به تنهی و بررسی ساختار بلوری ترکیب بس (۳،۱۵۱،۵،۵'-ترترامتیل بنزیدنیموم) بس (پیریدین-۶،۲-دی کربوکسیلاتو) نیکلاکات (II) مونوهیدرات

زانت سیلمان نژاد۱، سیما صدقتی نیا۲، مینا نصیبی پور۲

۱- دانشکده شیمی، برخی بدم علوم، دانشگاه تهران، تهران
۲- دانشکده شیمی، دانشگاه شیراز، شیراز

چکیده: ترکیب (Nd_{2}O_{3}Ni(pyde),_{2}]H_{2}O \text{ pyde و tmb به ترتیب لیگاندهای } 5,5'-\text{ترترامتیل بنزیدنیموم و پیریدین-}

۲-دی کربوکسیلتیک اسید هستند، از روش انتقال پروتون سنتر شده و ساختار بلوری آن به وسیله پرایم پرونون X تعبیر شد. این ترکیب در سیستم بلوری کمکی و گروه قضاوت C2/c مناسب شده است. واحد بی‌بانان این ترکیب از کمپلکس اینوکلیک که در ترکیب پروتون شده به عنوان کاتانیون هم‌ریز و نیمی از یک مولکول آب کوشرنده به همراه برهم کنش‌های π و π…π C-H…π و N-H…π به همراه برهم کنش‌های π به ساختار کوشرنده خود یک ساختار سوپرمولکولی کاملاً جدید شده‌اند.

واژه‌های کلیدی: ترکیب‌های انتقال پروتون، پیریدین-۶،۲-دی کربوکسیلتیک اسید، ۵،۵'-ترترامتیل بنزیدنیموم، بلورنشان ساختار بلوری

مقدمه

پيوندهای هیدروژنی اساس خواص آراپیه‌های وسیعی از سیستم- های هستند که در جوهرهای مختلف و وسیع علم از برهم کنش‌های طریف بین پایه‌های DNA سوپرمولکولی حضور دارند. با توجه به جهت‌گیری مشخص و انرژی‌های پیوندی به سیستم، پیوندهای هیدروژنی در سنترهای غیرکوارتینی سوپرمولکولی و مثبت‌بوده همیشه برهم‌پیوندی در دارند. افزون بر این، برهم‌پیوندی های غیرکوارتینی C-H…π و C-O…π همچون پیوندهای دی‌دی‌های برهم کنش‌های π و π…π تأثیر قابل توجهی بر انتشار ساختار مولکولی دارند [1-۴]. در جنده اول این پیوندهای وسیع پیامون سنتر و شناسایی سیستم‌های سوپرمولکولی و کمپلکس‌های آن با پیوندهای مختلف فلزی انجام شده است [۵-۹]. در همین راستا

Janet_Soleimannejad@khayam.ut.ac.ir
بحث و نتیجه‌گیری

ساختار مولکولی ترکیب (Htmb)$_2$[Ni(pydc)$_2$].H$_2$O (1) در شکل 1 نشان داده است. ساختار بلوری بلوری بر اساس تغییرات نیم‌یافته بین مولکولی در (Htmb)$_2$[Ni(pydc)$_2$].H$_2$O ترکیب (2) و (3) یافته شده است. این تغییرات در سیستم بلوری تکمیل و گروه فضایی $C2/c$ و نیم‌یافته در R بهبود یافته شده است.

روش آزمایش

محلول 33 میلیمول (0.03 گرم) 5.4%-تترامتیل بنزیدین، در دی کلروفان (4 میلی لیتر) به دقت بهصورت یافته ای به زیر محلول 16 میلیمول (0.38 گرم) 5.4%-تترامتیل بنزیدین که به ترتیب اسید-8.8 میلی مول (0.22 گرم) نیکل نیترات آبی در 60 میلی لیتر آب به مدت 5 دقیقه در دمای 70 درجه سلسیوس مخلوط شده بود. افزوده شد. پس از دو روز بلورهای مکیکی شکل به رنگ سبز-ایی در حد فاصل دو لیتر به زیره 75 درصد پدیدار شدن که در دمای بالای 300 درجه سلسیوس تجزیه شدند.

بهترین نقطه روشن کننده داده‌های برای برند پرتو X (برتو به مولیکول) در نرم افزار 97 SHELXL-97 (F2) مسیری کاملاً بر پایه چهار نمونه تایپ نیم‌یافته با توجه به شکل 19 CCDC کمربیج (CCDC) با کد 1491823، وب‌سایت CCDC، www.ccdc.cam.ac.uk/conts/retrieving.html دریافت است.

شکل 1 ساختار مولکولی ترکیب 1 که مولکول آب برای وضوح حذف شده است (کد تقارنی برای انتخابی که در کتاب نام و شماره آنها حرف U امده).
جدول 1 داده‌های بلورشناşi ترکیب (C17-O3) به فلز مرکزی (جدول 2) نشان می‌دهد که طول پیوندهای C۲۴-O۱ و C۱۷-O۴ مختص به اتم فلز مرکزی C۲۴-O۱ افزایش یافته است. این در حالی است که طول پیوندهای کوپریمبین نشان داد که این تغییر نتیجه افزایش حجم اتمی این ترکیب C۲۴-O۱ و C۱۷-O۴ می‌باشد. در این راستا نشان داده که افزایش حجم اتمی این ترکیب C۲۴-O۱ و C۱۷-O۴ می‌باشد.

