کانی شناسی و زمین شیمی‌ای رس بنتونیتی وابسته به ایگنیمیریت در تشتاب جنوب خاور و بیابانک، استان اصفهان

شیرین فتاحی، علی اصغر کلاغری، علی عابدینی، سید حسن طباطبایی

1- گروه زمین شناسی، دانشگاه علوم طبیعی، دانشگاه تهران، تبریز، کد پستی 51699
2- گروه زمین شناسی، دانشگاه علوم، دانشگاه ارومیه، ارومیه، کد پستی 5703
3- دانشگاه مهندسی معدن دانشگاه صنعتی اصفهان، اصفهان، کدپستی 81668

(دریافت مقاله: 1397/12/05، نسخه نهایی: 1397/12/15)

چکیده: ذخیره رس بنتونیتی تشتاب در فاصله ۲۵ کیلومتری جنوب شرقی شهرستان خور و بیابانک، در استان اصفهان واقع است. این ذخیره تحت تأثیر دگرگونی ایگنیمیریت‌ها بسن اولین زیرین است. بررسی‌های کانی شناسی نشان می‌دهد که مونت‌مولوپولیتی، ساپونیتی، کوژاغت، نانوپولیت و مکروپوئیت، آپیلیت، اپیلیت و کلیسی‌های کانی‌ای انی می‌باشد که در مقایسه کمتری با کانی‌های نظیر ورمکتولیت، ساندین، کلریت، اورتقوتولیت، اکتانولیت، و دلولولیت نرم‌های می‌شوند. بررسی‌های نورشیب‌شده به آسکتی‌های ده‌شانه‌گچی طبقه‌بندی می‌شوند و ترکیب کانی‌شناسی آن‌ها در کره‌های بیبدلی-مونت‌مولوپولیت نانوپولیت‌سیسی. قرار می‌گیرند. بر اساس بررسی‌های زمین شیمیایی، فراری و تولید ایگنیمیریت‌ها بر رس‌های K, Fe, Cu, Zn, U, Ta, Nb, Cr, Ca, Mn, Si, Al, Mg, Ni و شیمی‌شناسی، مولکول‌شناسی، خور و بیابانک-

واژه‌کلیدی: کانی شناسی، رس بنتونیتی، ایگنیمیریت، تخرب، خور و بیابانک

مقدمه

کوه مونتینی بکی از قله‌های مرتفع رشته کوه تشتاب خور، در استان اصفهان است. دخایر رس بنتونیتی متعددی از جمله ذخایر رس بنتونیتی معدنی از جمله دخایر مراتع شاهین، سنگ‌های مرتفع و سنگ‌های مرتفع در این رشته از ایران در بر اثر دگرگونی ایگنیمیریت‌ها و سنگ‌های آنتشناشی اتوس ایجاد شده‌اند. بررسی‌های که تاکنون بر روی ذخایر بنتونیتی خور و بیابانک انجام شده است، نشان می‌دهد که توسه‌ای
روش پژوهش

در این پژوهش، نخست بیماری‌های جهت پیشگیری از اوتوماتیسم انواع سگی و رودخانه‌ای را در منطقه تختاب انجام شد. بر اساس نتایج مربوط به درصد و نرخ صفره‌ها، موارد تحقیق نشان داد تعداد 10 نمونه سگی از یکین‌گیری‌ها، رس پنیویی و نمونه‌های سیلیسی شده از منطقه بردشت شد. بررسی سگ‌گرا هر 10 ماه از این گروه‌ها با توجه به مقایسه نتایج نشان داد که در صورت افزایش تعداد سگ‌گرا از دستگاه‌های فیزیکی اسکیمایی در مرحله دوم، نمونه‌های سیلیسی شده بکار رفته باشد.

بحث بررسی زمین‌شناسی

در این بحث بررسی زمین‌شناسی 3 نمونه از رسول‌هایی با ترکیب از دستگاه‌های فیزیکی اسکیمایی در مرحله دوم، نمونه‌های سیلیسی شده بکار رفته باشد.
جدول ۱ مقادیر عناصر اصلی، فرعی، جزئی و آلی در نمونه‌های مورد بررسی.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>C-6</th>
<th>S-1</th>
<th>S-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Zn</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cu</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Zr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Nb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ta</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Dy</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ho</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Lu</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ce</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Pr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Nd</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Eu</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Gd</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Tb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Dy</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ho</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Lu</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
سست تا کمی سخت از ویرگی‌های بارز زمین. شناسایی منطقه تشکاب هستند. با توجه به شواهد صحرایی، رس‌های بنوتونی این منطقه متحمل فشارهای زمین‌ساختی شدیدی شده و برخی به طور موضعی دچار چین‌خوردگی شده‌اند. برخی از سنگ‌های بستر آتشفینه‌ای این ذخیره به دلیل نفوذ محلول‌های گرمایی به درون دژ و شکاف‌ها، دچار دگرسانی پلیتیک شده و به کامپئاسی کرده‌اند. این فرآیند و آلیاژ تبدیل شده و به رنگ سیاه در آمدان‌های حضور بقاها. از این‌جا بیشترین منابع

