بررسی شرایط فیزیکی و شکل گیری‌های تیلور ماگما با استفاده از توزیع اندازه بلو در گرانیت‌وندهای باتولیت بیارجماند. شمال ایران مرکزی

کاظم کاظمی*، علی کوئینیانی، فاطمه سروجفان

1- دانشکده ریم‌سناری، پردیس علوم، دانشگاه تهران، تهران، ایران
2- گروه علوم زمین، دانشکده علوم، دانشگاه کردستان، ایران

چکیده: باتولیت بیارجماند با سن پرکامبریان واقع در شمال سمنان، در شمال ایران مرکزی از نظر سنگ‌شناسی شامل گرانیت، گرانیت‌وندهای کوارتز مونوزودیوربیت و گرابودیوربیت است. این سنگ‌ها بلافاصله بعد از پرهای موردنظر بافت گرانیت‌ونده بافت گرانیتوبریت، پریتی و شبیه کلینیک دارند. بررسی توزیع اندازه بلو (CSD) و می‌تواند در فن دریافت ماکمی با آن‌های مفید باشد. بررسی توزیع اندازه بلو در گرانیت‌وندهای باتولیت بیارجماند شمال ایران مرکزی انجام شد. در این مقاله، از نظر سنجش CSD تا 94% (CSDs) تا 10-10 mm سال و در گرانیت‌وندهای باتولیت بیارجماند، در شرق ایران، کوارتز مونوزودیوربیتی و گرابودیوربیتی رشد می‌دهد. در بافت گرانیتوبریت، بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگما، بال‌های فلسیسپار 8 نمونه از سنگ‌های گرانیت، مدل زمان رشد، سرعت هسته‌بندی بال‌های فلسیسپار و سرعت تبلور ماگم...
کمی و بفاین کمی گیری [5]، به منظور بررسی چگونگی
سه بعدی اجازه سازندی بلوره و قطعات سنگی در زمین-
شناختی روش‌های مختلف به نشانه ی یونیکس در
سال‌های اخیر به کار گرفته شده است. روش استخراج داده‌ای
به عوامل مانند: محیط فیزیکی سنگ، نوع پراکندگی و
اندازه‌گیری مورد نظر، درک از اندازه‌گیری می‌تواند به
است [6]. بررسی سه بعدی بلوره در سنگ‌های می‌تواند به
صورت بررسی مستقیم آنها از طریق چندی کردن بلوره از
زمین‌شناسی سنگ و اندازه‌گیری ابعاد انجام شود. روش دیگر
استفاده از روش‌های برترین‌گرایی و میکروبرترین‌گرایی پرتو ایکس
است. نمونه‌های از بررسی‌های سه بعدی ساختر بلوره‌ها با این
روش، بررسی ذرات بیماری، ساختار، پلاستیک و شناسایی ساختمان
سه بعدی تغییرات درون کردن آنها است [7].

توپوز اندازه‌بندی در سه بعد (CSDs) می‌توانند اطلاعات
تاریخچه گریمگی ماکما، سرعت و نرخ رشد و زمان استراحت با
زمان رشد ماکم در اختراف ما قرار دهد [12]. در واقع
باید تکنیک ویژگی‌ها در سنگ‌های جدید کهک یک
CSD و یا ترکیب سنگ است [8]. این روش در جهانی به
فقط گریمگی ماکما گوشده، زیرا پراکندگی بلور
باتریایی از نظر تیون‌آتر است [13]. در تهیه می‌توان از این
روش به عنوان مکمل بررسی‌های شیمیایی در بررسی تنش و
تغییرات شکل-گیری سنگ‌های انرژی استفاده گردید [14].
در
40 سال گذشته بررسی‌های زیادی برپا نان اندام‌های
بلوره در سنگ‌های آندین انجام گرفته است که کهکی
از مدل‌ها آن چگونگی [15] است؛ راست نافذ و لازم نیز در
سال 1971 با استفاده از توپوز اندازه‌بندی بررسی گردیده‌
پرداخته [11]. محاسبات این پژوهندگان به صورت نظری
ارائه شده بود که به‌عنوان تیون‌آتر مارش به صورت یک
روش کاملاً علمی درآمد و نرم‌افزار CSD برای این روش طراحی شده
است. در این پژوهش سربه تیون‌آتر بلوره فلسفه‌ای پنامیک،
نمونه‌ای از توده‌های گیلان‌بندی با همچنین تعدادی شرایط
تشکیل مورد بررسی قرار گرفته‌اند و با استفاده از روش توپوز
اندازه‌بندی بلوره CSD (CSD)، رشد سرعت هسته‌بندی و سیستم
حمیجی بلوره فلسفه‌ای محاسبه شده. همچنین می‌توان با

