Volume 25, Issue 4 (1-2018)                   www.ijcm.ir 2018, 25(4): 711-726 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Almasi A, Arjmandzadeh R, fransisko santoz J, karimpour M H. Whole rock geochemistry and Sr-Nd isotopes of mafic to intermediate subvolcanics bodies of Kashmar, evidence for subduction of Sabzevar back arc basin beneath Lut block. www.ijcm.ir. 2018; 25 (4) :711-726
URL: http://ijcm.ir/article-1-990-en.html
Lorestan University
Abstract:   (962 Views)
On the basis of field studies, mafic-intermediate bodies of Kashmar are subdivided into the old series (often stocks of gabbro, diorite, quartz diorite/monzodiorite) and the new series (quartz monzodiorite swarm dykes). In terms of crosscutting relationships, old series has the age between oldest volcanic units (57 Ma) and Eocene granitoids (40 Ma), but the swarm dykes are attributed to the post Eocene (Oligocene?) in age. Mafic-intermediate bodies with the high-K calc-alkaline to shoshonitic, metaluminous to low peraluminous, LILE/HFSE and LREE enrichment [(La/Yb)N=5.3-6.8] and depletion of HREE characteristics are reminiscent of the arcs in subduction zone. These features accompany with negative anomalies of Eu indicating magma generating at the depth of plagioclase stability and contaminiation of magma to continental crust, which remains during the melting of the garnet rock. Linear trend of the major oxides and trace elements in Harker diagrams indicate in importance of fractional crystallization of magma evolution. Average of initial isotope ratios of 87Sr /86Sr and 143Nd /144Nd (in age 50 Ma) for the old series samples are between 0.7054 /0.7062 and 51262-0.51264 respectively, and the εNdi has a range of 1.08 to 1.42. Average of initial isotope ratios of 87Sr /86Sr and 143Nd /144Nd (in age 30 Ma) for swarm dykes are 0.7056 and 512623 respectively, and the εNdi amount is .059. εNdi positive values and low ISr of all rocks with their TDM (0.6-0.8) implying that they form from partial melting of lithospheric mantle source, which modified to earlier subduction processes melts. Based on the Th/Ta versus Nb/Ta and Nb/Y versus Zr/Y charts, both subduction and rift forming processes were involved in the formation of Kashmar rocks. This feature is compatible with subduction of Sabzevar oceanic crust to the Lut block.
Full-Text [PDF 144 kb]   (319 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/11/25 | Accepted: 2017/11/25 | Published: 2017/11/25

1. [1] Bernhardt U., "Middle Tertiary volcanic rocks from the southern Sabzevar zone, Khorasan, NE Iran. Geodynamic Project (Geotraverse) in Iran", Geological Survey of Iran, Report No. 51(1983) 277-284.
2. [2] Soltani A., "Geochemistry and geochronology of I-type granitod rocks in the northeastern central Iran plate". Ph.D. Thesis, University of Wollongong, Australia (2000) 300 p.
3. [3] Shafaii Moghadam H.S., Li X.H., Ling X.X., Santos J.F., Stern R.J., "Eocene Kashmar granitoids (NE Iran): Petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry". Lithos 216–217 (2015) 118–135. [DOI:10.1016/j.lithos.2014.12.012]
4. [4] Le Bas M.J., Streckeisen A.L., "The IUGS classification of igneous rocks". Journal of Geological Society London 148 (1991) 825-833. [DOI:10.1144/gsjgs.148.5.0825]
5. [5] Irvine, T.N., Baragar, W.R.A., "A guide to the chemical classification of the common volcanic rocks", Canadian Journal Earth Science 8 (1971) 523 -548. [DOI:10.1139/e71-055]
6. [6] Hastie A.R., Kerr A.C., Pearce J.A., Mitchell S.F., "Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram". Journal of Petrology 48 (2007) 2341–2357. [DOI:10.1093/petrology/egm062]
7. [7] Maniar P.D., Piccoli P.M., "Tectonic discrimination of granitoids", Geology Society American Bulltin 101(1989) 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [DOI:10.1130/0016-7606(1989)1012.3.CO;2]
8. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [DOI:10.1130/0016-7606(1989)1012.3.CO;2]
9. [8] Sun S.S., McDonough W.F., "Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes". Geol Soc Lond Spec Publ 42 (1989) 313–345. [DOI:10.1144/GSL.SP.1989.042.01.19]
10. [9] Taylor S.R., Mc Lennan S.M., "The continental crust, Its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks". Oxford (1985) 312 p.
