کاتیشناسی، زندگی‌محیطی و گیاگاه زمین ساختمانی متغیری‌های مجموعه‌ی دگرگونی گست
(غرب رشت)

محمدرضا جوامدرا، محسن نصرآبادی، کاظم قلی‌زاده

چکیده: مجموعه‌ی دگرگونی گست در کوه‌های طالقان البرز غربی قرار گرفته است. این مجموعه دگرگونی بیشتر مشکل از متابلیت و متغیری‌های شدید است. متغیری‌های شرایط دگرگونی رخ‌دارهای سیستمی و آمپولیتیا را نشان می‌دهند. در این کاتیشناسی، سه گروه کوه‌های رخ‌دارهای شیمی‌شناختی، سیستمی و آمپولیتیا از آنها دارند. گروه‌های این آمپولیتیا دارای دو نوع نوهد و فولیسون‌های دار هستند. گروه‌های سیستمی‌های سیستمی-آمپولیتیا اندزیسان و منیزی‌هورن‌ها ساخته هستند. این میزان مشخصه سه ره را و هزاراک و دل‌‌قد و گنجایش‌های متنوع دارند. این شیمی‌سنجی، گسترش رخ‌دارهای سیستمی و آمپولیتیا در دو گروه می‌داند. این احتمال‌های شرایط سیستمی و آمپولیتیا در دو گروه گسترش رخ‌دارهای سیستمی و آمپولیتیا را نشان می‌دهند. این وجود دارد که در گروه‌های سیستمی و آمپولیتیا، گسترش رخ‌دارهای سیستمی و آمپولیتیا قابل مشاهده و در گروه‌های آمپولیتیا، گسترش رخ‌دارهای سیستمی و آمپولیتیا قابل مشاهده است.

واژه‌های کلیدی: متغیری‌های؛ شیمی‌سنجی؛ حفاظت‌های فعال قاره‌ای؛ مجموعه دگرگونی گست

مقدمه

در بررسی شکل‌گیری‌های زمین‌ساخته‌های نوارهای کوه‌های است بطوری که ضمن شناخت گردان زمین گرمایی و سازوکار دگرگونی، جایگاه زمین‌ساخته‌های فرایند دگرگونی نیز روش می‌شود. در این پژوهش سعی شده است با بررسی شیمی سنگ کل و مخصوصاً استفاده از انعکاس کمیاب ناحیه‌های طی دگرگونی و ناحیه‌های دگرگونی آمپولیتیا‌های مجموعه‌ی دگرگونی گست، جایگاه پالتوکنتین‌های متغیری‌های این مجموعه دگرگونی ارزیابی شد.

* nasrabadi@sci.ikiu.ac.ir

** پست الکترونیکی: 2082334700000576278334901320007

# توانسته مسئول، تلفن: 021-28834900، نمای: 206028002100، پست الکترونیکی: nasrabadi@sci.ikiu.ac.ir

# سال بیست و چهارم، شماره دوم، تابستان 95، از شماره 244 تا 258
روش بررسی پس از بررسی های مکروپیژنی، تعداد ۳ نمونه شیب سیز و ۷ نمونه آمپولیتیم جمعه‌ای شده از مجموعه دگرگونی گشت، که شده‌های دریا و ساختارهای رگه‌ای کمتری دارد، انداخت و برای بررسی‌های XRF و ICP و شیمی‌های دیگر ارسال شدند. سپس به Corel Draw و Igpet، Excel و و Farsi نسخه‌های این مورد استفاده شده است. 

زمین‌شناسی ناحیه‌ای در کمبنای کوه‌های البرز، جنوب غربی از شرق داغستان و با استفاده از Corel Draw، شکل‌برداری و افتراق شدن در ارتفاعات بین‌الواده [۱۱] شیمی‌های مختلفی از شیمی‌های سیزیتی است. بخش بالا متن‌بند از شکل‌های سیزیتی گشت و درجه برخی از شیمی‌های سیزیتی و کلریت تشکیل شده است. که در بخش نخست با کارگیری همرهای است. 