[DOI: 10.18699/eacpubjmc25.5381]
و مدت رشد بلورها، سرعت هسته‌نامی و شاخص نیکویی بر اساس (که نشان می‌دهد که داده‌ها تا چه اندام‌هایی را تشکیل یک

CSD به صورت خط مستقیم اهتمام دارند) برای هر یک

از نمونه‌ها محاسبه شد (جدول ۱).

![Cube 1:1:1](image1)

![Prism 1:1:10](image2)

![Tablet 1:10:10](image3)

![Tablet 1:2:5](image4)

\ln، داده‌های CSD بر نحوه نگاری‌پیام (چگالی انبساطی) بر حسب اندازه (بلندترین بعد L) ترسیم شد (شکل ۳). با mm اقتصادی از روش مارش، [۱۰] واحد اندازه‌گیری برای بلورها mm و مقياس چگالی انبساطی mm^{-3} در نظرگرفته شدند. با استفاده از داده‌ها و نمودارهای به دست آمده از نرم‌افزار CSD سرعت

شکل ۱ نوع پراینتهای نسبتی به طول به عرض بلور در دو بعد، نموداری از شکل به سه بعدی (مکعبی، متشکلی، تیوگی و صفحایی) آن است [۱۰۰].

جدول ۱ نتایج محاسبات حاصل از نمودارهای CSD برای نمونه‌های مورد بررسی.

<table>
<thead>
<tr>
<th>شماره</th>
<th>نامونه</th>
<th>سرمایه</th>
<th>$\ln(n^a)$</th>
<th>yr</th>
<th>LD (mm)</th>
<th>Q (j) mm3s</th>
<th>P (G) mm/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>KD6</td>
<td>۱۰۹۵</td>
<td>۴۴.۷</td>
<td>-۴.۸۸</td>
<td>۴۶.۰۰</td>
<td>۰.۱۴۵</td>
<td>۸.۸۵×۱۰$^{-3}$</td>
<td>۱.۰۱</td>
</tr>
<tr>
<td>KD11</td>
<td>۳۰۸۰</td>
<td>۲.۹۷</td>
<td>-۲.۹۳</td>
<td>۱۵۸.۸</td>
<td>۰.۲۵۴</td>
<td>۱.۹۴×۱۰$^{-3}$</td>
<td>۱.۰۱</td>
</tr>
<tr>
<td>KE3</td>
<td>۳۳۸۸</td>
<td>۲.۸۸</td>
<td>-۵.۴۸</td>
<td>۵۴.۷۹</td>
<td>۰.۱۷۳</td>
<td>۱.۶۵×۱۰$^{-3}$</td>
<td>۱.۰۱</td>
</tr>
<tr>
<td>KE4</td>
<td>۳۵۴۸</td>
<td>۲.۲۲</td>
<td>-۴.۸۸</td>
<td>۵۰.۸۶</td>
<td>۰.۲۰۷</td>
<td>۲.۸۸×۱۰$^{-3}$</td>
<td>۱.۰۱</td>
</tr>
<tr>
<td>KE1</td>
<td>۸۹۸۹</td>
<td>۳.۵۵</td>
<td>-۵.۸۲</td>
<td>۶۰.۶۰</td>
<td>۰.۱۸۳</td>
<td>۲.۵۴×۱۰$^{-3}$</td>
<td>۱.۰۱</td>
</tr>
<tr>
<td>KE5</td>
<td>۳۰۸۰</td>
<td>۵۸.۵۸</td>
<td>-۲.۹۸</td>
<td>۵۸.۱۸</td>
<td>۰.۱۸۳</td>
<td>۳.۴۹×۱۰$^{-3}$</td>
<td>۱.۰۱</td>
</tr>
<tr>
<td>KD8</td>
<td>۳۹۲۶</td>
<td>۲.۱۸</td>
<td>-۵.۴۵</td>
<td>۸۱.۱۸</td>
<td>۰.۱۸۳</td>
<td>۵.۱۹×۱۰$^{-3}$</td>
<td>۱.۰۱</td>
</tr>
<tr>
<td>KE2</td>
<td>۵۵۵۵</td>
<td>۲.۹۱</td>
<td>-۲.۸۷</td>
<td>۸۱.۹۳</td>
<td>۰.۲۰۵</td>
<td>۴.۸۸×۱۰$^{-3}$</td>
<td>۱.۰۱</td>
</tr>
</tbody>
</table>
زمین شناسی عمومی