11. [10] Pearce J.A., Haris N.B.W., Tindle A.G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks". Journal of petrology, 25 (1984) 956-983. [DOI:10.1093/petrology/25.4.956]
12. [11] Shervais J.W., "Ti–V plots and the petrogenesis of modern and ophiolitic lavas". Earth and Planetary Science Letters 59 (1982) 101–118. [DOI:10.1016/0012-821X(82)90120-0]
13. [12] Condie K.C., "High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?" Lithos 79 (2005) 491–504. [DOI:10.1016/j.lithos.2004.09.014]
14. [13] Pearce J.A., Stern R.J., "Origin of back basin magmas: trace element and isotope perspectives. Back-arc Spreading Systems: Geological, Biological, Chemical and Physical Interactions: In: Christie, D.M., Fisher, C.R., Lee, S.M., Givens, S. (Eds.), Geophysical Monograph Series (2006) 166. http://dx.doi.org/10.1029/166GM06. [DOI:10.1029/166GM06]
15. [14] Asiabanha A., Foden J., "Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran". Lithos 148 (2012) 98-111. [DOI:10.1016/j.lithos.2012.05.014]
16. [15] Mobarhan S.K., Ahmadipour H., "Using magma mixing/mingling evidence for understanding magmatic evolution at Mount Bidkhan Stratovolcano (South-East Iran)". Journal of Sciences, Islamic Republic of Iran 21 (2010) 137–153.
17. [16] Omrani J., Agard P., Whitechurch H., Benoit M., Prouteau G., Jolivet L., "Arcmagmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences". Lithos 106 (2008) 380–398. [DOI:10.1016/j.lithos.2008.09.008]
18. [17] Pearce J.A., Stern R.J., Bloomer S.H., Fryer P., "Geological mapping of the Mariana arc-basin systems: implications for the nature and distribution of subduction components". Geochemistry, Geophysics, Geosystems 6 (2005) (2004GC00895).
19. [18] Almasi A., "Mineralizaion, Petrogenesis and geochemical-geophysical exploration in Uch Palang- Sarsefidal area (Northeast of Kashmar)". Ph.D Thesis, Ferdowsi University of Mashhad, Mashhad, Iran (2015) 305 p.
20. [19] Zindler A., Hart S.R., "Chemical geodynamics". Anniversary Review Earth Planetary Sciences 14 (1986) 493- 571. [DOI:10.1146/annurev.ea.14.050186.002425]
21. [20] Martin H., "The adakitic magmas: modern analogues of Archaean granitoids". Lithos 46 (3) (1999) 411-429. [DOI:10.1016/S0024-4937(98)00076-0]
22. [21] Pearce J. A., Haris N. B. W., Tindle A. G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks". Journal of Petrology 11 (1984) 77-96. [DOI:10.1093/petrology/25.4.956]
23. [22] Pearce J. A., Parkinson I.J., "Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard, H.M., Albaster, T., Harris, N.B.W., Neary, C.R. (Eds.), Magmatic Processes in Plate Tectonics". Geological Society of London 76 (1993) 373–403. [DOI:10.1144/GSL.SP.1993.076.01.19]
24. [23] Reagan M.K., Gill J.B., "Coexisting calc-alkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source". Journal of Geophysical Research 94 (1989) 4619–4633. [DOI:10.1029/JB094iB04p04619]
25. [24] Martin H., "The Achaean grey gneisses and the genesis of the continental crust". Elsevier 86 (1995) 205-25.
