تأثیر دمای یخت بر خواص ساختاری، مغناطیسی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$

سید ابراهیم موسوی قهفرخی. راهله کیان علیخانی، ایرج کاظمی نازاد

گروه فیزیک دانشگاه علوم دانشگاه شهید حمایت اهواز ایران

دریافت مقاله: 9 اسفند 1389، اصلاح نهایی: 2 دی 1389، به نشر رسید: 10 دی 1389

چکیده: در این پژوهش، نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ با دمای یخت 350، 400، 450 و 500 درجه سانتیگراد حرارتی کامل گرفته و بررسی شده است. ارزیابی خواص مغناطیسی، سختی، دیالکتریکی و شکل فسفری نیز با کمک اسکن حادثه کرکره (SEM) و کامپیوتر سنجش نوری (EDS) انجام گرفته است.

یافته‌ها: افزایش دمای یخت بر روی خواص مغناطیسی سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ تاثیر زیادی داشته است. نانوذراتی که دمای یخت 500 درجه سانتیگراد، دارای خواص بهتری می‌باشند.

واژه‌های کلیدی: نانوذرات PbFe$_{11}$Co$_1$O$_{19}$، دمای یخت، ولتاژ، خواص ساختاری، مغناطیسی و دیالکتریکی

مقدمه

امروزه تولید نانوذرات مغناطیسی بسیار سرمایه‌دار در فناوری مغناطیسی می‌باشد. این دسته از مواد مغناطیسی در صنعت‌های مختلفی به کار رفته و در زمینه‌های مختلفی از قبیل کاربردهای علمی و صنعتی قابل استفاده می‌باشند. پروژه‌های مختلفی برای تولید نانوذرات مغناطیسی بررسی شده است.

این پژوهش به کارگردانی دکتر حسین موسوی قهفرخی و دکتر ایرج کاظمی نازاد به کار رفته، از سمت نوآوری، مطالعه و تحقیق در زمینه مغناطیسی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ برمی‌گردد.

یافته‌ها:

1. افزایش دمای یخت بر روی خواص مغناطیسی سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ تاثیر زیادی داشته است. نانوذراتی که دمای یخت 500 درجه سانتیگراد، دارای خواص بهتری می‌باشند.

2. افزایش دمای یخت بر روی خواص مغناطیسی سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ تاثیر زیادی داشته است. نانوذراتی که دمای یخت 500 درجه سانتیگراد، دارای خواص بهتری می‌باشند.

3. افزایش دمای یخت بر روی خواص مغناطیسی سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ تاثیر زیادی داشته است. نانوذراتی که دمای یخت 500 درجه سانتیگراد، دارای خواص بهتری می‌باشند.

4. افزایش دمای یخت بر روی خواص مغناطیسی سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ تاثیر زیادی داشته است. نانوذراتی که دمای یخت 500 درجه سانتیگراد، دارای خواص بهتری می‌باشند.

5. افزایش دمای یخت بر روی خواص مغناطیسی سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ تاثیر زیادی داشته است. نانوذراتی که دمای یخت 500 درجه سانتیگراد، دارای خواص بهتری می‌باشند.

6. افزایش دمای یخت بر روی خواص مغناطیسی سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ تاثیر زیادی داشته است. نانوذراتی که دمای یخت 500 درجه سانتیگراد، دارای خواص بهتری می‌باشند.

7. افزایش دمای یخت بر روی خواص مغناطیسی سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ تاثیر زیادی داشته است. نانوذراتی که دمای یخت 500 درجه سانتیگراد، دارای خواص بهتری می‌باشند.

8. افزایش دمای یخت بر روی خواص مغناطیسی سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ تاثیر زیادی داشته است. نانوذراتی که دمای یخت 500 درجه سانتیگراد، دارای خواص بهتری می‌باشند.

9. افزایش دمای یخت بر روی خواص مغناطیسی سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ تاثیر زیادی داشته است. نانوذراتی که دمای یخت 500 درجه Сантیگراد، دارای خواص بهتری می‌باشند.