از نظر تقسیمات ساختاری توده‌های نفوذی جنوب بیهق بارامد در منتهی به شاهی منطقه‌ای ایران مرکزی واقع شده است. براساس شرح نقشه‌های زمین شناسی، تکثیر زمین شناسی 1:1000000 روژه 1323، نقشه زمین شناسی 1:1000000 بسطام 1423، نقشه زمین شناسی 1:400000 جاجرم 1526 و نقشه زمین شناسی 1:250000 خوزستان 1426، در بررسی‌های میدانی این منطقه شکل سنجش و سنجش را پیشنهاد داده که این شکل‌ها از نظر تشکیل‌گذاری دارای توده‌های نفوذی جنوب بیهق بارامد است. این نتایج با نقشه‌های میدانی مطابقت دارد.

شکل 1: نقشه ساده زمین شناسی توده نفوذی جنوب بیهق بارامد (افتیاد از نقشه‌های زمین شناسی 1:1000000 روژه، 1:1000000 بسطام، 1:400000 جاجرم و 1:250000 خوزستان).
سنج و مارگنی گسترش‌دهنده است که در شمال و شمال غربی روستای کیکی برونژ دارد. در این روستا باغ‌های کگلیوما و ماسه‌سنگ و ماری، گدازه‌های اندرتی و اندرتسیبیاتی به شکل خاص و ریخته شده است. رسوب‌های نوزون بیشتری از کگلیوما چندپایی به رنگ خاکستری و سیاه نشان داده که این رسوب‌ها به همراه رسوب‌های نوزون جواربین و واحدهای رسوبی منطقه‌ای مورد بررسی است.

جبون غرب بارجامدن درون ماسه‌سنگ‌های پرامی در تبریز به شدت و ضمن ایجاد دگرگونی همبستگی ضعیف، اوپرسی‌هایی را به داخل آنها وارد کرده که همچنین اینها حاکی از جوانتری بودن نسبی این نوع توسط همین سنجنده است. به واسطه تأثیر گرمی ناشی از تریک نزدیکی، سنگ‌های فراگیر در مجاورت بلافلور توده، در حد رخساره آلتی آبی‌برد هورنفلس دگرگون شدند.

سنگ‌نگاری براساس بررسی‌های سنگنگاری توده نقوی جنوب غرب بارجامدن از دو اسیدی و حدود- مافیک تشکیل شده است که همیشه در دوی ارزش بارجامدن-گرانیت و

شکل ۲: بافت پراتیکی در سنگ‌نگاری، پلاژکوالا و آبی‌بازیری که نشان دهنده انتقال‌ها و تغییرات در سنگ‌نگاری می‌باشد.
بافت غالب در گزارش‌های دانشگاهی و از نظر کسانی

بشریت از کوارتز، بالوزیکال، فلسفیپ، پنسلیم، بیوئیت و امپایور

نوع هویت‌شناسی دانشگاه. کوارتز با خامه‌ای صورت‌برداری شده

به صورت بافت رنگ‌زنه‌ای با فلسفیپ‌ها می‌شود. מי‌دهند. بالوزیکال معمولاً به صورت خودشکل بوده و بیش از

۳۰ نمونه به پیش‌بینی از نمودن دانشگاه شده و به ایپید، سرپیسیت

و کانی‌های رسی تبدیل می‌شود. سلول‌سازی توسط سبز

بی‌سپری خودشکل‌ها به شکل و میانگین اندامه آن حدود یک

میلی‌متر است. در برخی موارد این بالوزیکال به یک بی‌سپری فرم‌دار است. به صورت آرکنا گرفته و نما کرده‌است. یک کانی‌های رسی تبدیل شده است. بی‌سپری

کانی‌های رسی تبدیل شده دسته‌گاه گابوریدوریت و

کوارتز و کالسیت در جنوب غرب بیرجمند شبه‌کور، بالوزیکال،

امپایور، کوارتز و دیتاسیت دانشگاه بالوزیکال. بالوزیکال به صورت

خودشکل‌ها نیز به صورت خودشکل‌ها تبدیل می‌شود.

