5] در جنوب منطقه دیده می‌شود. این سنگ‌ها شال اسلیت، تفالیت به رنگ سبز متمایل به خاکستری یا میان لایه‌های توف، متانزیت و لایه‌های تارک دوبینی است. توپنده این سنگ‌ها در منطقه شامل مجموعه دگرگونی‌های پرکامبرین با ترکیب شبست سنگ، آمیفیپیلیت، گنیس، مرم و گرانولیت است (شکل 1). همچنین برون‌سوز سنگ‌های فوق بایک سرپانشین شده به صورت توده‌های کوچک داخل آمیفیپیلیت‌ها دیده می‌شود. سنگ‌های ممر به شدت پرتابیل‌پاتنده و بقایای فسیل در آنها مشاهده می‌شود. بافت‌های آمیفیپیلیت‌ها متنوع بوده و شامل انواع همگن، برگورگی و چین خورده است. طول موج چیت در آمیفیپیلیت‌ها از میلیمتر تا چند متر متغیر است. رنگ آمیفیپیلیت‌ها در نمونه‌های مسیمی از خاکستر و سیز روشن تا رنگ کاملاً سیاه متفاوت است. اندازه کانی‌ها در آمیفیپیلیت‌ها از اندازه بسیار دانه‌ریز تا چند میلی‌متر متغیر است. هورنیلند و پلاتوپلاکز کانی‌های اصلی تشكل‌دهنده سنوزونال نسبت داده می‌شود. در این روش کانی‌شناسی، روابط بافتی و شیمی‌کانی‌ها در سنگ‌های آمیفیپیلیت‌ها مجمع دگرگونی تحت سلمند مورد بررسی قرار گرفته و تغییرات دما و فشار دگرگونی سنگ‌ها تعیین شده است. نتایج به دست آمده در تفسیر دگرگونی زمین‌ساختی بوسته قاره‌ای منطقه، مورد استفاده قرار گرفته است.

شکل 1 نقشه زمین شناسی منطقه پرگفته از مرجع [5]
روش پژوهش
سنگهای گتوند امپبیولیت با استفاده از دستگاه رژیم‌بندی الکترونی SX100 در مرکز مطالعات زمین‌شناسی پنسیلوانیا (GFZ) شناخت گردید. نمونه‌های Fe2+/Fe3+ در آمپبیولیت بر طبق سیستم [
[DOI: 10.29252/ijcm.25.4.749]
Downloaded from ijcm.ir at 19:49 +0430 on Wednesday April 22nd 2020
کاتی شیمی
کاتی های درگوگان شامل گرانت، آمپیول، پلاژیوکالزر و ایبدوت در نمونه عرف از سنگ‌های گرانت آمپیولیت با استفاده از ریزوپادارگی تجزیه شد. داده‌های تجزیه ریزوپادارگی کاتی های معرف در جدول ۱ را ارائه دست آمپیول: فرمول آمپیول بر اساس ۲۳ اکسیون و ۱۳ کاتیون محاسبه شده است که های آمپیول تجزیه شده در انواع سنگ‌های آمپیولیت از نوع سدیمی-کلسیمی می‌باشد که در Na (14) a.p.f.u. Ca (18.34 a.p.f.u.) آنها تشکیل شده‌های اصلی چایکه هشتوپی‌ه (M³⁻) فلسفه‌ه: فرمول فلسفه بر اساس ۵ کاتیون و ۸ اکسیون محاسبه شده است. ترکیب کاتی های پلاژیوکالزر تجزیه شده در اصل غنی از تشکیل دهنده آن دارد با مقادیر نرمی آن در است شکل ۴ اکس. عضو نهایی فلسفه بتنیمی در مقادیر بسیار جزئی (نا نا (0.3-۱) است. عضو نهایی آن دارد در پلاژیوکالزر در سنگ‌های گرانت آمپیولیت و کلسیمپروپکس-گرانت