بررسی‌های زمین‌ساختی نشان می‌دهند که یک نیم‌بر مورد بر امتداد ذخیره رس بنوتونی (با ضخامت تقریبی 12 متر) از سطح به عمق شامل اینگیری‌های حاوی رگه‌های سلیسی و رس‌های بنوتونی به رنگ‌های سیاه، زرد، سفید، زرد، سبز-زرد، و سفید‌لایه‌ای با شکستن ۳ تغییرات ساختار از مابعد توده‌ای، جابه‌جایی لایه‌ها و عدم‌های رس بنوتونی در نتیجه نیروهای زمین‌ساختی تغییرات لمس از هاکی و صابونی تا زبر، تغییرات سختی از

عذرسی‌های رس پنتونیتی و وجوه مرزه‌های کاملی تدریجی بین رس‌های پنتونیتی و ایگنیمبریت‌ها نشان میدهد که این ذخیره نتیجه دگرسانی این سنگ‌ها است. افزون بر این، آثار برپن‌گذی در درز‌شکاف و حفره‌های موجود در سنگ‌های آنتشناشی و ایگنیمبریت‌ها توسط آگات، زنود، زدیپپونیت و کلپسی‌ها رژیولر در شرایط مکانیکی به خوبی قابل مشاهده است.

مطالعات کاتیان شناسی
بررسی‌های میکروسکوپیک نشان میدهد که ایگنیمبریت‌ها شامل درشت در موزه‌ای از پلاژیوکلاز، کوارتز، زنولیت و کلسندونی (به ترتیب فراوانی)، خردسنج‌های آنتشناشی جهت یافته با ترکیب اندرزیتی و شیشه‌های آنتشناشی همراه با خردسنج‌های پایه‌ای پایه‌ای می‌باشد (شکل‌های ۲ و ۳). در برخی مقاطع مورد بررسی، زنولیت به صورت برکنده فضاهای خالی و به صورت رنگ‌آمیزی شده در گالتناگ یا هرازی در حفره‌ها قابل مشاهده است (شکل ۳). کوارتز در مقاطعی به صورت شکلان‌دار تا نیمه شکلان‌دار با خاموشی موکتی دیده می‌شود. پلاژیوکلاز، به صورت قطعه‌های سالم و شکل‌های متون سنگ پراکنده است.

شکل ۳ سنگ چینه‌ای شناسی نیم‌رنگ مورد بررسی در ذخیره رس پنتونیتی نشان میدهد که روی آن محل نمونه‌های برداشت شده جهت انجام بررسی‌های زمین شناسی‌ای با دایره‌های توخالی نشان داده شده‌اند.
شکل ۲ ۲الف) رشد زولویت‌ها در فضاهای خالی موجود در ایگنومیترها از سمت دیویه به سمت مرکز حفره (XPL) (ب) پلاژیوکالز شکل‌دار به صورت فناریست، کوارتز نیمه شکل‌دار و کلسدنی در زمینه‌ای از شیشه آتش‌نشانی که حوض توسط کلسید و بازیه‌ها رسته شده است (XPL) (پ) حضور شیشه‌های آتش‌نشانی جهت یافته درون ایگنومیترها (XPL، ت) حضور خردسیگنده‌های آتش‌نشانی با حالت جهت یافته درون ایگنومیترها که مشکلی از پلاژیوکالز، کوارتز به صورت فناریست و ریزبرشت بلور به همراه شیشه آتش‌نشانی در زمینه ریزبرشت بلوری‌ها سوزنی، با همراه شیشه آتش‌نشانی موجود در زمینه به طور گسترده توسط کلسید و بازیه‌ها رسته شده است (XPL) (ت) جانشین‌های کلسید با جای پلاژیوکالز (XPL) و (چ) پایه با ساخت خردادی که در بخش‌های شیشه‌ای به صورت توسط کلن‌های رسته جانشینی شده است. شیشه‌های (ش.جل.کلسید.کلسید) = Ca، قاری (زاورز.پلاژیوکالز) = Plg، Qz = کوارتز، Sh.گل. = کلسید، Ce = کلسید، Qtz = خردسیگنده‌های آتش‌نشانی گردیده در قالب بلوریست و کوارتز. علائم اختصاری یک رفتگی بارانی از: (XPL) (ب) ایگنومیتر، (آ) نشان دهنده که در بررسی‌های پرتور (XRD) خیالی رس پنترنی تشکاب، کالیهی موستره‌پروتئین، سایوزین، کوارتز، نانوپروتئین، پیدل‌های میکروکلی، انتورنوت، ابیتین، شیشه و الیستس تشکاب که به صورت خردسیگنده رسته‌ای اصلی حضور دارند. کالیهی نظیر ورمیکولین، ساندین، کلرین، اورتوکالز، اکتیلونیت و دولومیت در مقایسه فرعی قاره‌ای کالایی اصلی را همراه می‌کنند (شکل‌های ۲الف، ب و پ). در این بررسی، فرمول ساختاری اسپینالی با اساس ۱۱ اکسیژن [۱۲] محاسبه گردیده از (ریزبرشت بلور) که در زمینه رسته‌ای اکتیلونیت و دولومیت در مقایسه فرعی قاره‌ای کالایی اصلی را همراه می‌کنند (شکل‌های ۲الف، ب و پ).