است و بیش از ۴۰ درصد از حجم سبز را خود اختصاص داده است. این بالوزیکال به در بلور موارد داماقل

پیشنهاد است و در برخی موارد ساختمان منطقه‌ای دارد.

این ها که آمدوست یا تهیه‌گری تحقیق و به سرپیسیت

کلیتی و ایپید دانشگاه بالوزیکال. امپایور به صورت

نیز به صورت خودشکل‌ها تبدیل می‌شود. ۴۰ درصد از

حجم سبز را تشکیل می‌دهد و در بعضی موارد به ایپید با

پیشنهاد است. بی‌سپری، امپایور به صورت خود شکل، تهیه

و بافت غالب در گزارش‌های دانشگاهی و از نظر کسانی

بشریت از کوارتز، بالوزیکال، فلسفیپ، پنسلیم، بیوئیت و امپایور

نوع هویت‌شناسی دانشگاه. کوارتز با خامه‌ای صورت‌برداری شده

به صورت بافت رنگ‌زنه‌ای با فلسفیپ‌ها می‌شود. ماین‌دهند.

بالوزیکال معمولاً به صورت خودشکل بوده و بیش از

۳۰ نمونه به پیش‌بینی از نمودن دانشگاه شده و به ایپید، سرپیسیت

و کانی‌های رسی تبدیل می‌شود. سلول‌سازی توسط سبز

بی‌سپری خودشکل‌ها به شکل و میانگین اندامه آن حدود یک

میلی‌متر است. در برخی موارد این بالوزیکال به یک

بی‌سپری فرم‌دار است. به صورت آرکنا گرفته و

نما کرده‌است. یک کانی‌های رسی تبدیل شده است. بی‌سپری

کانی‌های رسی تبدیل شده دسته‌گاه گابوریدوریت و

کوارتز و کالسیت در جنوب غرب بیرجمند شبه کور، بالوزیکال،

امپایور، کوارتز و دیتاسیت دانشگاه بالوزیکال. بالوزیکال

به صورت

نیز به صورت خودشکل‌ها تبدیل می‌شود. ۴۰ درصد از

حجم سبز را تشکیل می‌دهد و در بعضی موارد به

پیشنهاد است. بی‌سپری، امپایور به صورت خود

شکل، تهیه

و بافت غالب در گزارش‌های دانشگاهی و از نظر کسانی

بشریت از کوارتز، بالوزیکال، فلسفیپ، پنسلیم، بیوئیت و

امپایور نوع هویت‌شناسی دانشگاه. کوارتز با خامه‌ای

صورت‌برداری شده شده. کوارتز با خامه‌ای صورت‌برداری شده

به صورت بافت رنگ‌زنه‌ای با فلسفیپ‌ها می‌شود. ماین‌دهند.

بالوزیکال معمولاً به صورت خودشکل بوده و بیش از

۳۰ نمونه به پیش‌بینی از نمودن دانشگاه شده و به ایپید، سرپیسیت

و کانی‌های رسی تبدیل می‌شود. سلول‌سازی توسط سبز

بی‌سپری خودشکل‌ها به شکل و میانگین اندامه آن حدود یک

میلی‌متر است. در برخی موارد این بالوزیکال به یک

بی‌سپری فرم‌دار است. به صورت آرکنا گرفته و

نما کرده‌است. یک کانی‌های رسی تبدیل شده است. بی‌سپری

کانی‌های رسی تبدیل شده دسته‌گاه گابوریدوریت و

کوارتز و کالسیت در جنوب غرب بیرجمند شبه کور، بالوزیکال،

امپایور، کوارتز و دیتاسیت دانشگاه بالوزیکال. بالوزیکال

به صورت

نیز به صورت خودشکل‌ها تبدیل می‌شود. ۴۰ درصد از

حجم سبز را تشکیل می‌دهد و در بعضی موارد به

پیشنهاد است. بی‌سپری، امپایور به صورت خود

شکل، تهیه

و بافت غالب در گزارش‌های دانشگاهی و از نظر کسانی

بشریت از کوارتز، بالوزیکال، فلسفیپ، پنسلیم، بیوئیت و

امپایور نوع هویت‌شناسی دانشگاه. کوارتز با خامه‌ای

صورت‌برداری شده شده. کوارتز با خامه‌ای صورت‌برداری شده

به صورت بافت رنگ‌زنه‌ای با فلسفیپ‌ها می‌شود. ماین‌دهند.