10. افزایش دمای یخت بر روی خواص مغناطیسی سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ تاثیر زیادی داشته است. نانوذراتی که دمای یخت 500 درجه سانتیگراد، دارای خواص بهتری می‌باشند.

خاتمه

در این مقاله، تأثیر دمای یخت بر خواص ساختاری، مغناطیسی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ بررسی شده است. نتایج نشان داد که افزایش دمای یخت موجب تغییراتی در خواص مغناطیسی، سختی و دیالکتریکی نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ می‌شود. این تغییرات برای کاربردهای مختلفی در صنایع مختلفی قابل استفاده می‌باشد.
برای تشکیل نانوذرات هگزافریت سرب آلی‌بیدا کالباس به‌دست آمده.

بحث و بررسی

برای تعیین ساختار بلوری نمونه‌ها و ترکیب فازی آن‌ها در مورد نانوذرات هگزافریت سرب آلی‌بیدا، درجه ایکسی‌پیلریمی‌های (XRD) بر روی سطح سیلیکا (SiO2) و چربی‌کن‌های (Carbon Black) انجام شد. درجها در مسیرهای مختلفی از جمله (NiFe2O4, Fe3O4, Fe2O3, FeO) و غیره وجود دارد.

شکل‌گیری و شکل‌یابی

برای ساخت نانوذرات سرب آلی‌بیدا، PbFe12-xCoxO19 به روش سیلیست هولوک ورود با PdFe12-xCoxO19 به روش سیلیست هولوک ورود مانند برای ساختن PbFe12-xCoxO19 به روش سیلیست هولوک ورود نظیر نمونه‌های شیمیایی دیگری که به آن‌ها گزارش نماید. ناحیه ساختاری و مغناطیسی این پژوهش در مقایسه با یک نمونه مشابه، به دیرینگان نشان می‌دهد که برخی از نانوذرات قرار یافتن در مغناطیس در دمای یک متری کمتر است. (آمده‌اند [18]).

شمار آماری و اندادگی‌ها

برای ساخت نانوذرات PbFe12-xCoxO19 به روش سیلیست هولوک ورود نظیر نمونه‌های شیمیایی دیگری که به آن‌ها گزارش نماید. ناحیه ساختاری و مغناطیسی این پژوهش در مقایسه با یک نمونه مشابه، به دیرینگان نشان می‌دهد که برخی از نانوذرات قرار یافتن در مغناطیس در دمای یک متری کمتر است. (آمده‌اند [18]).

شکل‌گیری و شکل‌یابی

برای ساخت نانوذرات PbFe12-xCoxO19 به روش سیلیست هولوک ورود نظیر نمونه‌های شیمیایی دیگری که به آن‌ها گزارش نماید. ناحیه ساختاری و مغناطیسی این پژوهش در مقایسه با یک نمونه مشابه، به دیرینگان نشان می‌دهد که برخی از نانوذرات قرار یافتن در مغناطیس در دمای یک متری کمتر است. (آمده‌اند [18]).

شکل‌گیری و شکل‌یابی

برای ساخت نانوذرات PbFe12-xCoxO19 به روش سیلیست هولوک ورود نظیر نمونه‌های شیمیایی دیگری که به آن‌ها گزارش نماید. ناحیه ساختاری و مغناطیسی این پژوهش در مقایسه با یک نمونه مشابه، به دیرینگان نشان می‌دهد که برخی از نانوذرات قرار یافتن در مغناطیس در دمای یک متری کمتر است. (آمده‌اند [18]).
جدول 1 پراامتفاه شیبکه هگزاگونال (D)، حجم سلول واحد (V_{Cell}) اندازه متوسط نانوکاترها (d_i) در دماهای مختلف با زمان 3 ساعت.

<table>
<thead>
<tr>
<th>d_i (g.cm^{-3})</th>
<th>D(nm)</th>
<th>V_{Cell}(Å^3)</th>
<th>t(Å)</th>
<th>a(Å)</th>
<th>(°C)</th>
<th>دما</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.511</td>
<td>24</td>
<td>888.7</td>
<td>22</td>
<td>5.884</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>0.509</td>
<td>23.3</td>
<td>887.2</td>
<td>22.1</td>
<td>5.889</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>24.4</td>
<td>886.8</td>
<td>22.6</td>
<td>5.882</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>25</td>
<td>886.4</td>
<td>23</td>
<td>5.881</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>22</td>
<td>888.5</td>
<td>23</td>
<td>5.885</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>23</td>
<td>888.5</td>
<td>23</td>
<td>5.885</td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>

این بین مداهای 34467.22 و 44467.77 موجود در فواصل 5500-5000 cm^{-1} 4000-3000 cm^{-1} و PbFe_{11}Co_{10}O_{19} نانوکاترها FT-IR جزئی در دماهای 800° C نشان دهد. در شکل 2 پیوندهای جزئی در حوالی 3144 cm^{-1} مونولیثی آب جذب شده هستند. همچنین جذبیت در پخت متغیر مشاهده می‌شود که با افزایش دما پخت تغییر چشمگیری در پیوندهای وابسته به هگزاگونی سری آن‌پیوندهای با قیمت متریکی...
شکل 2 طیف FT-IR نانوذرات PbFe_{11}Co_{1}O_{19}.

شکل 3 طیف FT-IR PbFe_{11}Co_{1}O_{19} در دمای 750°C (ب) و 800°C (ب) در زمان 3 ساعت.
آیاهای ورودی سیالات بزرگ و عموماً شکل
ورشکنی بیشتر شده و دارای قاعده شفاف‌گوشی هستند. این
تغییر آشکار در اندام رانش نانوذرات نانوذرات کربن
afety نانوذرات در نمونه
با دمای C 800 nm در حدود 400 nm است.

تصویر FESEM نمونه PbFe11Co1O19
yx تا 200 که در دمای 900 C
باید شکل ۴ تصویر FESEM نانوساختار PbFe11Co1O19
با زمان ۳ ساعت.
یک نظریه مغناطیسی برخورد و پوسته آن بدون نظم مغناطیسی است و به لایه‌هایی مورف دیده می‌شود. با در نظر گرفتن این مدل مغناطیسی، شکل از نفکش بیشتر نسبت به حجم بیشتر می‌شود در نتیجه مغناطیس کاهش می‌یابد. از سوی دیگر با افزایش دما به C=300BP، کاهش فاز نشویده، همایش تغییر بیشترین فاز اصلی فضایی سرب مغناطیس اشتعال و پس از افزایش کاهش می‌یابد. در نمونه‌های حاضر مشاهده می‌شود که با افزایش دما میدان ناهمسانگردی یلور (H_{10}) که یک اثر ذاتی است و نیز تابت ناهمسانگردی مغناطیسی (KH) افزایش می‌یابد. زیرا با افزایش دما اندماز ذرات بیشتر شده و برای ذرات بزرگ‌تر، کم H_{10} و H_{12} ناشی از شکل نیز اضافه می‌شود. با تغییر K، نیز بارمانهای

\[H_C = 0.48\left(\frac{H_a - H_d}{H_d}\right) \]

همچنین سه نیز با تغییر دما افزایش می‌یابد. از سوی دیگر مشاهده می‌شود که میدان مغناطیسی‌ساز (H_{10}) که خود یک عامل خارجی است، با تغییر دما افزایش می‌یابد. نتایج و مقادیر H_{10} با تغییر در رختشناسی نمونه‌ها نیز می‌توان نسبت داد.

شکل 5: منحنی پسندان مغناطیسی نانوذرات PbFe_{11}Co_{10}O_{19} با دماهای مختلف در زمان 3 ساعت.
جدول ۲ خواص مغناطیسی نانوذرات PbFe₁₁Co₁O₁₉ با دمایهای مختلف در زمان ۳ ساعت

<table>
<thead>
<tr>
<th>K(emu.m⁻¹.Oe⁻¹)</th>
<th>H₁(oe)</th>
<th>H₂(oe)</th>
<th>M₁(emu.¹⁻¹)</th>
<th>M₂(emu.¹⁻¹)</th>
<th>(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>113</td>
<td>1754</td>
<td>1749</td>
<td>19.7</td>
<td>22.7</td>
<td>600</td>
</tr>
<tr>
<td>83</td>
<td>1105</td>
<td>1129</td>
<td>5.0</td>
<td>9.0</td>
<td>300</td>
</tr>
<tr>
<td>777</td>
<td>2105</td>
<td>2432</td>
<td>3.0</td>
<td>3.0</td>
<td>750</td>
</tr>
<tr>
<td>366</td>
<td>2149</td>
<td>2291</td>
<td>0.8</td>
<td>3.0</td>
<td>1000</td>
</tr>
<tr>
<td>9.3</td>
<td>4323</td>
<td>4341</td>
<td>15.0</td>
<td>22.8</td>
<td>500</td>
</tr>
</tbody>
</table>

خواص دی الکتریکی مختلطی از قبیل دی الکتریک
نسبی (ε''), انفلاس دی الکتریک (ε''), رساندگی الکتریکی برابری معطوف، و برخی خواص مغناطیسی نمونه‌ها از جمله فوتوسیمین‌بری (σ) مغناطیسی (μ) انفلاس فوتوسیمین‌بری و الکتریکی LCR، با استفاده از متر، در دمای مغنی‌سیمینی سیسیک (L) بهره‌برداری می‌شود.

جدول ۲ خواص دی الکتریکی نانوذرات PbFe₁₁Co₁O₁₉ با دمایهای مختلف در زمان ۳ ساعت

<table>
<thead>
<tr>
<th>L([H] · (H).⁻¹) [Ω.m]⁻¹</th>
<th>μ(H.m) [Ω.m]⁻¹</th>
<th>μ'(Ω.m (Hz))⁻¹</th>
<th>μ''(Ω.m (Hz))⁻¹</th>
<th>PbFe₁₁Co₁O₁₉</th>
<th>(kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>μ</td>
<td>μ'</td>
<td>μ''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>μ</td>
<td>μ'</td>
<td>μ''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>μ</td>
<td>μ'</td>
<td>μ''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>μ</td>
<td>μ'</td>
<td>μ''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>μ</td>
<td>μ'</td>
<td>μ''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>μ</td>
<td>μ'</td>
<td>μ''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>μ</td>
<td>μ'</td>
<td>μ''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>μ</td>
<td>μ'</td>
<td>μ''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>μ</td>
<td>μ'</td>
<td>μ''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>μ</td>
<td>μ'</td>
<td>μ''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>μ</td>
<td>μ'</td>
<td>μ''</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ویژگی‌های دی‌الکتریک به عوامل متوازن از جمله: روش ساخت، شرایط ساخت، دما و زمان و... و انداره ذرات واسطه است [25]. شکل‌های ۶ و ۷، تغییرات دی‌الکتریک و اتلاف دی‌الکتریک را بر حسب سبامد نشان می‌دهند. بنا به نظریه ماکسول-وگنر، باعث نش مز دانه‌ها در ساماندهی مختلف، تابث دی‌الکتریک و اتلاف دی‌الکتریک با افزایش سبامد کاهش می‌یابد. بنابراین کوپ در دماها پایین‌تر باعث افزایش نش مز دانه‌ها شده است که نمونه‌هایی که انداره ذرات (ذرات) بزرگ‌تری داشته، انداره ذرات نمونه‌های آنها کاهش خواهید یافت. با مقایسه مقاومت و ساماندهی ذرات و دما و با افزایش دما و بزرگ‌تری شدن انداره ذرات، نش دانه‌ها افزایش یافته و به‌تدابیر تابث دی‌الکتریک کاهش خواهد یافت [۲۶].

![شکل ۶. نمودار تابث دی‌الکتریک نسبی بر حسب بسیار برای نانوارات PbFe11Co1O19 (PbFeCo11)](image1)

![شکل ۷. نمودار اتلاف دی‌الکتریک نسبی بر حسب فرکانس برابر نانوارات PbFe11Co1O19 (PbFeCo11)](image2)
شکل 8: نمودار نفوذپذیری مغناطیسی با حسب بسامد برای نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ بر حسب بسامد برای نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ در زمان 3 ساعت.

شکل 9: نمودار نفوذپذیری مغناطیسی با حساب بسامد برای نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ در زمان 3 ساعت.

شکل 10: نمودار انلاین نفوذپذیری مغناطیسی با حساب بسامد برای نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ در زمان 3 ساعت.
برداشت
نقطه اصلی یک یک هزارفیت سرب آلیه‌ای به کبالت (PbFe11Co1O19) بررسی شد. نمونه‌های آلیه‌ای شده با استفاده از روش ساخته‌شده تهیه و تأثیر دمای پخت بر خواص ساعتی، مغناطیسی و دی‌کالکتریکی هزارفیت PbFe11Co1O19 مورد بررسی قرار گرفت. انرژی مایع پرتو ایکس نمونه‌های پخش‌شده در دمای ۶۲۰ و ۷۵۰ °C بلوژینی و شدت‌های بالایی داشت که به بدلیل وجود قابل ملاحظه‌ای فاز همایشی است. این احتمالاً در این دما، فراوردیده پخت مویی بوده و دمای پخت برای تشکیل فاز هزارفیت کافی نیست. هنگامی که دمای پخت به ۶۸۰ °C افزایش می‌یابد فاز همایشی که اثر نامتوازی بر خواص مغناطیسی دارد کاهش دارد. هم‌اندازه افزایش دما به ۹۰۰ °C فاز ناخالصی همایش و مونوفیتیک کبالت دیواره افزایش می‌یابد. با توجه به تصاویر FESEM افزایش دمای پخت اندازه نانوذرات پرگنتر شده و شکل صفحه‌ای آنها بهبودی مشخص است. نتیجه‌ی دی‌کالکتریک و اتلاف دی‌کالکتریک با افزایش بسامد، کاهش می‌یابد. همچنین با افزایش بسامد راست‌سنجی الکتریکی ac نمونه‌های افزایش می‌یابد. با افزایش بسامد، بدلیل افزایش حریق، لایه‌ی آلوده در فرق‌گرها باقی می‌ماند، نفوذپذیری مغناطیسی کاهش می‌یابد. لفتات نفوذپذیری مغناطیسی نیز با افزایش فرق‌گر کاهش بدید یابد که کاهش بستن در نسبت پیش‌تر از برتری نتیجه‌های شکل‌دهی می‌روید. بنابراین نتایج نشان می‌دهد بهترین نمونه با دمای پخت ۶۸۰ °C و ۳ ساعت بستد آمد.

مراجع

[11] Amighian J., Mozaffari M., Yousefi A. A., "The effect of La substitution on magnetic properties of nanosized Sr_{1-x}La_{x}Ti_{0.02}Zn_{0.2}(Fe^{3+})_{11.75-o}Ti_{0.02}O_{19} powders”, Journal of Magnetism and Magnetic Materials 322 (2010) 748.

[18] Zargar Shoushtari M., Mousavi Ghaftarokhi S. E., Ranjbar F., “Synthesis and magnetic properties SrFe_{12-x}Co_{x}O_{19} (x = 0-2) hexaferrite

[28] Iqbal M. J., Ashiq M. N., "Physical and electrical properties of Zr-Cu substituted strontium hexaferrite nanoparticles synthesized by co-