تأثیر دمای پخت بر خواص ساختاری، مغناطیسی و دی اکتتریکی نانوذرات PbFe₁₁Co₁O₁₉

سید ابراهیم موسوی قهفرخی*، راحله کیان علیخانی، ایرج کاظمی‌نژاد

گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، ایران

(دریافت مقاله: 95/12/26، نسخه نهایی: 95/12/27)

چکیده: در این پژوهش، نانوذرات PbFe₁₁Co₁O₁₉ (XRD، FT-IR و FESEM) جهت بررسی اثرات مختلف دمای پخت بر خواص ساختاری، مغناطیسی و دی اکتتریکی مورد بررسی قرار گرفتند. نتایج حاصل از آنالیز XRD نشان داد که با افزایش دمای پخت تا 700 درجه سانتیگراد، از 350 درجه سانتیگراد، این تغییرات می‌توانند شکل بگیرند. در نتیجه، دمای پخت به عنوان عامل مهمی در تغییرات خواص مغناطیسی و دی اکتتریک سیگنال‌های سنج می‌شود.

واژه‌های کلیدی: نانوذرات PbFe₁₁Co₁O₁₉، دمای پخت، سلسله‌ای، صفحه‌ای، مغناطیسی، دی اکتتریکی

مقدمه

امروزه تولید نانوذرات مغناطیسی بیشترین سرمایه‌هایی مربوط به فناوری مغناطیسی دارد که از جمله دستاوردهای سطح نانو در صنعت مغناطیسی، می‌توان به امکان تولید قطعات مغناطیسی با کیفیت بالا و سریع‌تر اشاره کرد. فیزیک و دستاوردهای نانوذرات مغناطیسی به این ترتیب به عنوان مهم‌ترین امکانات در پیش‌آیندهای آینده ارتباط دارند. بهترین سیر حرارتی و خاصیت مغناطیسی از نظر میزان تعویض مغناطیسی و خاصیت ایزومتریک در نانوذرات مغناطیسی بالا و نیز کاربرد آن در ایران‌های دانشجویی محدود است. بنابراین تحقیقات در این زمینه اهمیت دارد.

خیلی کمتر از نوع دیگر (هگزافریت استراسویوم و هگزافریت باریوم) مورد بررسی قرار گرفت است. اخیراً این نوع فیزیک حفظ در XRD ثابت گردید (برعضاً،) مورد بررسی قرار گرفت. در این مدل، به دو نوع متفاوت خود دارای دمای پخت در دو نقطه انتهایی شده بود که هر دو در محدوده 642 کیلوگرمی از Fe³⁺ شکل گرفته‌اند. در این نمودار، به‌طور معمول، خواص ساختاری و مغناطیسی نانوذرات که اثرات سطح متفاوتی از قبیل: ترکیب شیمیایی، روش ساخت، اندازه ذرات و دمای پخت استفاده شده. به دلیل کاربردهای منفعت صنعتی و تیپ فیزیکی PbFe₁₁Co₁O₁₉.
شکل‌های مکث نانو‌ساختارهای ظریف مناسب‌تر از کلینیک‌های قنیمی و فلزات است. این کلینیک‌ها با PbFe2-xCoxO19 و در صورتی که در سطح سلسله‌به‌صرفه پخش می‌شوند، باعث برداشت

پخشی نانو‌ساختارهای بلوری نمونه‌ها و بررسی فازه‌ها از پرتراش‌سنج پرتو ایکس، مدل Philips CuKα و طول موج α 154.400 درجه می‌باشد. آنالیز کلینیک به غیر از عناصر شناخته شده و سپس تأثیر دام این دیکتریک گزارش می‌شود. نتایج ساختارهای مغناطیسی این پروژه از مطالعه با دیگر نانو‌ساختارهای در هند که مشترک در دام و مغناطیسی در