شکل ۱- موقعیت مسیریک گشت در ارتفاعات بین‌الواده [۱۱]

دایه شده است. ب- نحوه نشان‌دهی شیمی‌ساده از مجموعه دگرگونی گشت (با تغییرات از [۱۱]).
شیمی کاتی‌ها

به‌منظور شناسایی ترکیب شیمیایی کاتی‌ها و ارزیابی شرایط تولید آن‌ها، از کاتی‌های دو نمونه شیست سر و آمفیبول رژیم‌برداری تلفات به عامل آم (جدول 1) در این بخش به تفصیل ترکیب شیمیایی کاتی‌ها بحث خواهد شد.

آمفیبول

آمفیبول

با توجه به معیار رده‌بندی آمفیبول‌ها (14)، آمفیبول نمونه‌های Ca۱۱۵Ca + و تیتانیوم کاتی‌های آلومنیم، آه و

نیترات جایگاه C و سدیم، بناسیم و کلسیم موجود در جایگاه A بیشتر نیترات‌های تولید شده نام‌دار (شکل 4 ب). بر اساس نمونه‌ برداشت، آمفیبول ماکزیمی از دارک‌گوینی (15) آمفیبول‌های مورد بررسی از نمونه دارک‌گوینی هستند (شکل 4 ب).

شکل 2 الف) دو نمونه مجموعه دارک‌گوینی گست که سازندگی ارتفاع غرب شهرستان فرمون است و با پوشش جنگل‌های نامه پوشیده شده است.

ب) مثال‌هایی که دارک‌گوینی درجه بالا شده‌اند. ساختمان‌های میکانیکی نشان می‌دهد. ب) نمونه‌های دستی متابابیت مجموعه دارک‌گوینی گست متشکل از بالا و باین رگه‌های تنها کلیت است.
شکل ۲ تشکیلات میکروسکوپی مناسب‌ترین‌های مجموعه‌ی درگوینی گشت. افزوده‌ی ۲- تصویر میکروسکوپی شیست سبز و رگه‌ای مشکل از کلینوپروکسین، کلسیت و ایکسید در آن. ب- آمفیبولیت فولیکسین دار با کلاین سنتگاس‌ز امفیبول و پلاژوکلر، بیشتری کلاین اسدنی و ایکسیدی آسفن و کلینوپروکسین، کلاین‌های فرعی هستند. ت- آمفیبولیت توده‌ای با کلاین‌های سنتگاس‌ز امفیبول و پلاژوکلر.

شکل ۴ (الف) بنابر نمونه‌های رده‌بندی آمفیبول [۱۴] آمفیبول‌های موجود در نمونه‌های آمفیبولیت، بیشتر از نوع منیزیومرینند هستند. ب- بر اساس نمونه‌های جدایشنهای آمفیبول‌های درگوینی از آنالوگ آدرین [۱۵] آمفیبول‌های موجود در نمونه‌های آمفیبولیت مجموعه‌ی درگوینی گشت از نوع منیزیومرین هستند.

فلدسار
نتایج فلدسپارها نمونه‌های آمفیبولیت، در جدول ۱ ارائه شده است. میزان تکان‌های دندانهای پلاژوکلار، عبارتند از: از ۷۰ تا ۵۳ درصد، آنورتیت (از ۴۷ تا ۴۹ درصد) و ارنژو (۱۰ درصد). لذا پلاژوکلارها مورد بررسی از نوع اندرین هستند.

بیوئیت
بنابر میتال‌های رده‌بندی میکائی سیاه [۱۶]، بیوئیت، از نوع آهن و منیزیم‌دار (بیوئیت) است. میزان تئاتورا موجود در آن‌ها از ۲۴ تا ۲۸ درصد و عدد منیزیم آن‌ها ۵۹ درصد است.