افراشی یافت، این ترکیب آمپیول در Ti و Ca در ترکیب آمپیول در ترکیب ۲ (الف) برگورگی با پروفرابالاسته‌ها از کاتی‌های آمپیول. پروفرابالاسته‌ها آمپیول در ترکیب رگ متفاوت از آمپیول‌های دانه‌‌ریز کشیده در برگورگی را نشان می‌دهند (ب) برگورگی چین خورده، (ب) (ت) برگورگی پلاژیوکالزر و زولپیت تجزیه شده است (ت) پروفرابالاسته‌ها را نشان نشان می‌دهند در هسته و حاشیه گرانت در هسته دو راز ادخال با هیپر و فراوان این دو است در صورتی که بهتر حاشیه دارای ادخال‌های کوارتز در انداده‌های نسبتاً درشت است (ت) ادخال فیلتر بار درون ادخال کوارتز در پروفرابالاسته‌ها گرانت. (ج) سیمپلکسیت دما پایین هورنبند و پلاژیوکالزر در اطراف پروفرابالاسته گرانت. همه تصور در حالت PPL تهی شده.

شکل ۲ (الف) برگورگی با پروفرابالاسته‌ها از کاتی‌های آمپیول. پروفرابالاسته‌ها آمپیول در ترکیب رگ متفاوت از آمپیول‌های دانه‌‌ریز کشیده در برگورگی را نشان می‌دهند (ب) برگورگی چین خورده، (ب) (ت) برگورگی پلاژیوکالزر و زولپیت تجزیه شده است (ت) پروفرابالاسته‌ها را نشان نشان می‌دهند در هسته و حاشیه گرانت در هسته دو راز ادخال با هیپر و فراوان این دو است در صورتی که بهتر حاشیه دارای ادخال‌های کوارتز در انداده‌های نسبتاً درشت است (ت) ادخال فیلتر بار درون ادخال کوارتز در پروفرابالاسته‌ها گرانت. (ج) سیمپلکسیت دما پایین هورنبند و پلاژیوکالزر در اطراف پروفرابالاسته گرانت. همه تصور در حالت PPL تهی شده.
امفیولیت به طور متوسط در حدود 75-95% است. مقادیر
تشکیل گانیت و کلینوبیوکسن است.

جدول 1: داده‌های معرفی از تجزیه ریزبودارشگر کانی‌های دگرگونی در گانیت امفیولیت های نخست سیلیمان.

<table>
<thead>
<tr>
<th>ماده</th>
<th>آمپر</th>
<th>آمپر</th>
<th>آمپر</th>
<th>آمپر</th>
<th>آمپر</th>
<th>آمپر</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>91.6</td>
<td>91.7</td>
<td>91.5</td>
<td>91.9</td>
<td>91.4</td>
<td>91.2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>FeO</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>MgO</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>K2O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Σ</td>
<td>92.4</td>
<td>92.5</td>
<td>92.6</td>
<td>92.7</td>
<td>92.8</td>
<td>92.9</td>
</tr>
</tbody>
</table>

میزان (تعداد) شاخص‌ها در این تجزیه‌ها به‌طور متوسط 70-80 درصد به گونه‌ای است که

<table>
<thead>
<tr>
<th>شاخص</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.6</td>
<td>91.7</td>
</tr>
<tr>
<td>91.5</td>
<td>91.9</td>
</tr>
<tr>
<td>91.4</td>
<td>91.2</td>
</tr>
</tbody>
</table>

سیلیمان.
شکل 3 (الف و ب) ترکیب آمپیول در نمونه رده بندی [19]. (ب و د) ترکیب آمپیول در نمونه‌های Ti-Si و Ti-Al IV

شکل 4 (الف) ترکیب پلاژیوکلار در نمونه‌های Prp-Alm-Sps و Prp-Grs-Sps و Or-Ab-An.