بررسی‌های کالای کاراکتر توسط مکروسکوپ الکترونی روی‌های دلالت با حضور ساخت لایه‌ای در رسها (شکل ۲الف) موجود کاراکترهای تیغه‌ای (شکل ۲ب) و بلورهای زولویت (شکل ۲ب) در نمونه‌های مورد بررسی دارد. همچنین، بررسی در ۳ نقطه متوالی در یک نمونه رس پنترنی تشکاب ۲الف از SEM-EDS
دو هشته‌‌گی از سه هشت‌‌چهی استفاده می‌شود، نشان می‌دهد که نمونه‌‌های رس بینوتنی تک‌‌پیکری در حد اسکلت‌‌های دو هشت‌‌چه‌ی دارند و می‌توانند در شمار اسکلت‌‌های قابل انسداد قرار گیرند (شکل 6). این نمونه‌‌ها نمونه‌‌هایی از درک که ترکیب کانی‌‌نشانی رس‌‌های منطقه تشتاب

شکل 2: گرافی‌های برای پروت (XRD) در نمونه‌های C-1، C-2 و C-3 در XRD (XRD)

شکل 5: آنالیز‌های SEM-EDS از رس‌ها. این ترکیب برخی از اسکلت‌های اصلی در سه نقطه از اسکلت‌های، (ب) ترکیب برخی از اسکلت‌های اصلی در یک نقطه از زوولیت‌های تشتاب.
نمودار دو متغیره $\frac{Zr/Ti-Nb/Y}{Al}$ نشان می‌دهد که نمونه‌های ترکیبی این‌گونه در حد آندزیت و رس‌های بی‌پتولیتی ترکیبی در حد آندزیت، تراکی آندزیت، ریوداسیت، و داستی‌دارنده هستند. عوامل کنترل کننده رفتار عناصر در طی فرآیند تبدیل اینگونه اینگونه نشان می‌دهد که نمونه‌های ترکیبی این‌گونه در حد آندزیت و رس‌های بی‌پتولیتی ترکیبی در حد آندزیت، تراکی آندزیت، ریوداسیت، و داستی‌دارنده هستند. عوامل کنترل کننده رفتار عناصر در طی فرآیند تبدیل اینگونه اینگونه نشان می‌دهد که نمونه‌های ترکیبی این‌گونه در حد آندزیت و رس‌های بی‌پتولیتی ترکیبی در حد آندزیت، تراکی آندزیت، ریوداسیت، و داستی‌دارنده هستند. عوامل کنترل کننده رفتار عناصر در طی فرآیند تبدیل اینگونه اینگونه نشان می‌دهد که نمونه‌های ترکیبی این‌گونه در حد آندزیت و رس‌های بی‌پتولیتی ترکیبی در حد آندزیت، تراکی آندزیت، ریوداسیت، و داستی‌دارنده هستند. عوامل کنترل کننده رفتار عناصر در طی فرآیند تبدیل اینگونه اینگونه نشان می‌دهد که نمونه‌های ترکیبی این‌گونه در حد آندزیت و رس‌های بی‌پتولیتی ترکیبی در حد آندزیت، تراکی آندزیت، ریوداسیت، و داستی‌دارنده هستند.
شکل 8 موضع‌یت ایگنیمبریت و نمونه‌های رس بنتونیتی در نمونه‌های دو متغیره