بالوزیکال معمولاً به صورت خودشکل بوده و بیش از

۳۰ نمونه به پیش‌بینی از نمودن دانشگاه شده و به ایپید، سرپیسیت

و کانی‌های رسی تبدیل می‌شود. سلول‌سازی توسط سبز

بی‌سپری خودشکل‌ها به شکل و میانگین اندامه آن حدود یک
نمودارهای مختلفی از توزیع مشخصه (Closure limit) نشان می‌دهد که در نیز هسته‌های جلدهای تبلور مغناطیسی با استفاده از

ډه‌لایه‌های بیماران برای ازدحام دو یا تر بهره‌برداری از میزان یا ضخامت اجتماعی بین سر و سرعت ساختارهای مختلفی آزمایشگاه‌های مختلفی از توزیع مشخصه (Closure limit) نشان می‌دهد که در نیز هسته‌های جلدهای تبلور مغناطیسی با استفاده از

می‌شوند که در فرآیند تبلور در الکتریکی و شکل‌گیری‌های تبلور ماگما با استفاده از

سهم حجمی

در استفاده با یل، Vi می‌تواند حجمی فاز دکریتی (CSD) یا خود اختصاص دادنی زمان رشد سرعت هسته‌های

Vi = 60nCi

در معادله بالا، Vi به سهم حجمی فاز دکریتی (CSD) یا خود اختصاص دادنی زمان رشد سرعت هسته‌های

در نیز هسته‌های جلدهای تبلور مغناطیسی با استفاده از

در نیز هسته‌های جلدهای تبلور مغناطیسی با استفاده از
واقع شوندگان دارای CSD، منحنی شکل هستند و جنبش در خارج از آن قرار گیرند، مستقیم خواهند داشت) را برای CSD$_5$ به طوری که CSD$_5$ مستقیم نهایی مطابق با شکل نهایی محصول می‌شود. این حجم را بر کرده‌اند. محدوده‌های محصول شده برای هر شکل بلوری یک خصیصیت را وصف می‌کند. CSD$_5$ مستقیم نهایی مطابق در این حجم موجود باشند و در بالای این محدوده CSD$_5$ نمی‌تواند به صورت Lp و عرض از مبدأ وجود دارد.

![دیاگرام 1](image1.png)

شکل ۴ موضعیت نمونه‌ها روی نمودار طول مشخصه (برحسب mm نسبت به درصد حجمی قلیسیار).

![دیاگرام 2](image2.png)

شکل ۵ فدل محدوده‌های محصول شده برای شکل نهایی محصول در نمونه عرض از مبدأ نسبت به طول مشخصه [۲۱]. ب: موضعیت نمونه‌ها در نمونه عرض (از مبدأ) نسبت به طول مشخصه (برحسب mm، مربعی‌ها نمایش می‌دهد CSD$_5$ مستقیم اولیه مستقیم هستند.)
مدت رشد و سرعت هستنشینی

مشخصه‌های مانند اندازه بلور، تعداد بلور و زمان تبلور به سرعت رشد و هستنشینی و استقرار این توده‌ها یا فاصله‌ها (CSDs) بلور (CSDs) بین بلورهای زمان تغییرات هسته‌ای و رشد و هستنشین سیستم‌های میکروتوباژی یا در انتخاب ما قرار می‌دهد [11]. کل‌کاره هستنشینی این مقام‌ها در زمان‌های پایین‌تر انجام باید یک کاهش شدید در CSD چگالی انستابیلی (به حالت انورژی بلوری کوچک) مشخص می‌شود. در شرایط عادی با رشد بلورهای بزرگ‌تر سرعت کاهش می‌شود.

اگر در توجه بگیریم که در محیط‌های نرم و سخت، استحکام، ضعف، اضافه شدن یا کاهش، تمایل دارند، می‌توان از این شایعات استفاده کرد.

براساس محاسبات انجام شده، گرچه نمونه‌هایی از نظر ترکیب شیمیایی به هم نزدیک هستند ولی مدت رشد آن‌ها دارای گستردگی نسبی بزرگی (49±3) سال است. به طوری که واحدهای اسیدی هم‌گرایی خوبی دارند و مدت رشد 54±9 سال است. در این مدت، این اختلاف رشد در نتیجه اختلاف در نرخ هسته‌ای می‌باشد.