26. [25] Klimm K., Holtz F., King P.L., "Fractionation vs. magma mixing in the wangrah suite A-type granites, Lachlan Fold Belt, Australia: experimental constraints". Lithos 102 (2008) 415–434. [DOI:10.1016/j.lithos.2007.07.018]
27. [26] Rapp R.P., Watson E.B., "Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling". Journal of Petrology 36 (1995) 891-931. [DOI:10.1093/petrology/36.4.891]
28. [27] Kebede T., Koeberl C., "Petrogenesis of A-type granitoids from the Wallagga area, western Ethiopia: constraints from mineralogy, bulk-rock chemistry, Nd and Sr isotopic compositions". Precambrian Research 121 (2003) 1–24. [DOI:10.1016/S0301-9268(02)00198-5]
29. [28] Arslan M., Aslan Z., "Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey". Journal of Asian Earth Sciences 27 (2006) 177–193. [DOI:10.1016/j.jseaes.2005.03.002]
30. [29] Zhong H., Zhu W.G., Hu R.Z., Xie L.W., He D.F., Liu F., Chu Z.Y., "Zircon U–Pb age and Sr–Nd–Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust". Lithos, Doi: 10.1016/j. Lithos 2008.12.006.
31. [30] Castro A., Gerya T.V., "Magmatic implications ofmantle wedge plumes: Experimental study". Lithos 103 (2008) 138–148. [DOI:10.1016/j.lithos.2007.09.012]
32. [31] Altherr R., Henjes-Kunst F., Langer C., Otto J., "Interaction between crustal-derived felsic and mantle-derived mafic magmas in the Oberkirch Pluton (European Variscides, Schwarzwald, Germany)". Contributions to Mineralogy and Petrology 137 (1999) 304–322. [DOI:10.1007/s004100050552]
33. [32] Altherr R., Holl A., Hegner E., Langer C., Kreuzer H., "High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)". Lithos 50 (2000) 51–73. [DOI:10.1016/S0024-4937(99)00052-3]
34. [33] Galan G., Pin C., Duthou J.L., "Sr–Nd isotopic record of multi-stage interactions between mantle-derived magmas and crustal components in a collision context — The ultramafic–granitoid association from Vivero (Hercynian belt, NW Spain)". Chemical Geology 131 (1996) 67–91. [DOI:10.1016/0009-2541(96)00027-7]
35. [34] Kemp A.I.S., Whitehouse M.J., Hawkesworth C.J., Alarcon M.K., "A zircon U–Pb study of metaluminous (I-type) granites of the Lachlan Fold Belt, southeastern Australia: implications for the high/low temperature classification andmagma differentiation processes". Contributions to Mineralogy and Petrology 150 (2005a) 230–249. [DOI:10.1007/s00410-005-0019-6]
36. [35] Kemp A.I.S., Wormald R.J., Whitehouse M.J., Price R.C., "Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia". Geology 33 (2005b) 797–800. [DOI:10.1130/G21706.1]
37. [36] Topuz G., Altherr R., Siebel W., Schwarz W. H., Zack T., Hasozbek A., Barth M., Satir M., Sen C., "Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gumushane pluton (NE Turkey)". Lithos 116 (2010) 92–110. [DOI:10.1016/j.lithos.2010.01.003]
38. [37] Alavi M., "Structures of the Zagros fold-thrust belt in Iran". American Journal of Science 307 (2007) 1064–1095. [DOI:10.2475/09.2007.02]
39. [38] Allen M.B., Ghassemi M.R., Shahrabi M., Qorashi M., "Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran". Journal of Structural Geology 25 (2003) 659–672. [DOI:10.1016/S0191-8141(02)00064-0]
40. [39] Asiabanha A., Ghasemi H., Meshkin M., "Paleogene continental-arc type volcanism in North Qazvin, North Iran: facies analysis and geochemistry". Neues Jahrbuch für Mineralogie Abhandlungen 186 (2009) 201–214. [DOI:10.1127/0077-7757/2009/0144]
41. [40] Berberian F., Muir I.D., Pankhurst R.J., Berberian M., "Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and central Iran". Journal of the Geological Society of London 139 (1982) 605–614. [DOI:10.1144/gsjgs.139.5.0605]