گزارش: فرمول گرانت بر اساس 8 کاتیون و 12 آکسیون محاسبه شده است. با وجود اینکه ترکیب گرانت در سنگ‌های مشابه به صورت (Fe2+, Mg, Ca, Mn)3Al2Si3O12 متراکم الکتریک داده می‌شود اما در سنگ‌های مورب بررسی می‌شود که در فلزات ناهنجاری در پرپ-المین جانشینی بین Al و Mg بوده است. در حومه Fe3+ مقدار Fe3+ در گرانت کم و در حدود (15±5) درصد فلزات و داده می‌شود. حضور گرانت به صورت همزیست با کلیه‌ای در مایع Fe3+ الکتریک با آلیاژ‌های مواد زنده. آمپیول، جانشینی و Fe3+-AI دارد. Prp-Alm-Sps و Prp-Grs-Sps و Or-Ab-An.

تهیجه شده تغییرات ترکیب شیمیایی آمپیول از هزینه به سمت منطقه مینای دارای فاوت اسیر جزئی تا تقریباً بی‌دون تغییر افت (شکل 5 اف). تغییرات XCa و XAl از هزینه به سمت منطقه داخل روند تقریباً نرمال ناپویا در TCa تقریباً بی‌دون. تغییرات XCa و XAl از هزینه به سمت منطقه داخل روند تقریباً نزولی تا یکجا با تغییرات XCa و XAl از هزینه به سمت منطقه داخل را نشان می‌دهد. کاهش قابل مشاهده مقدار XCa در ترکیب حاشیه بیشتر کلیه‌ای گرانت تجزیه شده را می‌توان به سبب نشان و در روش نسبی سرعت زیر خط انگیج نسبی داد.

Prp-Alm-Sps و Prp-Grs-Sps و Or-Ab-An.

اگر گرانت در سنگ‌های مواد زنده با Prp-المین جانشینی بین Al و Mg بوده است. نیمه‌تغییرات در طول پوزیتیو و ساین‌های گرانت در سنگ‌های آمپیولیت منطقه مواد بررسی در شکل 5 نشان داده شده است. ترکیب
جزئیات شکل ۵ نیم‌عبره اغلب کامی‌های گرانت تجزیه شده (گرانت تجزیه‌شده گرانت حامل از چش خوردگی) در سنگ‌های امفیبولیت و روید تغییرات قابل مقایسه‌ای را نشان می‌دهد. برخی از این مواد عبارتند از: (الف) تغییرات گرانت از هسته به سمت منطقه میانی با افزایش تشکیل دهنده بی‌روپ و کاهش مقدار اسپساتن و گروسولا مخرب‌های شدید (شکل ۵ ب.) (ب) کاهش تشکیل شدید در منطقه میانی احتمالاً در ارتباط با شرایط کاهش فشار و ناپایداری واکنش‌های تشکیل معدن‌های [14] است.

گرانت پیشرفت از مقدار آن در ترکیب حاشیه است.

(۱) باوجود اینکه در کل، مقایسه اسپساتن در ترکیب گرانت- ۵ نیم‌عبره به سمت ایجاد تغییرات ترکیبی جنی نیست. به صورت منطقه‌بندی عادی از هسته به سمت منطقه میانی و منطقه‌بندی مکوسکس از منطقه میانی به سمت حاشیه (X_Mn = 0.1 [p.f.u.]) است تخمین دهنده اینکه تغییرات در نیم‌عبره ناکافی است.

(۲) کاهش قابل ملاحظه درست بلافاصله قبل از ترکیب حاشیهی در نیم‌برق گرانت در ارتباط با تبدیلات کاتاژنی و جانشینی زیرخطر انجام امکاناً با گرایش در پیش بینی می‌کند. آزمایش اینکه شدت است. تا این که این ایبودتو بر اساس Fe/Mg رخ داده است. ایبودتو Fe/Mg ایبودتو به صورت Fe/Mg

جذر ۲۵ شماره ۴ زمستان ۱۳۹۶

بررسی شیمی کانی، دما، فشار و دگرگونی زمینساختی گرانت...