در مسیرهای این است، می‌توان به مدت کاهش شکستگی در CSD مشخص بود. این مدت با این توجه به آلودگی هسته‌ها در محیط‌های نرم و سخت، استحکام، ضعف، اضافه شدن یا کاهش، تمایل دارند. می‌توان از این شایعات استفاده کرد.

اگر در توجه بگیریم که در محیط‌های نرم و سخت، استحکام، ضعف، اضافه شدن یا کاهش، تمایل دارند، می‌توان از این شایعات استفاده کرد.

t = \frac{C}{G} = \frac{1}{1/S - 1/G}

(1)

در بررسی شرایط فیزیکی و شکل‌گیری‌های تبلور ماکما با استفاده از ...

CSD

te = \frac{G}{nG} = \frac{1}{1/n}

(2)

ضریب منفی خواهد بود، اما انرژی یک ماکما

جدید به مخزن ماکما و اختلاف ماکما، اشباع شدگی در نتیجه هستنشینی و انستابیلی در متغیر شدن بلورهای دانه‌ای کاهش چگالی افزایش می‌یابد که این آرام باید ایجاد شود، به منظور

و شکستگی در CSD مشخص بود. این مدت با این توجه به آلودگی هسته‌ها در محیط‌های نرم و سخت، استحکام، ضعف، اضافه شدن یا کاهش، تمایل دارند.

اگر در توجه بگیریم که در محیط‌های نرم و سخت، استحکام، ضعف، اضافه شدن یا کاهش، تمایل دارند، می‌توان از این شایعات استفاده کرد.

با انتخاب گیری ایالو می‌توان به سرعت و مدت رشد بلور

یپ بر. اگر بنده بلورهای نسبی به زمان متفاوت باشد، گستره متغیر از اندکی بلورها را در سنگ‌های توان مشاهده نمود. به علاوه برای سرعت‌های درجه زمان اقامت طولانی متری بر وای بلورهای بزرگ‌تر می‌شود. از آن رویکرد تغییر در شیب باعث از میدان یکسان ایجاد می‌شود. به CSD مشخص بوده رشد بلور و شیب منفی نمونه‌ها.

همان‌طور که CSD مشخص بوده رشد بلور و شیب منفی نمونه‌ها.

می‌توان زمان ایجاد CSD مشخص بوده در سال موحیت‌های CSD مشخص بوده رشد بلور و شیب منفی Nمی‌توان زمان ایجاد CSD مشخص بوده در سال موحیت‌های CSD مشخص بوده رشد بلور و شیب منفی نمونه‌ها.

cds = \frac{D}{S}

(3)

براساس نتایج کامپیوتر [13] مقیاس سرعت رشد برای نمونه‌ها

100 mm/s

می‌توان ایجاد CSD مشخص بوده در سال موحیت‌های CSD مشخص بوده رشد بلور و شیب منفی نمونه‌ها.

ماکما

ربا

Rb/Sr

ربا

می‌توان ایجاد CSD مشخص بوده در سال موحیت‌های CSD مشخص بوده رشد بلور و شیب منفی نمونه‌ها.

ماکما

ربا

Rb/Sr

ربا

می‌توان ایجاد CSD مشخص بوده در سال موحیت‌های CSD مشخص بوده رشد بلور و شیب منفی نمونه‌ها.

ماکما

ربا

Rb/Sr

ربا

می‌توان ایجاد CSD مشخص بوده در سال موحیت‌های CSD مشخص بوده رشد بلور و شیب منفی نمونه‌ها.

ماکما

ربا

Rb/Sr

ربا

می‌توان ایجاد CSD مشخص بوده در سال موحیت‌های CSD مشخص بوده رشد بلور و شیب منفی Nمی‌توان زمان ایجاد CSD مشخص بوده در سال موحیت‌های CSD مشخص بوده رشد بلور و شیب منفی Nمی‌توان زمان ایجاد CSD مشخص بوده در سال موحیت‌های CSD مشخص بوده رشد بلور و شیب منفی Nمی‌توان زمان ایجاد CSD مشخص بوده در سال موحیت‌های CSD مشخص بوده رشد بلور و شیب منفی Nمی‌توان زمان ایجاد CSD مشخص بوده در سال موحیت‌های CSD مشخص بوده رشد بلور و شیب منفی
شکل ۶ نمودارهای تگرایتمی جگالی انباشتی بر حسب اندازه دانه‌ها برای نمونه‌های مورد بررسی گروه۱ و KD8، KE2، KE3 و KD۱۱.

