تهیه و بررسی ساختار بلوری ترکیب بیس (3\(\text{H}_{2}\text{O}\))، 5\(\text{H}_{2}\text{O}\)-ترنامتیل بنزیدینیوم) بیس (1) مونوهیدرات

(پیریدین-6-دی کروپسیلوتات نیکلات (II) مونوهیدرات)

زانت سلیمان نژاد ۱، سیما سدقی نیا، میتا نصیبی بور ۲

۱- دانشکده شیمی، پردیس علوم، دانشگاه تهران، تهران
۲- دانشکده شیمی، دانشگاه شیراز، شیراز

چکیده: ترکیب pyde و tmb به ترتیب لیگاندهای ۵\(\text{H}_{2}\text{O}\)-ترنامتیل بنزیدین و پیریدین-6-دی کروپسیلوتات نیکل (II) به همراه ساختار بلوری آن به وسیله پریاب پرتو X تعیین شد. این ترکیب در سیستم بلوری تکمیل و گروه فضایی C2/c مشابه شده است. واحدهای ترکیب حاوی نیمی از کمپلکس ابتینی C\(\text{O}_{2}\) به مولکول بنزیدینین و پیریدینیون شده به عنوان کاتيون همراه و نیمی از پریاب C-H...\(\pi\) یا C-O...\(\pi\) به همراه برم کنش‌های \(\pi\) و \(\pi\) و N-H...\(\pi\) نشده است. این ترکیب وجدبینه هیدروژن قوی \(\text{O-H}\) و N-H...\(\pi\) موجب خودتجمع و تشکیل خاص مولکول‌های جدید شده‌اند.

واژه‌های کلیدی: ترکیب‌های بلوری، بیج درآمدهای، 5\(\text{H}_{2}\text{O}\)-ترنامتیل بنزیدین، بلورشناسی، ساختار

پیوندهای هیدروژنی اساس خاص آراوهای وسیعی از سیستم-های هستند که در هزینه‌های مختلف و وسیع علم از برم کنش‌های طرفین بارها در ترکیب‌های ژنتیکی دانسته می‌شود.

مقدمه

پیوندهای هیدروژنی اساس خاص آراوهای وسیعی از سیستم-های هستند که در هزینه‌های مختلف و وسیع علم از برم کنش‌های طرفین بارها در ترکیب‌های ژنتیکی دانسته می‌شود.

گروه پژوهشی ما تلاش دارد تا بر پایه اطلاعات موجود با توجه به قابلیت‌های فضایی، ترکیب‌های نیکل (II) پیوندهای دیگر را معرفی کنیم.

پیوندهای هیدروژنی اساس خاص آراوهای وسیعی از سیستم-های هستند که در هزینه‌های مختلف و وسیع علم از برم کنش‌های طرفین بارها در ترکیب‌های ژنتیکی دانسته می‌شود.

تاریخ

تاریخ تولید مقاله: ۱۳۸۵/۰۹/۰۹

منابع

بحث و نتیجه‌گیری
ساختار مولکولی ترکیب (Htmb)$_2$[Ni(pydc)$_2$].H$_2$O (1) در شکل 1 نشان داده شده است. ساختار بلور این ترکیب در حالت نیم ساختاری به نام (Htmb)$_2$[Ni(pydc)$_2$].H$_2$O پرداخته شده است. در حالت دمای 150 کلوین جمع‌آوری شده است. ساختار بلور از روش مستقیم تهیه و اصلاح نتایج به‌وسیله روش‌های مختلف ماتریس کامل بر پایه F2 با نرم‌افزار SHELX-97 انجام شده است. [12] برای تهیه تصادفی از نرم‌افزار مکروری استفاده شده است.

قابل اطلاعات بلورشناوی (cif) در مرکز داده‌های CCDC به عنوان کمپیوتری CCDC (2) با کد 1491983 ثبت شده و از طریق آدرس www.ccdc.cam.ac.uk/conts/retrieving.html دریافت است.

روش آزمایش
محلول 0.2 میلی مول (8.0 x 10$^{-5}$ در-ترانزیت بنزیدین) در دی کلروفان (4 میلی لیتر) به دقت بهصورت لایه-ای به زیر محلول 0.1 میلی مول (8.0 x 10$^{-5}$ در-ترانزیت بنزیدین) دی کلروفان اسید و 0.8 میلی مول (20 x 10$^{-5}$ در-ترانزیت بنزیدین) نیکل نیترات شش آبی در 60 میلی لیتر آب به مدت 5 دقیقه در دمای 70 درجه سلسیوس مخلوط شده و افزوده شد. پس از دو روز بلورهای مکمک شکل به رنگ سیز-آبی در حد فاصل دو لایه با ماندگاری 25 درصد پیدا شده که در دمای بالای 300 درجه سلسیوس تجزیه شدند.