شیست سبز
کلینوپروکسین
بنابر نمونه‌های رده‌بندی پیریکسن [۱۷] کلینوپروکسین موجود در رگه‌ها کلسیتی شیست سبز، از نوع دیوپسی بوده و سازاری اصلی آن به قرار زرده (جدول ۱) ولستونیت (۵۳ تا ۷۴ درصد)، فروسیلیت (۹ تا ۱۰ درصد) و استناتین (۴۷ تا ۳۷ درصد).
جدول 1: نتایج آنالیز شیمیایی کانی‌های موجود در نمونه‌شیست سنگ و آمفیبولیت. فرمول ساختاری کانی‌های آمفیبول، پلازموکلاز، بیوتیت، ایدوئد و پیروکسی به ترتیب بر اساس 12، 8.5، 6.3 و 6.6 اکسیمر محاسبه شدند.

<table>
<thead>
<tr>
<th>کانی</th>
<th>شیست سنگ</th>
<th>آمفیبولیت</th>
<th>پلازموکلاز</th>
<th>بیوتیت</th>
<th>ایدوئد</th>
<th>پیروکسین</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>0.26</td>
<td>0.28</td>
<td>0.29</td>
<td>0.26</td>
<td>0.28</td>
<td>0.26</td>
</tr>
<tr>
<td>MgO</td>
<td>0.33</td>
<td>0.31</td>
<td>0.29</td>
<td>0.33</td>
<td>0.31</td>
<td>0.33</td>
</tr>
<tr>
<td>MnO</td>
<td>0.21</td>
<td>0.23</td>
<td>0.21</td>
<td>0.21</td>
<td>0.23</td>
<td>0.21</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>Fe2O5</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>CaO</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.26</td>
<td>0.28</td>
<td>0.29</td>
<td>0.26</td>
<td>0.28</td>
<td>0.26</td>
</tr>
<tr>
<td>Mg#</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Ab</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>An</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Or</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Wo</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>En</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Fs</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>XPs</td>
<td>21.34</td>
<td>21.34</td>
<td>21.34</td>
<td>21.34</td>
<td>21.34</td>
<td>21.34</td>
</tr>
</tbody>
</table>

دان - فشارسنجی

یکی از اهداف مهم در سنگ‌شناسی سنگ‌های دگرگونی، محاسبه دما و فشار تشکیل سنگ‌های دگرگونی است که منجر به شناخت درجه زمین‌گردی توده‌ها و روند شدن سازوکار دگرگونی در نهایت ساختاری جایگاه بالاترین‌تامامه‌فیک خواهد شد. ارزیابی شرایط دما و فشار دگرگونی به روش‌های مختلف صورت می‌گیرد که عبارتند از:

فشارسنجاری

فشارسنجاری آلاینز شده موجود در متن سنگ از هر دو نوع آبیت و ارتوژ بوده و اسانته‌های آن ها عبارتند از آبیت (1 تا 96 درصد)، ارتوژ (1 تا 2 درصد) و ارتوژ (1 تا 96 درصد).

آبیوت

تمک مرکز غلظت متشکل با سازند پیستاسیت ایدوئد سنت شده متن سنگ از تا 22 تا 23 درصد متغیر است.
ندمآ فشارسنجی با استفاده از شبکه پتروژنیک تبدیل آمفیبیلیت به اکلوزیت در سیستم مورب آب‌دار
در شکل ۵ شبکه پتروژنیک گذشته از رخسار آمفیبیلیت به اکلوزیت در سیستم مورب آب‌دار [۱۸] و گسترده‌ای فازهای تیتانیوم. نشان داده شده است. با توجه به حضور گزارندر میزان آمفیبیلیت مجموعه درگرهایه گشت، فشار درگرهای، کتر از ۸ کیلوپاوس بوده است. از طرفی نیز نشان داده شده که در نمونه‌های متانژیتی در درگرهایه، درز آتیک در این نمونه‌ها وجود دارد. 