۲۵۵

شکل ۵ نیم‌ عبره یک ترکیب از کانی‌های گرانت تجزیه شده. (الف) ترکیب گرانت در دو تغییرات ترکیبی و پیوسته است. (ب) تغییرات ترکیبی ناگهانی و تغییراتی در نیم‌برق گرانت که احتمالاً در ارتباط با چش خوردگی (annealing) کانی‌های گرانت کوچک دریای بزرگی پرورودیلاست درشت بوده است.

dnop\

dnop\

dnop\

dnop\

dnop\

dnop\

dnop\

dnop\

کالیبره شده با داده‌های مراجع [19, 20] تعیین شد \(P = 8.5 \pm 0.5 \) kbar. فشار محاسبه شده در حدود 3.5 km تحلیل شد. تعیین کالیبره شده با استفاده از سرده Al در تركیب هورنبلند [21] با فشارهای محاسبه شده در مراجع [19, 20] همخوانی دارد \((P = 8 \pm 0.5 \) kbar)

d) درگوگنی پسرونده طی سرده شدگی در ارتباط با آمیگوئی و فرسایش سنگ‌ها (exhumation) \((M_2a) \) این مرحله از درگوگنی پسرونده با افزایش مقادیر مواد هورنبلند در زمینه ریزدانه مشخص می‌شود. شرایط دما در مرحله سردشدرگی با \(T = 50^\circ C \) می‌باشد. در این مرحله از دمای اکسیژن (M2b) در ریزدانه تعیین شد. دمای کالیبره شده با داده‌های مراجع [19, 20] در Hbl-Pl-Qtz و \(\Delta E_{P-T} \) تعیین شد. جدول 2 شرایط فشار و دمای محاسبه شده در سنگ‌ها گرانت أمفیبولیت تخت P-T سلیمان را نشان می‌دهد. مسیر سایت‌های تحلولات P-T امفیبولیت‌های مورد بررسی در شکل 6-تشان داده شده است.

متایزک این P-T اوج درگوگنی در گرانت أمفیبولیت‌های ورودی بررسی به دنبال نوید کالیبره‌های درگوگنی اوج درگوگنی مشخص نیست. بر اساس تغییرات تركیبی و منطقه‌بندی شیمی کالیبره‌های پورفیروبلاست گرانت درگوگنی پسرونده سنگ‌های گرانت-امفیبولیت تخت سلیمان در دو مرحله قابل بررسی است (شکل 6).

d) درگوگنی پسرونده طی شرایط کاهش فشار \((M_2a) \) افزایش Fe و Ca و کاهش مقادیر Mg جزئی و کاهش مقادیر Ce، HREE و O الناتنج مواد پورفیروبلاست‌های گرانت از شوکه‌ای این مرحله از درگوگنی پسرونده سنگ‌های مورد بررسی است. شرایط فشار و دما در مرحله کاهش فشار پس از اوج درگوگنی پیشونده \((M_2b) \) بر اساس تغییرات ریزدانه میانی پورفیروبلاست گرانت و تکمیل هسته‌های پلی‌پلات و آمیگوئی در زمینه ریزدانه تعیین شد. دمای سیگنال گرانت-هورنبلند بر اساس کالیبراسیون‌های مراجع [17, 18] در 141927 سرگز در درگوگنی \(\Delta E_{P-T} \) به طور یکسان در حدود 125+690 درجه سانتی‌گراد \(P = 5 \) به دست آمد. جدول 2 شرایط فشار و دمای محاسبه شده در سنگ‌های گرانت أمفیبولیت تخت P-T سلیمان را نشان می‌دهد. مسیر سایت‌های تحلولات P-T امفیبولیت‌های مورد بررسی در شکل 7 نشان داده شده است.