شکل 1 ساختار مولکولی ترکیب (1) که مولکول آب برای وضوح حذف شده است (کد تقریبی برای اتم‌هایی که در کنار نام و شماره آنها حرف U امده، 1/2 z, -2 x, 0, y, z- است).
جدول 1 داده‌های بلورشناسی ترکیب (Hmb)[Ni(pydc)2].H2O

<table>
<thead>
<tr>
<th>C. H. N. Ni O.</th>
<th>فرمول</th>
<th>وزن فرمولی (گرم برمول)</th>
<th>دما (کلوین)</th>
<th>طول موج امکان‌پذیر اکستریم</th>
<th>نسبت مولی</th>
<th>گروه فضایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>88.84</td>
<td>0.26</td>
<td>769.86</td>
<td>429.72</td>
<td>0.10173</td>
<td>197/1</td>
<td>P1</td>
</tr>
<tr>
<td>34.7</td>
<td></td>
<td>378.22</td>
<td>194.86</td>
<td>0.32</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>15.90</td>
<td>0.0043</td>
<td>278.22</td>
<td>150.90</td>
<td>2.0025</td>
<td>1</td>
<td>P2</td>
</tr>
<tr>
<td>15.90</td>
<td>0.0043</td>
<td>278.22</td>
<td>150.90</td>
<td>2.0025</td>
<td>1</td>
<td>P2</td>
</tr>
<tr>
<td>15.90</td>
<td>0.0043</td>
<td>278.22</td>
<td>150.90</td>
<td>2.0025</td>
<td>1</td>
<td>P2</td>
</tr>
<tr>
<td>15.90</td>
<td>0.0043</td>
<td>278.22</td>
<td>150.90</td>
<td>2.0025</td>
<td>1</td>
<td>P2</td>
</tr>
</tbody>
</table>

جهان اتم اکسیژن جایگاه‌های استوایی و دو اتم نیترگون جایگاه‌های محوری این هست و چگونه را انتقال می‌کند. مهان گونه که در جدول 2 امده است، زایمی (O3)Ni(1)-O(1) و O3U-Ni(1) به تبع آن زایمی معادل آن به لحاظ تقارنی (O3U-Ni(1)) 176.25 درجه هستند که تعداد اتم اتم-1 O(2)U های اکسیژن در هر تقارنی استحکام حول اتم نیتر گرفته‌اند. زایمی (O3)Ni(1)-O(1) درجه و O(3)U-Ni(1)O(2) 49.82 درجه و درجه 92.14 درجه هستند که به دو مولکول اکسیژن استحکام به یکدیگر قائل‌ریاست هستند. این یافته‌ها به شکل یک هست و چگونه

واچمه به شکل 1 چهار گروه کربوکسیلی‌انیک حول اتم نیترگون (I) C-O و جواد داندو. مقایسه طول پیوندهای C-O به پیوندهای اکسیژن (C17-O3 و C24-O2)
جدول 2 یوبونده و روابط ظرفی (به ترتیب و بر حسب انگستروم) در ترکیب \((\text{Hmb})_2[\text{Ni(pydc)}_2].\text{H}_2\text{O})\)

<table>
<thead>
<tr>
<th>طول یوبونه ((\text{Å}))</th>
<th>زاویه یوبونه ((6^\circ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Ni}(1)-\text{N}(3))</td>
<td>1.925(3)</td>
</tr>
<tr>
<td>(\text{Ni}(1)-\text{O}(2))</td>
<td>2.113(3)</td>
</tr>
<tr>
<td>(\text{Ni}(1)-\text{O}(3))</td>
<td>2.049(4)</td>
</tr>
<tr>
<td>(\text{Ni}(1)-\text{O}(5))</td>
<td>2.046(3)</td>
</tr>
<tr>
<td>(\text{C}(17)-\text{O}(3))</td>
<td>1.176(4)</td>
</tr>
<tr>
<td>(\text{C}(17)-\text{O}(4))</td>
<td>1.252(4)</td>
</tr>
<tr>
<td>(\text{C}(24)-\text{O}(1))</td>
<td>1.235(4)</td>
</tr>
<tr>
<td>(\text{C}(24)-\text{O}(2))</td>
<td>1.184(2)</td>
</tr>
</tbody>
</table>