ندمآ فشارسنجی به کمک ترکیب شبیه‌سازی آمفیبیل Mg / Si
دامسنجی بر اساس تغییرات در برای 
با بررسی‌های آزمایشگاه تبلور آمفیبیل در دامنه ۷۰ و ۵ تا ۸۰ درجه سانتی‌گراد مورد بررسی قرار داده شده است [۲۰]. با توجه به مقادیر Mg و Si در نمونه‌ها، درگرهایه درس و در گستره دامنه تا ۸۰ درجه سانتی‌گراد می‌توانند شده‌اند (شکل ۶. الف).

شکل ۵ نمونه دما فشار و شبکه پتروژنیک تبدیل آمفیبیلیت به اکلوزیت همراه با گسترده‌ای پایدار فازهای تیتانیوم در سیستم مورب اشباع از آب [۱۷]
محاسبات مورد استفاده قرار گرفته است. بینار این واکنش، در فشار 8 کیلوبار دمای دگرگونی 
۷۲۴ درجه سانتی‌گراد است.
شیمی سنتک کل
نتایج تجزیه شیمیایی سنتک ۱۰ نمونه SHM و ۷ نمونه آمپیول‌های مجموعی 
گذشته در جدول ۲ نشان داده شد. این گام در
بررسی شیمی سنتک کل متابالیت‌ها، تأمین خاس‌گاه آلی منجر
(ارتوآمپیولپت) با روشی (بارآمپیولپت) آن‌هاست. با توجه به
نمونه‌های جداکننده خاس‌گاه‌های مشروط آذرین (تری‌وآمپیولپت) (شکل ۶)، نمونه‌های مورد بررسی 
از مجموعی آذرین پوتوپت متابالیت‌های مورد بررسی در گستره آذرین قرار
گرفته‌اند (شکل ۲). این نمونه‌ها مورد بررسی از نظر
ارتوآمپیولپت هستند و منظور نام‌گذاری پوتوپت و ویژگی 
سرب طبیعی از نمونه‌های مورد بررسی است. 
با استفاده از این روش شیمیایی دگرگونی‌های این
تکنیک شال دما دارای شدت ۸۰۰ درجه سانتی‌گراد و فشار ۸
تا ۱۲ کیلوبار است.

دمسنجی بر اساس تغییرات مقادیر AlIV در برابر TiIV آمپیول
چنانکه در شکل ۶، ملاحظه می‌شود بر اساس داده‌های 
دمایا آن‌ها در [۲۱] و نمونه‌های آلی منجر
(تری‌وآمپیولپت) (شکل ۶) نمونه‌های آمپیول‌های مجموعی 
گذشته در ۷۲۴ درجه سانتی‌گراد متغیر شدند.

شیمی آمپیول‌های اس‌یوی و TiOIV
با استفاده از فلزات تبتانی و آلومینیوم آمپیول کلیک موجود
در ترکیبات آتشفشانی در دامنه دمای ۵۰۰ تا ۹۵۰ درجه
سانتی‌گراد، فشار ۸ تا ۱۲ کیلوبار و شرایط انرژی کسب‌شده
کنترل شده سیستم کوارتز – مگنتیت – فایالیت (شکل ۶) پوشش 
دما دارای اکسیژن به‌صورت نیمه‌کام و ابعاد شده
است [۲۰] با استفاده از این روش شیمیایی دگرگونی‌های این
تکنیک شال دما ۸۰۰ درجه سانتی‌گراد و فشار ۸
تا ۱۲ کیلوبار است.