دمای مکث کمتر است به امتداد [18] شرح آزمایش و انددازه‌گیری

برای ساخت نانو‌ساختارهای PbFe2-xCoxO19 (و PbFe2-xCo0.5xO19) به روش سلسله‌به‌صرفه، که در موارد مواد کربن و فیلتر، دارای سایر نیماتوکسیک میدان از این روش ساختن و ایجاد این نسخه‌ها به روش سلسله‌به‌صرفه، که در موارد مواد کربن و فیلتر، دارای سایر نیماتوکسیک میدان از این روش ساختن و ایجاد این نسخه‌ها به روش سلسله‌به‌صرفه، که در موارد مواد کربن و فیلتر، دارای سایر نیماتوکسیک

CuKα و طول موج α 154.400 درجه می‌باشد. آنالیز کلینیک به غیر از عناصر شناخته شده و سپس تأثیر دام این دیکتریک گزارش می‌شود. نتایج ساختارهای مغناطیسی این پروژه از مطالعه با دیگر نانو‌ساختارهای در هند که مشترک در دام و مغناطیسی در

دمای مکث کمتر است به امتداد [18]

شکل‌های مکث نانو‌ساختارهای ظریف مناسب‌تر از کلینیک‌های قنیمی و فلزات است. این کلینیک‌ها با PbFe2-xCoxO19 و در صورتی که در سطح سلسله‌به‌صرفه پخش می‌شوند، باعث برداشت

پخشی نانو‌ساختارهای بلوری نمونه‌ها و بررسی فازه‌ها از پرتراش‌سنج پرتو ایکس، مدل Philips CuKα و طول موج α 154.400 درجه می‌باشد. آنالیز کلینیک به غیر از عناصر شناخته شده و سپس تأثیر دام این دیکتریک گزارش می‌شود. نتایج ساختارهای مغناطیسی این پروژه از مطالعه با دیگر نانو‌ساختارهای در هند که مشترک در دام و مغناطیسی در

دمای مکث کمتر است به امتداد [18] شرح آزمایش و انددازه‌گیری

برای ساخت نانو‌ساختارهای PbFe2-xCoxO19 (و PbFe2-xCo0.5xO19) به روش سلسله‌به‌صرفه، که در موارد مواد کربن و فیلتر، دارای سایر نیماتوکسیک میدان از این روش ساختن و ایجاد این نسخه‌ها به روش سلسله‌به‌صرفه، که در موارد مواد کربن و فیلتر، دارای سایر نیماتوکسیک میدان از این روش ساختن و ایجاد
جدول 1 پارامترهای شبکه هگزاگونال (a, c), حجم سلن و واحد (V_{cal}, c), اندازه متوسط نانوکرنشا (D), و جگالی نمونه بر مبنای اشعه ایکس

<table>
<thead>
<tr>
<th>کیلئات</th>
<th>درصد تشکیل فاز هماهنگ</th>
<th>درصد تشکیل فاز هگزافریت سرب</th>
<th>d_{h} (g.cm^{-2})</th>
<th>D (nm)</th>
<th>V_{cal} (Å^3)</th>
<th>c (Å)</th>
<th>a (Å) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>5</td>
<td>70</td>
<td>0.711</td>
<td>22</td>
<td>888.32</td>
<td>32</td>
<td>8.22</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>88</td>
<td>0.709</td>
<td>26</td>
<td>886.22</td>
<td>35</td>
<td>8.22</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>86</td>
<td>0.700</td>
<td>24</td>
<td>888.22</td>
<td>32</td>
<td>8.22</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>92</td>
<td>0.697</td>
<td>19</td>
<td>889.42</td>
<td>32</td>
<td>8.22</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>92</td>
<td>0.522</td>
<td>17</td>
<td>886.22</td>
<td>32</td>
<td>8.22</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>73</td>
<td>0.513</td>
<td>33</td>
<td>886.52</td>
<td>22.955</td>
<td>8.22</td>
</tr>
</tbody>
</table>

این بین مدهای 3447.73, 4467.76, 4467.77 و 4446.76 موجود در فواصل FT-IR تاثیر طیف PbFe_{11}Co_{1}O_{19} زل خشک و در دماهای 750 و 850°C با زمان 2 ساعت در گسترشی 1000-4000 cm^{-1} نشان می‌دهد. در 1425-1384 cm^{-1} مولکول‌های آب جذب شده هستند. همچنین جذب‌های FT-IR مربوط به خصوصیات فیزیکی به یادآوری می‌شود که 2 ارزش دما یک یا یک تغییر چشمگیری در پیوندهای غیره شده و هفته‌های سرب آبیده با کیلئات مشاهده نمی‌شود [22].