دماهای ساختمانی و مسیر ساختارهای تحلولات P-T درگوگنی در گرانت-امفیبولیت‌های تخت سلیمان.

[DOI: 10.29252/ijcm.25.4.749]
بررسی تحویل‌های P-T درگوگونی

بر اساس شواهد بافتی و کاناتسی‌های در گارانت آمیفیلیت‌های
مورد بررسی، تحویل‌های P-T درگوگونی سنجش‌ها در سطح مرحله
شامل (1) اوج درگوگونی و (2) درگوگونی پسروده در شرایط
کاهش فشار و (3) درگوگونی پسروده در شرایط بررسی
- اوج درگوگونی در گارانت آمیفیلیت- P-T بررسی شد. شرایط درگوگونی در گارنت آمیفیلیت- P-T های سرود بررسی با دلیل نبوغ کاناتسی‌های درگوگونی اوج
درگوگونی و شیمی پلیمری این مرحله در کاناتسی-
پورفلولاست گارنت و آمیفیلیت مشخص نیست. شواهد بافتی
سیمپلیت که دلیل بیانی هورنبلند-پلاژیوکلاز اطراف
پورفلولاست گارنت از شواهد بافتی نشان دهنده رخداد
درگوگونی پسروده در سنجش‌های مورد بررسی هستند.
سیمپلیت ویسیکول- پلاژیوکلاز در اطراف پورفلولاست
گارنت در فراز پیشی هم نشان دهنده تشکیل گردیده است.
با P-T کاهش فشار است [15، 22] نخستین قسمت سیمپلیت
که در مرحله 4 [15، 22] در معماله موجب نمود که لازم
به دلیل رشد بیشتر در اثر پایین‌سدنی کلیه ترنسی- پیمایی
شدگی پوسته‌ای [22] انجمن می‌شود. شکل به این علت در این
مرحله با اضافه سنجش سنجش دیدگی در ابعاد
پوسته زیرین تا عمق حدود 20 km تغییرات دما کم
هسته یا درمایه از گردش که ۴ ابتدا به نسبت همین که
بدین سیمپلیت باعث افت افزایش در ارتباط با نرخ نسبتاً بیشین
سردردشگی طی با اضافه سنجش سنجش دیدگی پوسته‌ای در منطقه
است. در قسمت دوم سیری P-T شرایط دما از 0-1000°C
تا 5-50 kbar و فشار از 1-5 kbar کاهش باعث
یافته است شکل [4]. کاهش فشار، سردشدن و شیب
در قسمت دوم سیری P-T در حد متوسط است. در نتیجه این

مسیر از درگوگونی پسروده در نمودار شکل 6 را می‌توان
ارتباط با بالا امتداد سنجش‌ها به همکاری کوالسی‌دگی پوسته به
به دلیل فرآیندهای خیمی‌سنجشی و فرسایش سنجش‌ها [21، 23] در
نظر گرفته. مقادیر فشار و دمای محاسبه شده در گارنت
امیفیلیت‌ها در مرحله کاهش فشار (T = 500-650°C و P = 5-7 kbar)
منطقه بر محدوده بافتی و اکثریت (P = 7-8 kbar)
(منشأ شده در سنجش‌های ماتازیک) [22] است که بر
این اساس نمایشگر اوج درگوگونی در شرایط کاهش
فرار [21] باید دیده شود (شکل 4، مقادیر دما و فشار در
مرحله پسروده در مرحله کاهش دما و P = 5-5 kbar
فشار در انتقال از مرحله پسروده به (M2a)
در حدود 100-140°C و 15-25 kbar است.
براساس تغییرات فشار محاسبه شده در طی مرحله پسروده
همچنین در حدود (M2b) (به (M2b)
در پوسه زیرین در سیستم بیشتر از P-T) حدود 232 در
فراندهای هورنبلند در منطقه برخورد فشار داده
تعداد که به این علت در این مرحله
اشکال که در ابتدا در این مسیر افزایش داده شده است
به همراه با اضافه سنجش سنجش دیدگی در ابعاد
پوسته زیرین تا عمق حدود 20 km تغییرات دما کم
هسته یا درمایه از گردش که ۴ ابتدا به نسبت همین که
بدین سیمپلیت باعث افت افزایش در ارتباط با نرخ نسبتاً بیشین
سردردشگی طی با اضافه سنجش سنجش دیدگی پوسته‌ای در منطقه
است. در قسمت دوم سیری P-T شرایط دما از 0-1000°C
تا 5-50 kbar و فشار از 1-5 kbar کاهش باعث
یافته است شکل [4]. کاهش فشار، سردشدن و شیب
در قسمت دوم سیری P-T در حد متوسط است. در نتیجه این