دمسنجی فرآوری‌های هورن‌برق - پلاژوکرال
بر اساس جانشینی برتکی - چرم‌کشی صورت گرفته در ترکیب
شیمیایی آمپیول، دمسنجی بر مبنای زوج کانال هورن‌برق - 
پلاژوکرال ابتدای شده [۲۲] و سپس با توجه به حضور یا عدم
حضور کوارتز در سنگ و دو سازنده آن، حکم ارزیابی
دماه شکل‌گذار کوارتز در پلاژوکرال معرفی شدند [۲۳]
از اینجا که در نمونه‌های متابالیت‌های مجموعی کوارتز، کوارتز
دیده می‌شود، وانوش آلیپت + ترمولیت = کوارتز + اس‌یوی در
تولوانی اس‌یوی هستند (شکل ۸).
شکل ۷ ال‌ف) بنابر نمودار نسبت‌های $\frac{Na_2O}{Al_2O_3}$ و $\frac{K_2O}{Al_2O_3}$ در برنز و نیکل، در برخی نسبت‌های مذکور بررسی گردیده است. ب) ترکیب پرتوپیت مس نموداری را به دست آورده که براساس اندازه‌گیری می‌باشد. در نمودار $\frac{Na_2O}{Al_2O_3}$ و نسبت $\frac{K_2O}{Al_2O_3}$، میزان موجود در نسبت مذکور وجود دارند.

شکل ۸ ال‌ف) بنابر نمودار نام‌گذاری سرگنج مس نموداری را به دست آورده که براساس اندازه‌گیری می‌باشد. ب) ترکیب پرتوپیت مس نموداری را به دست آورده که براساس اندازه‌گیری می‌باشد.

تغییر چاپگاه ذرات پرتوپیت مس
در این بخش می‌توان توجه کرد که بنابراین نمودار نسبت به دو نمونه از مس، به دست آمده ترکیب پرتوپیت مس نموداری را به دست آورده که براساس اندازه‌گیری می‌باشد. در نمودار $\frac{Na_2O}{Al_2O_3}$ و نسبت $\frac{K_2O}{Al_2O_3}$، میزان موجود در نسبت مذکور وجود دارند.

در این بخش می‌توان با توجه به نمودار سرگنج مس نموداری را به دست آورده که براساس اندازه‌گیری می‌باشد.