شکل 1 نانوکرنشا PbFe_{11}Co_{1}O_{19} XRD در دماهای مختلف با زمان 3 ساعت.
شکل ۲ طیف FT-IR نانوذرات PbFe_{11}Co_{1}O_{19} در دمای الاف (۸۰۰ ° C و ۷۵۰ ° C (ب و پ) با زمان ۳ ساعت.

شکل ۲ طیف FT-IR، شکل الاف و شکل ب طیف FT-IR نانوذرات PbFe_{11}Co_{1}O_{19} در دمای الاف و پی (۸۰۰ ° C و ۷۵۰ ° C) با زمان ۳ ساعت.

\[\text{PbFe}_{11}\text{Co}_{1}\text{O}_{19} \]
ای، و در دمای $900^\circ C$ نانوذرات بسیار یازدگ، و عموماً شکل
ورقی، به‌خود گرفتن دان و دارای قاعده شکل گوشته هستند. این
تغییر آشکار در اندازه نانوذرات نشان دهنده اافراش کرنش با
افراش دمای به‌طوری که میانگین اندازه نانوذرات در نمونه
با دمای $800^\circ C$ در حدود 40nm است.

تصویر FESEM نمونه PbFe$_{11}$Co$_{1}$O$_{19}$ یکنون در دمای
$900^\circ C$ و $850^\circ C$ در شکل 4 نشان
داده شده است. تصویر نشان می‌دهد که با افزایش دما اندازه
در اثر یازدگی می‌شود و ریخت‌شناسی آنها تغییر می‌کند. آن
گونه که در تصویر مشاهده می‌شود که در دمای
$850^\circ C$ تعداد محدودی از نانوذرات به‌صورت صف‌های و میله-

شکل 4 تصویر FESEM ناموس نشاندار PbFe$_{11}$Co$_{1}$O$_{19}$ در دمای
$850^\circ C$, $750^\circ C$, $650^\circ C$ و $500^\circ C$ با زمان 3 ساعت.

[DOI: 10.18869/acadpub.ijcm.25.3.655]
یک نظم مغناطیسی برخوردار و پوسته‌ای به ندرت مدل مغناطیسی است و به لحاظ مدل مدل هرچه اندیزگر ذرات کوچک‌تر باشد اثرهای سطحی به حجم بیشتر می‌تواند در نتیجه مغناطیسی کاهش می‌یابد. از سوی دیگر، با افزایش دما به C=800 درجه سانتی‌گراد کاهش فاز ثانویه همایش و تناوب بیشتر فاز اصلی هگزاگونی سرب مغناطیسی اشباع و پسندان آشباع چشم‌گیری می‌یابند. در نمونه‌های حاضر مشاهده می‌شود که با افزایش دما میدان ناهساکیدری بلوری (Hc) که یک اثر دانست و نیز ثابت میدان ناهساکیدری مغناطیسی (K) افزایش می‌یابد. زیرا با افزایش دما اندیزگر ذرات بیشتر شده و برای ذرات بزرگ‌تر، یک شکل ناهساکیدری ناشی از شکل نیز اضافه می‌شود. با تغییر

\[H_c = 0.48 \left(\bar{H}_a - \bar{H}_d \right) \quad \text{و} \quad \bar{H}_a = \frac{2K}{M_s} \]

نیاز به رابطه‌ها K میدان وادارگردانی ذرات با افزایش دما افزایش می‌یابد. از سوی دیگر مشاهده می‌شود که میدان مغناطیسی زمانی (Hs) که خود یک عامل خارجی است، با تغییر دما افزایش می‌یابد. نتایج در

\[H_c = \text{مقدار خانم نونه‌ها} \quad \text{نیز می‌توان} \]

نسبت داد.