جدول 1 داده‌های بلورشناşi ترکیب (C17-O3) به فلز مرکزی (جدول 2) نشان می‌دهد که طول پیوندهای C۲۴-O۱ و C۱۷-O۴ مختص به اتم فلز مرکزی C۲۴-O۱ افزایش یافته است. این در حالی است که طول پیوندهای کوپریمبین نشان داد که این تغییر نتیجه افزایش حجم اتمی این ترکیب C۲۴-O۱ و C۱۷-O۴ می‌باشد. در این راستا نشان داده که افزایش حجم اتمی این ترکیب C۲۴-O۱ و C۱۷-O۴ می‌باشد.
جدول 2 پیوندها و روابط انتخابی (به ترتیب و بر حسب آنگستروم) در تركیب (Htmb)\textsubscript{2}[Ni(pydc)]\textsubscript{2}H\textsubscript{2}O

<table>
<thead>
<tr>
<th>طول پیوند (Å)</th>
<th>زاویه پیوند (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(1)-N(3)</td>
<td>1.925 (2)</td>
</tr>
<tr>
<td>Ni(1)-O(2)</td>
<td>2.118 (2)</td>
</tr>
<tr>
<td>Ni(1)-O(3)</td>
<td>2.104 (2)</td>
</tr>
<tr>
<td>Ni(1)-O(5)</td>
<td>2.362 (2)</td>
</tr>
<tr>
<td>C(17)-O(3)</td>
<td>1.168 (2)</td>
</tr>
<tr>
<td>C(17)-O(4)</td>
<td>1.252 (2)</td>
</tr>
<tr>
<td>C(24)-O(1)</td>
<td>1.355 (2)</td>
</tr>
<tr>
<td>C(24)-O(2)</td>
<td>1.284 (2)</td>
</tr>
<tr>
<td>O(3)-Ni(1)-O(3)U</td>
<td>96.14 (11)</td>
</tr>
<tr>
<td>O(3)-Ni(1)-O(2)</td>
<td>157.35 (12)</td>
</tr>
<tr>
<td>N(3)-Ni(1)-O(3)</td>
<td>179.39 (12)</td>
</tr>
<tr>
<td>O(2)-Ni(1)-O(2)U</td>
<td>96.1 (15)</td>
</tr>
<tr>
<td>N(3)-Ni(1)-O(3)</td>
<td>179.39 (11)</td>
</tr>
<tr>
<td>C-H…π</td>
<td>3.518 Å</td>
</tr>
</tbody>
</table>

جدول 3 پیوندهای هیدروژنی (بر حسب آنگستروم) در تركیب (Htmb)\textsubscript{2}[Ni(pydc)]\textsubscript{2}H\textsubscript{2}O

<table>
<thead>
<tr>
<th>D-H…A</th>
<th>d(D-H)</th>
<th>d(H…A)</th>
<th>d(D…A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)-H(1B)...O(1)U</td>
<td>0.85</td>
<td>2.428</td>
<td>2.379 (4)</td>
<td>133 8</td>
</tr>
<tr>
<td>N(1)-H(1D)...O(2)U</td>
<td>0.85</td>
<td>2.382 (4)</td>
<td>159.3</td>
<td></td>
</tr>
<tr>
<td>N(1)-H(1C)...O(4)U</td>
<td>0.85</td>
<td>1.880</td>
<td>2.969 (4)</td>
<td>159.5</td>
</tr>
<tr>
<td>N(2)-H(2B)...O(1)U</td>
<td>0.85</td>
<td>2.500</td>
<td>3.348 (4)</td>
<td>173.8</td>
</tr>
<tr>
<td>N(2)-H(2C)...O(4)U</td>
<td>0.85</td>
<td>2.385</td>
<td>3.024 (4)</td>
<td>138.8</td>
</tr>
</tbody>
</table>

تبدیل های تقارنی به کار رفته برای حل انتخاب هم از:
#1 -x,y,-z+1/2 #2 -x,-y,z-1/2 #3 -x,-y+1,z #4 -x-1/2,y-1/2,-z-1/2 #5 x-1/2,-y+1/2,z-1/2
بردشت

ترکیب (Htmb)$_2$[Ni(pydc)$_2$]$_2$.H$_2$O

برای پروتون‌های سخت و سختار بلوری آن با روش بلورشناسی

تکیه شده است. ساختار گروه شده روی مولکول سه سوپرپلکس

که با آبادی خود را از طریق پریکنش یافته و

های غیرکووالانسی بین پیشینه آنتونی$_2$[Ni(pydc)$_2$]$_2$.H$_2$O

و مولکول آب به دست آورده است. در ترکیب 1 (Htmb)$_2$[Ni(pydc)$_2$]$_2$.H$_2$O

شیب‌های پیوندهای هیدروژنی و پریکنش یافته و

ننش می‌شود در ایجاد ساختار به بندی C-H...π و π...π

ترکیب سوپرپلکس

Ni(II) اینجا مشاهده می‌گردد.

مراجع

[2] باخمیف و. ت. پی. در. ه. و. تجربه سیمان- نزدیکی و. ت. تجربه دانشگاه تهران. (1392) صفحه 5-1

Downloaded from ijcm.ir at 18:14 +0430 on Thursday April 16th 2020 [DOI: 10.18869/acadpub.ijcm.25.3.673]