بنابراین نمودار نسبت به دو نمونه از مس، به دست آمده ترکیب پرتوپیت مس نموداری را به دست آورده که براساس اندازه‌گیری می‌باشد. در نمودار $\frac{Na_2O}{Al_2O_3}$ و نسبت $\frac{K_2O}{Al_2O_3}$، میزان موجود در نسبت مذکور وجود دارند.
جدول 2. نتایج بررسی شیمیایی سنج کل 10 نمونه از متابازیتهای مجموعه‌ی دگرگونی گشت. عناصر اصلی و فرعی بر اساس درصد و عناصر کمیاب بر حسب قسمت در میلیون هستند.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>SiO$_2$</th>
<th>Ga$_3$ Am.</th>
<th>Ga$_5$ Am.</th>
<th>Ga$_6$ Am.</th>
<th>Ga$_{17}$ Am.</th>
<th>Ga$_{41}$ Gs.</th>
<th>Ga$_{47}$ Gs.</th>
<th>Ga$_{50}$ Am.</th>
<th>Ga$_{52}$ Am.</th>
<th>Ga$_{53}$ Am.</th>
<th>Ga$_{54}$ Am.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$</td>
<td>218</td>
<td>240</td>
<td>319</td>
<td>430</td>
<td>519</td>
<td>519</td>
<td>519</td>
<td>519</td>
<td>519</td>
<td>519</td>
<td>519</td>
</tr>
<tr>
<td>MnO</td>
<td>0.7</td>
<td>0.5</td>
<td>0.6</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>MgO</td>
<td>1.8</td>
</tr>
<tr>
<td>CaO</td>
<td>1.6</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>1.3</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.3</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.1</td>
</tr>
<tr>
<td>LOI</td>
<td>1.1</td>
</tr>
<tr>
<td>Totale</td>
<td>95.7</td>
</tr>
<tr>
<td>Ba</td>
<td>3.7</td>
</tr>
<tr>
<td>Ce</td>
<td>0.6</td>
</tr>
<tr>
<td>CO</td>
<td>0.4</td>
</tr>
<tr>
<td>Cr</td>
<td>0.7</td>
</tr>
<tr>
<td>Cs</td>
<td>0.9</td>
</tr>
<tr>
<td>Dy</td>
<td>0.7</td>
</tr>
<tr>
<td>Er</td>
<td>0.5</td>
</tr>
<tr>
<td>Eu</td>
<td>0.3</td>
</tr>
<tr>
<td>Ga</td>
<td>0.5</td>
</tr>
<tr>
<td>Gd</td>
<td>0.4</td>
</tr>
<tr>
<td>Hf</td>
<td>0.3</td>
</tr>
<tr>
<td>HO</td>
<td>0.2</td>
</tr>
<tr>
<td>La</td>
<td>0.1</td>
</tr>
<tr>
<td>MO</td>
<td>0.1</td>
</tr>
<tr>
<td>Nb</td>
<td>0.1</td>
</tr>
<tr>
<td>Nd</td>
<td>0.1</td>
</tr>
<tr>
<td>Ni</td>
<td>0.1</td>
</tr>
<tr>
<td>Pb</td>
<td>0.1</td>
</tr>
<tr>
<td>Pr</td>
<td>0.1</td>
</tr>
<tr>
<td>Rb</td>
<td>0.1</td>
</tr>
<tr>
<td>Sc</td>
<td>0.1</td>
</tr>
<tr>
<td>Sm</td>
<td>0.1</td>
</tr>
<tr>
<td>Sr</td>
<td>0.1</td>
</tr>
<tr>
<td>Ta</td>
<td>0.1</td>
</tr>
<tr>
<td>Tb</td>
<td>0.1</td>
</tr>
<tr>
<td>Th</td>
<td>0.1</td>
</tr>
<tr>
<td>Tl</td>
<td>0.1</td>
</tr>
<tr>
<td>U</td>
<td>0.1</td>
</tr>
<tr>
<td>V</td>
<td>0.1</td>
</tr>
<tr>
<td>Y</td>
<td>0.1</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
</tr>
<tr>
<td>Zn</td>
<td>0.1</td>
</tr>
<tr>
<td>Zr</td>
<td>0.1</td>
</tr>
</tbody>
</table>
شکل 9. یک نمودار تحلیل جداول خاکی جایگاه زمین ساخته منتوال و مرسوم، جایگاه متاسبه‌های مجموعی درگوگونی گشته، بازالت حاشیه فعال (قاره‌ای؟) بوده است. (الف) با توجه به نمودار مثلثی [28]، جایگاه پروتوتلیت متاسبه‌های مجموعی درگوگونی گشته قاره‌ای است. ب) در نمودار Ti/Y-دوتایی نسبت در برای Y/Ti نسبت در برای نمودار [29] تمام نمونه‌ها در گستردگی پازالت‌های حاشیه فعال قاره‌ای واقع شده‌اند. ( før) در نمودار گروه متاسبه‌های مورد بررسی و پازالت‌های حاشیه فعال قاره‌ای را نشان می‌دهد. (ت) با توجه به نمودار مثلثی [31] پروتوتلیت نمونه‌های مورد بررسی زمین‌ساخته یک نمودار دوتایی جایگاه‌های زمین ساخته‌ای کمی انتخابی پشتیبانی معنی‌دار و داخل سه‌گوشی [22] جایگاه متاسبه‌های مجموعی درگوگونی گشته کمی انتخابی است. ج) در نمودار دوتایی Ce/Yb در برای [32] نمودهای مورد بررسی غالباً در گستردگی پازالت‌های قاره‌ای کمی انتخابی با مربع آن واقع شده‌اند.