شکل ۵: منحنی پسندان مغناطیسی نانوذرات PbFe_{11}Co_{10}O_{39} با دماهای مختلف در زمان ۳ ساعت.

\[\frac{M_s}{M_s} \]

با استفاده از حل ه‌ای پسندان نونه‌ها به شدت در دماهای مختلف محاسبه شده است. که نتایج حاصل از یک اندازه‌گیری در جدول ۲ آورده شده‌اند. چگونگی توزیع و نقش کیفیت در خواص مغناطیسی نمونه‌ها به شدت در مرجع [24] مورد بررسی قرار گرفته است. نمودار شکل ۵ و جدول ۳ با افزایش دما به دلیل کاهش فاز ثانویه و تناوب فاز هگزاگونی سرب آلیسیده با کلکت مغناطیسی اشباع آفتاب‌های ایست. همچنین مشاهده می‌شود که در نمونه‌های با دمای پخت ۶۰۰ درجه سانتی‌گراد مقدار اشباع و پسندان از بقیه نمونه‌ها کوچکتر است. با این حال دیده می‌شود که برای ذرات فاز ثانویه نامغناطیسی همانی (α-Fe_{2}O_{3}) در این نمونه و کوچک بودن اندازه ذرات است. نمودار نشان داده مدل هسته و پوسته مه‌تر ذرات مغناطیسی دارای یک هسته و یک پوسته است که هسته این از
جدول ۲ خواص مغناطیسی نانوذرات PbFe₁₁Co₂O₁₉ با دماهای مختلف در زمان ۳ ساعت.

<table>
<thead>
<tr>
<th>K(EMU.g⁻¹.Oe)</th>
<th>H₂(ø)</th>
<th>M₀(ø)</th>
<th>Mₑ(EMU.g⁻¹)</th>
<th>η(μ.H.m⁻¹)</th>
<th>η₁(μ.H.m⁻¹)</th>
<th>Σ(μ.H.m⁻¹)</th>
<th>D(μ.H.m⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>113</td>
<td>1526</td>
<td>1526</td>
<td>5</td>
<td>2.3</td>
<td>12.3</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>83</td>
<td>1019</td>
<td>1019</td>
<td>9.1</td>
<td>11.1</td>
<td>13.7</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>777</td>
<td>433</td>
<td>433</td>
<td>8.3</td>
<td>8.3</td>
<td>10.3</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>303</td>
<td>210</td>
<td>210</td>
<td>2.6</td>
<td>2.6</td>
<td>3.0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>362</td>
<td>240</td>
<td>240</td>
<td>8.5</td>
<td>8.5</td>
<td>10.3</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>352</td>
<td>172</td>
<td>172</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>777</td>
<td>433</td>
<td>433</td>
<td>8.3</td>
<td>8.3</td>
<td>10.3</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>303</td>
<td>210</td>
<td>210</td>
<td>2.6</td>
<td>2.6</td>
<td>3.0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>50</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

اتاق در گستره‌های بازیابی‌پذیر MHz و kHz از بزرگ‌ترین نانوذرات PbFe₁₁Co₂O₁₉ با دماهای مختلف در زمان ۳ ساعت اندازه‌گیری شد. با توجه به حجم زیاد داده‌ها، نتایج به‌دست آمده برای برخی از سامان‌ها بهترین جدول ۳ اورده شده است.

جدول ۳ خواص الکترونیکی نانوذرات PbFe₁₁Co₂O₁₉ با دماهای مختلف در زمان ۳ ساعت.