ابعاد \((7.31 \text{ Å})\) از پیک‌ها در طول ترکیب \((\text{Hmb})_2[\text{Ni(pydc)}_2].\text{H}_2\text{O})\)

<table>
<thead>
<tr>
<th>افزودن: (\text{N}(3)-\text{Ni}(1)-\text{O}(3))</th>
<th>افزودن: (\text{Ni}(1)-\text{O}(3))</th>
<th>افزودن: (\text{Ni}(1)-\text{O}(3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Ni}(1)-\text{O}(2))</td>
<td>2.113(3)</td>
<td>O(3)-\text{Ni}(1)-O(2)</td>
</tr>
<tr>
<td>(\text{Ni}(1)-\text{O}(5))</td>
<td>2.046(3)</td>
<td>O(2)-\text{Ni}(1)-O(2)U</td>
</tr>
<tr>
<td>(\text{C}(17)-\text{O}(3))</td>
<td>1.176(4)</td>
<td>N(3)-\text{Ni}(1)-O(3)</td>
</tr>
<tr>
<td>(\text{C}(17)-\text{O}(4))</td>
<td>1.252(4)</td>
<td>N(3)-\text{Ni}(1)-O(3)</td>
</tr>
<tr>
<td>(\text{C}(24)-\text{O}(1))</td>
<td>1.235(4)</td>
<td>C(17)-O(3)-\text{Ni}(1)</td>
</tr>
<tr>
<td>(\text{C}(24)-\text{O}(2))</td>
<td>1.184(2)</td>
<td>C(24)-O(2)-\text{Ni}(1)</td>
</tr>
</tbody>
</table>

جدول 3 یوبونده هیدروژنی (بر حسب انگستروم) در ترکیب \((\text{Hmb})_2[\text{Ni(pydc)}_2].\text{H}_2\text{O})\)

<table>
<thead>
<tr>
<th>(D-H\ldots A)</th>
<th>(d(D-H))</th>
<th>(d(H\ldots A))</th>
<th>(d(D\ldots A))</th>
<th>(<DHA>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(1)-H(1B)...O(1))</td>
<td>0.85</td>
<td>2.48</td>
<td>2.32(3)</td>
<td>133.8</td>
</tr>
<tr>
<td>(N(1)-H(1D)...O(2))</td>
<td>0.85</td>
<td>2.01</td>
<td>2.84(3)</td>
<td>169.3</td>
</tr>
<tr>
<td>(N(1)-H(1C)...O(4))</td>
<td>0.85</td>
<td>1.88</td>
<td>2.46(3)</td>
<td>158.5</td>
</tr>
<tr>
<td>(N(2)-H(2B)...O(1))</td>
<td>0.85</td>
<td>2.50</td>
<td>3.34(3)</td>
<td>173.8</td>
</tr>
<tr>
<td>(N(2)-H(2C)...O(4))</td>
<td>0.85</td>
<td>1.35</td>
<td>3.02(3)</td>
<td>138.8</td>
</tr>
</tbody>
</table>

تبدیل‌های تقاضای بکار رفته برای حل انتخاب‌های هم از:

#1 -x,y,-z+1/2 #2 x,y,z-1/2 #3 -x,-y+1,z #4 -x-1/2,y-1/2,z-1/2 #5 x-1/2,y+1/2,z-1/2
برداشت

پرتوی سنتز شده و ساختار بلوری آن با روش بلورشناسی تعیین شده است. ساختار گزارش شده را می‌توان ساختار سوپریونیک دانست که پایداری خود را از طریق برهم کنش‌های غیرکووالانسی بین بخش گروهی [Ni(pydc)$_2$]$_n$ کاتیونی و مولکول آب به دست آورده است. در ترکیب 1 (Htmb)$_3$Ni(pydc)$_2$.H$_2$O شیکه‌ای از بیوندهای هیدروزئی و برهم کنش‌های بین بخش می‌باشد که C-H...π و π...π ترکیب سوپریونیک (Htmb)$_3$Ni(II) ایفا می‌کند.

مراجع

شکل 2: ساختار انباشتی ترکیب ۱ و مولکول‌های آب (قرمز) درون حفره‌های حاصل از بیوندهای هیدروزئی بین اجزای کاتیونی (آبی) رنگ و آنیونی (سرز رنگ).