جدید نیز، جایگاه متاسبه‌های مورد بررسی وابسته به محیط فرورانش (که عامل اصلی مشارکت‌کننده در پیش‌آمدها مگما) ذوب‌پذیری گوست پژوهشی درگرسی وی است. با توجه به نمودار دوتایی متشکل از پارامتر تغییر عمیق اصلی [23] و کمیاب [27] جایگاه زمین ساخته پیش‌تر نموده‌ای های مورد بررسی، جایگاه زمین ساخته یک نمودار [شکل‌های 10 ث و ج] لذا با توجه به نمودارهای جداول خاکی جایگاه زمین ساخته
شکل 10. نمودار جدایبندی چاپگاه زمین ساخته جدید و انواعی که بر اساس نگارنده چندانه یکی از این دو و در سال‌های اخیر معرفی شده‌اند. نیز در روند آدنین متبازیته‌های مجموعه‌های دگرگونی گسترش یافته و با هم‌بودن چاپگاه فرورفته است. ال‌ب-بنی‌ت نمودار همداکننده چاپگاه زمین ساخته‌ای متبازیته‌های مجموعه‌های دگرگونی گسترش یافته که دو کان انتخابی فلئی و ایبائوئسی است. ب-پ-ت نمودار همداکننده چاپگاه زمین ساخته‌ای [۲۵]. پروپتی‌های مرمایی متبازیته‌های مورد بررسی در کان انتخابی فلئی و ایبائوئسی شکل گرفته است (پایایی بسته میان ایبائوئسی، CRB، پرالک جزایر ایبائوئسی: OIB، پرالک بازالت جزایر فلئی: IAB). تا توجه به تابع نمای تغییر شده توسط [۲۶] اکثر متبازیته‌های مورد بررسی در گستره‌ای پرالک جزایر قویسی چای دارند. ج-در نمودار توان داده‌گاه داده شده توسط [۲۷] تمامی متبازیته‌های مجموعه دگرگونی گسترش گستره پرالک جزایر قویسی واقع شده‌اند.
گشت، با حاشیهی فعل قارآی هیمالیون بیشتری دارد. در انتخاب داشتند ادیسهای ایروتونی استراتسم و تودیدیم، به شناسایی جامعتر شکل منگر ماهگی مانند نتایج جامعه‌گری درکگونی ممکن است شرایط دیگرگونی. درکگونی، با شرایط فشار و در حال با کانال فورماتیون، با منتشرهای بهم‌افزوده هم‌خوانی دارد. اما سنگ‌های درکگونی ممکن است، اکثریت از نوع قارآی هیمالیون، با ماکتا ساختاری شبیه دیگرگونی که در جابجای حاشیهی فعل قارآی است. شرایط دیگرگونی شامل فشار 6 تا 10 کیوبار و دمای 670 تا 750 درجه سانتی‌گراد مناسب می‌باشد. رها کردن درکگونی، با هم‌افزوده‌های میکروتاکسیتیک، توسط این تولید از مخاطر حاشیهی با کانال دیگرگونی محافظت شده است.}

شکل گیری تکتونیک‌های این جمع‌سازی از این رخ داده‌های جابجای حاشیهی پایتخت و در جابجای حاشیهی فعل قارآی است. در نتیجه، برخوردار خودر و در نتیجه قارآی گیری از جامعه کامل درکگونی خواهند بود که با بررسی‌های سنن‌سنجی دقیق، زمان درکگونی رخ داده‌ها ممکن است شکل گیری تکتونیک‌های این مجموعه و ارزیابی زمان‌رخ داده‌ها، درکگونی خواهد بود.

مراجع


[23] Holland T., Blundy J., "Non-ideal interactions in calcic amphiboles and their bearing on


[45] معذی بورس، "الگوی زمانی و فضای برخاستگی همسرده فرسایش در کوه‌های طالش، شمال غرب ایران"، رساله دکتری (۱۳۹۲)، دانشگاه تربیت مدرس.


[۴۲] عمرانی ه.، موهیم م.، ابراهیمی ر.، بیورس، سوچیموری ت، "زاده‌شناسی اکلوژیک‌های شاندری، تاکیدی بر ماهیت بروتونلیت آن"، بلورشناسی و کانی شناسی ایران شماره ۳ (۱۳۸۹) ص ۴۲۴-۴۲۷.

[۴۳] نصر‌آبادی م.، سعادت م.، "زاده‌شناسی و هاجی‌زاده ناهین‌چترین‌های مجموعه دکترکونی ایسامل (شمال غرب رشت)، مجله پترولوژی، زیر جای.