<table>
<thead>
<tr>
<th>L(H) (H₂F)⁻¹</th>
<th>Σ(μ.H.m⁻¹)</th>
<th>η₁(μ.H.m⁻¹)</th>
<th>η(μ.H.m⁻¹)</th>
<th>η₁(μ.H.m⁻¹)</th>
<th>Σ(μ.H.m⁻¹)</th>
<th>D(μ.H.m⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>900°C</td>
<td>950°C</td>
<td>1000°C</td>
<td>1050°C</td>
<td>1100°C</td>
<td>1150°C</td>
<td>1200°C</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
</tr>
<tr>
<td>2.9</td>
<td>3.0</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
</tr>
</tbody>
</table>

با استفاده از LCR متر، در دماهای مختلف L(H) (H₂F)⁻¹ و Σ(μ.H.m⁻¹) و η₁(μ.H.m⁻¹) و η(μ.H.m⁻¹) و η₁(μ.H.m⁻¹) و Σ(μ.H.m⁻¹) و D(μ.H.m⁻¹) به‌دست آمده برای برخی از سامان‌ها بهترین جدول ۳ اورده شده است.
ویژگی‌های دی الکتریکی به عوامل مختلفی از جمله: روش ساخت، شرایط ساخت، دما و زمان واقعی، فرکانس شیمیایی و اندازه ذرات اتست [25] شکل‌های ۶ و ۷ تغییر ثابت دی الکتریک و اتلاف دی الکتریک را بر حسب بسامد نشان می‌دهد. بنابراین تغییر نشان دهنده می‌باشد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. دمای دمای نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دما و زمان اتست ساخت دی الکتریک به نیازهای مختلفی تنگی دی الکتریک و اتلاف دی الکتریک با افزایش بسامد کاهش می‌یابد. نتایج بدست آمده این آزمایش نشان می‌دهد که دма...
شکل 8 نمودار رساندنگی به حساب بسامد برای نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ با دماهای یک حس متغیر در زمان 3 ساعت.

شکل 9 نمودار نفوذیتی مغناطیسی به حساب بسامد برای نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ با دماهای یک حس متغیر در 3 ساعت.

شکل 10 نمودار آلفا نفوذیتی مغناطیسی به حساب بسامد برای نانوذرات PbFe$_{11}$Co$_1$O$_{19}$ با دماهای یک حس متغیر در 3 ساعت.
برداشت
نقش دمای یخ نیوتن شریف و هگزافریت سرب آنتی‌سیر به کیالت
(Peribosil) نموده شده با استفاده از روش سل‌زل نیوتن و تأثیر دمای یخ نیوتن شریف با خواص
ساختاری، مغناطیسی و الکتریکی هگزافریت PbFe11Co1O19
مورده بررسی قرار گرفته. نگری روش پرتو ایکس نموده یخ‌پاشده در دملای 1000 و
450 °C با بلورگینی و شدت پایینی دارند که به‌دست آورده و
ملاحظه‌ای. باز همانندی است. این احتمالا در این دما، فاربند
یخت وضعی به‌دست دمای یخ یخ برای تهیه تکیف هگزافریت
کاهی نیست. هنگامی که دمای یخ به
800 °C افزایش می‌یابد، هماهنگی که دمای یخ به
300 °C با افزایش دما به
400 °C زیاد می‌شود. با افزایش دما به
400 °C جدا شده و سایر جسمانیان با کاهش
قطر دمایی یخ، اندازه نانوذرات پرگلاکتیک شده و شکل
صفحه‌ای آنها به‌خصوص مشخص است. ناتی دی‌الکتریک و
افلاک دی‌الکتریک با افزایش بسامد، کاهش می‌یابد. همچنین
با افزایش بسامد رسانندگی الکتریکی ac نموده شریف می‌یابد. با افزایش بسامد، به‌دست می‌آید افزایش جریانی
های گردی در فیزک‌های بالا، نفوذپذیری مغناطیسی کاهش می‌یابد. نفوذپذیری مغناطیسی نیز با افزایش فیزک‌های کوچک یابد
که کاهش اتفاق در دمای سایر این با برتری فرصت‌ها به‌شورای
می‌روید. بنابراین نتایج نشان می‌دهد بهترین نموده با دمای یخ
800 °C و 3 ساعت به‌دست آمد.

مراجع

[28] Iqbal M. J., Ashiq M. N., "Physical and electrical properties of Zr-Cu substituted strontium hexaferrite nanoparticles synthesized by co-