42. [41] Dargahi S., Arvin M., Pan Y., Babaei A., "Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, Southwestern Kerman, Iran: constraints on the Arabian–Eurasian continental collision". Lithos 115 (2010) 190–204. [DOI:10.1016/j.lithos.2009.12.002]
43. [42] Ghasemi A., Talbot C.J., "A new scenario for the Sanandaj–Sirjan zone (Iran)". Journal of Asian Earth Sciences 26 (2006) 683–693. [DOI:10.1016/j.jseaes.2005.01.003]
44. [43] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz". Journal of Asian Earth Sciences 24 (2005) 405–417. [DOI:10.1016/j.jseaes.2003.11.007]
45. [44] Zanchi A., Berra F., Mattei M., Ghassemi M., Sabouri J., "Inversion tectonics in central Alborz, Iran". Journal of Structural Geology 28 (2006) 2023–2037. http://dx.doi.org/10.1016/j.jsg.2006.06.020. [DOI:10.1016/j.jsg.2006.06.020]
46. [45] Castro A., Aghazadeh M., Badrzadeh Z., Chichorro M., "Late Eocene–Oligocene postcollisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source". Lithos 180 (2013) 109–127. [DOI:10.1016/j.lithos.2013.08.003]
47. [46] Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monie P., Meyer B., Wortel R., "Zagros orogeny: a subduction-dominated process". Geological Magazine 148 (2011) 692–725. [DOI:10.1017/S001675681100046X]
48. [47] Sen P.A., Temel A., Gourgaud A., "Petrogenetic modelling of Quaternary postcollisional volcanism: a case study of central and eastern Anatolia". Geological Magazine 141 (2004) 81–98. [DOI:10.1017/S0016756803008550]
49. [48] Amidi S.M., Emami M.H., Michel R., "Alkaline Character of Eocene Volcanism in the Middle Part of Central Iran and Its Geodynamic Situation". Geological Rundschu 73 (1984) 917–932. [DOI:10.1007/BF01820882]
50. [49] Verdel C., Wernicke B.P., Hassanzadeh J., Guest B., "A Paleogene extensional arc flare-up in Iran". Tectonics 30 (2011) TC3008, doi:10.1029/2010TC002809. 1. [DOI:10.1029/2010TC002809]
51. [50] Shafaii Moghadam H.S., Corfu F., Chiaradia M., Stern R.J., Ghorbani G., "Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data". Lithos 210–211 (2014) 224–241. [DOI:10.1016/j.lithos.2014.10.004]
52. [51] Baroz F., Macaudiere J., Montigny R., Noghreyan M., Ohnenstetter M., Rocci G., "Ophiolites and related formations in the central part of the Sabzevar (Iran) and possible geotectonics reconstructions". Neues Jahrbuch für Geologie und Paläontologie (Abhandlungen) 168 (1984) 358–388.
53. [52] Alaminia Z., Karimpour M.H., Homam S.M., Finger F., "the magmatic record in the Arghash region (northeast Iran) and tectonic implications", International Journal of Earth Sciences 102 (2013) 1603–1625. [DOI:10.1007/s00531-013-0897-1]
54. [53] Rossetti F., Nasrabady M., Theye T., Gerdes A., Monie P., Lucci F., Vignaroli G., "Adakite differentiation and emplacement in a subduction channel: The late Paleocene Sabzevar magmatism (NE Iran)". Geological Society of America Bulletin 126 (2014) 317–343. [DOI:10.1130/B30913.1]
55. [54] Molinaro M., Zeyen H., Laurencin X., "Lithospheric structure beneath the southeastern Zagros Mountains, Iran: recent slab break-off?" Terra Nova 17 (2005) 1–6. [DOI:10.1111/j.1365-3121.2004.00575.x]
56. [55] Hatzfeld D., Molnar P., "Comparisons of the Kinematics and Deep Structures of the Zagros and Himalaya and of the Iranian and Tibetan Plateaus and Geodynamic Implications". Reviews of Geophysics 48 (2010). [DOI:10.1029/2009RG000304]

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb