بررسی ترکیب و نقش عنصر کمیاب در شکل‌گیری کانسگن مگنتیتی توده نفوذی نامن،

LA-ICP-MS

غرب سبزوار به روش

سیدعلی مظفری

دانشگاه پیام نور، گروه علوم زمین شناسی، تهران

دریافت مقاله: ۹۵/۱۲/۲۴، نسخه نهایی: ۹۵/۱۲/۲۴

چکیده: سنگ‌های باری نفوذی نامن در غرب سبزوار به‌صورت هورنبلند گاروژه‌ای انباطی نظار می‌شوند. یکی از رخم‌های MHG این واحد، حوادث پدیده‌گذاری مکانیکی است. با وجود یک گزینه مشابه کانسگن تازه، هورنبلند گاروژه‌ای خرابی کانسگن (MG) به‌طور یکنواز خاصی نشان می‌دهد. تجزیه عناصر کمیاب به‌وسیله LA-ICP-MS به نمودارهای منوهنونهای LA-ICP-MS و نشان می‌دهد که تعدادی از کانسگن هر گروه مکنیکی در MHG و MG می‌باشد. منوهنونهای MHG و MG در طراحی ترکیب مشابه است و ترکیب عنصر کمیاب در MHG و MG در REE و Nb, Y, Ga, Al, Mg از نظر یکسانی با منوهنونهای MHG و MG از REE و Zn, Mn, Cr, V, Ti کاهش می‌یابد. این تفاوت می‌تواند در این گروه بیشتر درسی به‌سوی منوهنونهای MHG و MG شود. در نتیجه این مطالعه، لاستیت (La/Yb)N = ۳/۴ به عنوان یک شیب ملایم (LREE) و (La/Yb)N = ۷/۶ به عنوان یک نشانی مشخص می‌باشد که باید ترکیب کانسگن کمیاب در ترکیب کامپوزیت و تشکیل سنگ کل منجر به حاصل کسانی‌سازی خاصیت‌های تولید این می‌باشد.

واژه‌های کلیدی: گاروژه‌ای، هورنبلند، کمیابی، کانسگن، LA-ICP-MS، سبزوار.

مقدمه

با پیشرفت فنوری و ابداع روش‌های نوین برای تعیین عنصر کمیاب کانسگن (به ویژه طیف‌سنجی جرم‌گیل پلاسمی) جفت شده گرمایش چهار پاره‌ای، (LA-ICP-MS), استفاده از ترکیب عنصر کمیاب در برسی‌های مختلف سلسله‌شناسی و کانسگن نگاراه افزایش یافته است. این برسی‌ها دامنه‌گسترده‌ای کانسگن می‌باشد [۱, ۲] و فلزی [۳-۵] را شامل می‌شود. محققی که از رایجترین کانسگن گاروژه‌ای را گرفته است (FeO) (MgO) (SiO2)

این محقق از رایجترین گاروژه‌ای گرفته است. این کانسگن در طیف وسیعی از سنگ‌های مختلف از مجموعه‌های در افزویشیون منطقه‌ای می‌باشد، و به عنوان کانسگن آهمر در کاسارسازی

ماکامی، گرماپی و سیزن‌دهای آهن نواری (BIF) نشکل.

ali54894@yahoo.com

تویس‌تده مسئول، تلفن: ۱۴۹۴۴۴۴۰۰۰۲، پست الکترونیکی:
نمایش ناحیه مورد بررسی در پهنه سیزرو در شمال شرقی ایران.

مکان و موقعیت‌بندی‌های شناخته‌شده در این تحقیق شامل دو نوع از مناطق می‌باشد:
1. مناطق که در آنها تعداد کمی از عناصر مورد بررسی وجود دارد.
2. مناطقی که در آنها تعداد بالایی از عناصر مورد بررسی وجود دارد.

در تحقیق، از روش‌های مختلفی برای شناسایی عناصر استفاده شده است. این روش‌ها شامل:
1. تجزیه و تحلیل الکترومنگی (Electrochemical Analysis).
2. تجزیه و تحلیل الکترولیسی (Electrolytic Analysis).
3. تجزیه و تحلیل الکتروشیمیایی (Electrochemical Reactivity).

در ادامه این اخوان، تعداد و توزیع عناصر در نقاط مختلف این مناطق بررسی شده است.

مکان‌بندی‌ها و نقشه‌های مربوط به این مناطق در نقشه‌های ویژه ارائه شده است.

در نهایت، این اخوان به پیشنهادی که ممکن است در تحقیق مورد بررسی وجود داشته باشد، مراجعه کرده و توصیه‌هایی برای بهبود شرایط این اکتاپی شده است.
و نمونه‌های فاقد کاسنگک (HG) از نظر ویژگی‌های سنگ‌نگاری مشابه هستند. کلیه سنگ‌های گابریویی دارای بافت دانه‌ای و انبلاشتی هستند (شکل 2). پلاژیوکلاز، فراوان‌ترین کانی است که به صورت شکلدار نیمه شکلدار ظاهر می‌شود. آمفیبول کانی اصلی دیگری است که بیشتر به صورت شکل هورنتوندهای سبز رنگ در مقاطع نازک دیده می‌شود و معمولاً فضایی بین سایر بلورها را دربر می‌گیرد. اکسبیده‌ای آهن به صورت کانی در تمام نمونه‌های گابریویی قادر به مشاهده هستند. مقدار این کانی در نمونه‌های HG (شکل‌های 2 و ب) بیش از درصد حجمی و در گابریوهای HG (شکل 2 ب) کمتر از این مقدار است. کانی‌های فرعی گابریوها شامل تیتانیت، آپاتیت و زیکر هستند. کاسنگک مگنتیت در مقاطع صپفتی تقریباً به طور کامل از کانی مگنتیت تشکیل شده است و بیشتر به صورت دانه‌های شکلدار مشاهده می‌شود (شکل 2 ت). البته مگنتیت به صورت ذرات ریز بودن شکل نیز دیده می‌شود و شکاف بین دانه‌های مگنتیت اغلب توسط ذرات فلدسپار بر می‌شود.

توده نفوذی نامی در ۳۵ کیلومتری غرب شهر سیزار واقع شده و از سه فاز متفاوت مختلف شامل دو واحد گریت‌تندری و یک واحد باری، تشکیل شده است (۱۸). گریت‌تندری شامل دو نوع A و I هستند و به ترتیب در اثر دو سنگ‌های فلایست و آمفیبولیتی در یک محیط فورامینفی تشکیل شده‌اند (۱۸). سنگ‌های مافیک در جنوب توده ظاهر شده‌اند و دارای ترکیب هورنتوندهای گابریویی با بافت انبلاشتی مشابهی از هورنتوندهای پلاژیوکلازی هستند. در یکی از رخ‌نمونه‌های فاز مافیک کاسنگک مگنتیت به صورت قطعات مدور قابل مشاهده است (شکل ۱ ب) که به نظر می‌رسد محدودی نیز بر روی آن رخ‌نمونه انجام گرفته است. سایر رخ‌نمونه‌های سنگ‌های مافیک فاقد کاسنگک مگنتیت هستند.

سنگ‌نگاری
آمفیبول و پلاژیوکلاز کانی‌های اصلی سارنده فاز باری توده نام‌های هستند. این دو کانی بیش از ۸۰ درصد حجم سنگ‌های باری را تشکیل داده و بنا بر این واحده تام هورنتوندهای گابریویی (MHG) گابریویی می‌شود. هورنتوندهای گابریوهای حاوی کاسنگک (HG) در نور PPL (الف) و XPL (ب) تمامی از بافت نمونه‌ها در نور PPL (الف) و XPL (ب) (ت) بافت کاسنگک (MG) در نور پارتابل، پلاژیوکلاز (Amfipbol = آمفیبول) می‌شود.
روش انجام پژوهش
چنانه اشکشند، در بررسی بیشینی روي توهد نامن و ویژگی‌های سنتی‌ناهی و زیمین‌شیمی‌سنجی‌نفوذی ارائه شده است [9]. با توجه به نتایج حاصل از آن تحقیق، سه نمونه تهیه شد و سپس از برش‌های میکروسکوپی، تجزیه LA-ICP-MS-شده و پس از بر روی کانال‌های اکسیدی آنها صورت گرفت. در مجموع 27 بلور مگنتیت در نمونه‌های مورد بررسی به روش LA-ICP-MS-پدیدار شدند. با انجام کمیاب تجزیه شدند. این بررسی با MS و برای تعیین عناصر کمیاب تجزیه شدند. این بررسی با MS در موسمه زمین شیمی‌فرهنگی علوم در شهر چیانگ جین و با استفاده از باریکه نری تولید شده توسط دستگاه سپاره Coherent GeoLasPro 193-nm کمپرسور نیتری مدل انگام گرفت. پس از Agilent 7700x ICP-MS-همراه یک سطح نمونه به مدت حدود 30 ثانیه تحت ابریشم 160 تب متالی (4 Hz در اندازه ppm) نتایج تجزیه و REE مورد بررسی و مقایسه بر حسب آناره‌شدن.
این جدول نشان می‌دهد (جدول 1)، میزان عنصر MG و MHG نشان می‌دهد که MG و MHG از این نظر، بررسی ترکیب و نقش عنصر کمپیاپ در شکل‌گیری ...
نتیجه‌گیری‌های مختلف بر روی شیمی عناصر کمیاب مکتبت در محیط‌های مختلف نشان می‌دهد که انتخاب کانسپک‌ها دارای

\[
\text{HG} = \Delta \text{MG} = \text{Se} \quad \text{نشان دهنده تغییرات تركیب عناصر کمیاب نسبت به HG تمرکز همه عناصر بر حسب ppm است.}
\]

\[
\text{MHG} = \Delta
\]
شکل 4. تغییرات سایر عنصر کمیاب نسبت به Sc. تمرکز همه عناصر بر حسب ppm است. علامت همانند شکل 3 هستند.

[۶۴۶] LREE مگنتیته‌های MG و MHG نسبت به 2.5 نهی شده‌تر هستند، در حالیکه عناصر REE و HFSE کانسک و مگنتیته‌های ناحیه کانسک به شدت افزایش یافته است (شکل‌های ۳ و ۴). علاوه بر تفاوت در میزان عنصر خاکی نادر بین این دو گروه (میزان REE در مکنتیته‌های MG و MHG بیش از ۲.۵ برابر مکنتیته‌های همجوار، بخش این میزان نسبت به REE هگ) نمونه کنکین نزدیک در آنها متغیر است. مکنتیته‌های REE این نسابته نسبی عناصر خاکی نادر سیک (LREE) با شیب می‌باشد (HREE). سنگین‌ترین (HREE) REE با نسبت [۴۴] از ۲.۵۷۴ (E/Yb) به (La/Yb) نسبت به ۲.۵۷۴ را نشان می‌دهد. WOLI مکنتیته‌های MG و MHG
برای درک بهترâ⌠ لفت تفاوت ترکیب مگنتیت‌های نیز در نمونه‌های ترکیب و نمونه‌های HFSE می‌تواند بین داده‌های زمین‌شیمیایی سنگ- های گابروی (داده‌های سنگ کل) که در مورد علاقه‌مندی در نمایشگاه با است. این امر نشان می‌دهد که مکانیزم‌های گابرویی، تعیین‌کننده در ترکیب عناصر کمیاب مگنتیت‌ها وجود نیامده است.

برداشت
نتایج حاصل از تجزیه مگنتیت‌ها به‌روش LA-ICP-MS تولید نمونه‌های نیز در REE و HG می‌تواند نشان دهد که هم‌اکنون در داده‌های مکانیزم‌های‌های ماجمایی قرار می‌گیرد. این داده‌ها حاکی از آن است که تفاوت بارزی بین ترکیب کمیاب و کمیاب این کانی در نمونه‌های HG با وجود HG مگنتیت‌های منطقه‌ای و کمیاب مکنست. مگنتیت‌های HG در نمونه‌های REE و HG غنی از Mg و Al و Zn و Mn و Cr و Ti و Nb و Y غنی از REE و Mg و Al و Zn و Mn و Cr و Ti و Nb و Y غنی از HG و مستند می‌باشد.

نکته ماجمایی و غنی از HG و مستند می‌باشد.

مگنتیت‌های HG در نمونه‌های REE و HG غنی از Mg و Al و Zn و Mn و Cr و Ti و Nb و Y غنی از HG و مستند می‌باشد.

نکته ماجمایی و غنی از HG و مستند می‌باشد.

مکانیزم ترکیب گابرویی، به‌روش عناصر کمیاب، در این دو
گروه شده و جاده‌گزای اکسیدی‌های اکسیدی‌های اکسیژن در مغناطیسی
گابرویی موج‌های اکسیدی‌ها مگنتیت‌های در نمونه‌های
است. بررسی ترکیب عناصر کمیاب مگنتیت‌های سنگ‌های مورد بررسی هم‌خوانی خوبی با داده‌های سنگ کل نشان می‌دهد.