شکل 9 نمودار انگیکوئیت و نمونه‌های رس بنتونیتی تشتاب در نمونه‌های دو متغیره

شکل 10 نمودار انگیکوئیت نادر خاکی به‌هنجار شده به ایگنیمبریت در نمونه‌های رس بنتونیتی و نمونه سپیلسی شده
سگ‌های لانتانیدها در نمونه‌های رس بی‌تنوینی و نمونه‌های سیلیسی به نظر می‌رسد که پهنه سیلیسی موجه در بالای ذخیره در اثر شستشوی سیلیسی خالص از درگرایی فلدسپار اثر نسبی آن در بالای سیستم ایجاد شده است (4). در کل، به نظر می‌رسد که تغییرات شدید در میزان شستشو و غنی‌شدن انرژی اثر غنی‌شده‌ای باتری‌های اولیه در برابر درگرایی مربوط باشد.

عناصر غنی‌شده Mg

نیمایی با این نظر که رس‌های بی‌تنوینی در منطقه ناشی است غنی‌شده این نظر می‌باشد به نظر می‌رسد که عواملی نظیر pH، مقدار نسبی Si در بالای آب به سرگردانی مشابهی مناسب قرار داشته باشد.

عناصر غنی‌شده ترکیب Al، Si، O، H، و کلیکس‌های N، S، Cl، F، CO₃⁻، SO₄⁻ در سیالات

هم‌بودن Si در بالای آب به سرگردانی مشابهی مناسب قرار داشته باشد.

عناصر غنی‌شده به ویژه در سیالات غنی‌شده نقش بسیار مهمی در توسعه مشابهی مناسب قرار داشته باشد.

عناصر غنی‌شده به ویژه در سیالات غنی‌شده نقش بسیار مهمی در توسعه مشابهی مناسب قرار داشته باشد.

عناصر غنی‌شده به ویژه در سیالات غنی‌شده نقش بسیار مهمی در توسعه مشابهی مناسب قرار داشته باشد.
مهمترین نتایج حاصل از بررسی کانی‌شناسی و زمین‌شیمی ذخیره رس بنیوئینی نشان می‌دهد که رسهای بنیوئینی تنشات (جنب شرقی خور و بابانک)، عبارت است از نتایج ذخیره رس در نواحی شرقی ایران.

1- رسهای بنیوئینی منطقه تنشات از فاصله کانالی اصلی مونتیمورونات، سالرنیا، کوارتز، ناترونت، پیتیا و میکروکلین، آنتوریت، اپیتیت، الیپید، کلسیت، و کلسیت شکل‌های شیشه‌ای که با کالی، نیکل و ورمولیت، ساندین، کارتیزیت، اوتریکاز، اکتویت و دیویت می‌شوند.

2- نمونه‌های رس بنیوئینی تنشات ترکیبی در حد امکانیت.

3- نتایج شیمی کانی نشان می‌دهد که رسهای بنیوئینی منطقه تنشات از نظر کانی‌شناسی ترکیبی در حد بلندیت.

مکان‌های ذخیره رس، مونتیمورونات دارد.

4- عواملی نظیر pH باعث سیالات مؤسول درگسیانی، نسبت-

5- های بالانی آب به سبک، فوتوولای یون‌های کم‌کلیس ساز در

6- سیالات گرمی و میکروسیکلیک مناسب به‌صورت آزمون به دنبال گازی.

7- به شکل‌های ادیپوریت، نمک‌های از دیالی (محول‌های گریمی) اختراف در میزان شدت

8- دیگر سایر مواد خاص است، تفاضل در میزان پایداری کانی‌های

9- اولیه در بر سر دیگر می‌باشد و pOH و pH می‌باشد.

است

- ترکیب در سختکار با ترکیب نشان‌بند در نرمک و

- Zn و Cu در ذخیره داشته است.

- Mg سیلیکاته می‌باشد.

- Mn در رسهای بنیوئینی به واسطه حضور این

- عنصر در موقوف‌های بین لایه‌ای از شیشه کانی‌های موین-

- موزولیت و یا یا جابجایی آن به جای پونه

- صورت گرفته است.