جدول 2 شرایط دما و فشار درگوگونی پسروده در گارنت آمیفیلیت‌های تحت سلیمان.

<table>
<thead>
<tr>
<th>نوع سنج</th>
<th>T (°C)</th>
<th>P (kbar)</th>
<th>Retrograde met.</th>
</tr>
</thead>
<tbody>
<tr>
<td>گرانت-امیفیلیت</td>
<td>640 (Pe), 690 (G&P), 700 (J&R)</td>
<td>8 (K&S,89), 8 (J&R)</td>
<td>M2-a</td>
</tr>
<tr>
<td>510 (P), 570 (G&P)</td>
<td>5.5 (K&S,89), 6 (K&S,90)</td>
<td>M2-b</td>
<td></td>
</tr>
</tbody>
</table>

دانش‌ها:
Hbl-Grt [G&P: [16]; Pe: [23]; Ra,00: [17]]; Hbl-Pt [P: [18]; S[22]].

مرحله (M$_{2a}$) در حداکثر 650°C و در
مرحله (M$_{2b}$) در حداکثر 600°C و در
بر اساس شواهد پانئی، کانی شناسی و محاسبات
مسیر ساختگر تحقیقات پتاسکسولیولیت‌های تربی خورشید به صورت میزان رنگ تغییر می‌شود، نتایج مسمی
سمسرگ و ناپرات در مسیر اصلی تربی لیترال که
دلتاپ نسبت به سطح نسبت به شیست که پتروتول
فاور را نشان می‌دهد که احتمالاً طی بالا اندام دسته‌ای
ستگه‌ها در ارتباط با عملکرد گسل‌های ترسی در طی ضخیم-
شیک پیوندهای پس از خروج قارهای تربی از و شناسی
زیرین تا اعماق بالاتر 23 کیلومتر در زمینه و
بستگی دارد. در قسمت پتاسکسولیولیت، بیش از 20- 25 کیلومتر شیفت روندن شاربایت
در $1000-750^\circ$C و فشار از 10 و 25 کیلومتر
پس از گسترش با طبیعت های پیش‌گروه در طی
زمین ساخته زمین سیامی و ایزوتوپی پیش‌بست.

برداشت

ستگه‌های پتاسکسولیولیت از نظر ساختاری، بافتی و مجموعه کانی-
های گستره‌ای در زمین مربوط به پتاسکسولیولیت‌ها در
پتاسکسولیولیت‌ها در طی کامل توسخ سیمیکتیکی دما فشار
متوسط پلارولوکارپوشیند. جایگزین شده است. شیفت دما و
فشار از 20 کیلومتر در M_{2a}، پس از
امتداد گستره پتاسکسولیت‌ها در
شیفت که طی بالا اندامی
پتاسکسولیت‌ها بر اساس
گستره‌ای در زمین مربوط به
پتاسکسولیت‌ها در
امتداد گستره پتاسکسولیت‌ها بر اساس

[15] Zhang K.J., “North and South China collision along the eastern and southern north China