گروه۱: کوارتز مونزودیوریت.

شکل ۷ روند الگویی Rb/Sr نسبت به Rb که می‌تواند بیانگر اختلاف در سئوگهای منطقه باشد [۳۷].
جردل ۲/۲۵ بایز ۱۳۹۲

بررسی شرایط فیزیکی و شکل‌گیری های تبلور ماگما با استفاده از... ۵۹۱

کرده‌دان و به صورت دایکوا و انکلودسان بر جراحت مانندان و ایجاد همجنین عمده‌ای فرآیند جداگانه را برای تحولات ماگمایی ترتیب گرفت. به نتیجه‌گیری و جداگانهٔ می‌تواند عام ایجاد یاب نظمی و احتمال در بعضی از تنمودارها باشد.

نمودار KE3 نیز شکل‌گیری هم روند را نشان می‌دهد که می‌تواند به عنوان اختلاف ماجامگای همجنس تفسیر شود (۴۴).

<table>
<thead>
<tr>
<th>رسانه</th>
<th>KD6</th>
<th>KD10</th>
<th>KE5</th>
<th>KE11</th>
<th>KD9</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>74.6</td>
<td>70.3</td>
<td>70.3</td>
<td>70.3</td>
<td>70.3</td>
</tr>
<tr>
<td>CaO</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>NaO</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Co</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Zn</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Sr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sr</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>K-O</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>P-O</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Sm</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Eu</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Yb</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Lu</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Y</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Cs</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Sn</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Th</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>U</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>V</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Cu</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>K2O</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Eu,Eu ۷۵.0 ۷۵.0 ۷۵.0 ۷۵.0 ۷۵.0

۵۹۱
برداشت

براساس جمع‌نی‌نویسی اطلاعات به دست آمده از بررسی‌های صحرایی، سنجش‌های و نتایج بررسی‌های CSD نمونه‌های گرانیت‌نی‌های جنوب غربی بیروجند، نتایج زیر به دست آمده است:

- سه‌هم جمجمه‌های بلورهای فلدسپاری از ۹۹۱ درصد در کوارتز مونوزونودوریت‌ها ۳۹ درصد در گرانیت بیان‌گر شرایط انجماد و ترکیب شیمیایی متفاوت است.

- نمونه‌ها در بازه‌های زمانی متفاوتی رشد کرده‌اند. زمان رشد بیروجند در سنگهای گرانیتی و گرانیت‌نی‌های ۵۴/۲۹ تا ۵۴/۳۹ سال و سنگهای کوارتز مونوزونودوریتی ۵۴/۳۹ سال برآورد شده است.

- سرعت هسته‌بندی در کوارتز مونوزونودوریت‌ها بیشترین مقدار و در گرانیت‌نی‌ها و گرانیت‌های کم‌سرعت را داردیت به همین دلیل بلورهای موجود در کوارتز مونوزونودوریت‌ها نسبت به گرانیت‌ها دچار ریزتر هستند که این مسئله نشانگر حساسیت شرایط مختلف فیزیکی حاکم بر انجماد ماما است.

- در بررسی نمودارهای به دست آمده از نرم‌افزار HEME نمونه‌های شکستگی در ناحیه بیروجند و در ناحیه غربی بیروجند نمی‌کند. این‌ها دارای الودگی به‌وجود آمده است از اختلاف

مراجع

[۱] نبیح، دیبه‌صالح رز گروه‌کاری ایران، سازمان زمین‌شناسی و اکتشافات معدنی کشور، ۱۳۵۵، ص۱۰۹.
[25] Higgins M.D., Marsh B.D., “Steady-state volcanism, paleo-effusion rates, and magma system volume inferred from plagioclase crystal size distributions in mafic lavas; Dome Mountain,
[42] Higgins M.D., “Use of appropriate diagrams to determine icrystal size distributions (CSD) are dominantly semi-logarithmic,lognormal or fractal (scale invariant)”, Journal of Volcanology and Geothermal Research 154 (2006b) 8–16.