Petrography, mineral chemistry and genesis of peridotite in the Ratouk ophiolitic melange (East of Iran)

Z. Rahimi nejad, M. H. Zarrinkoub, S. S. Mohammadi

Department of geology, Faculty of Sciences, University of Birjand, Birjand, Iran

(Received: 16/10/2016, in revised form: 25/12/2016)

Abstract: The Beshgaz manganese-bearing veins are located in ~45 km northeast of Birdjand, South-Khorasan, and east of Iran. These veins with 0.1-1.5 m thickness and 4-7 m length are engulfed discordantly within Paleocene (Eocene-Oligocene) volcanic-pyroclastic rocks. The host of Mn-bearing veins are dacite to rhyo-dacite tuff, lapilli tuff with andesitic and andesibasaltic fragments in shear zones. The Mn grade reaches up to 45% in the vein/veinlets. The major Mn ore minerals are pyrolusite, cryptomelane, and psilomelane. Ore minerals showing colloform and open-space filling textures. Amorphous silica is the principal gangue mineral in the Mn ores and the SiO₂ content of these veins vary from 2.41 in Mn-bearing veins to 20.98 % in silicic zone. Based on mineralographic and geochemical data, the Mn ores were preliminarily precipitated as amorphous Mn-oxide and hydroxide gels, and gradually psilomelane and then pyrolusite were developed in expense of the primary amorphous minerals. The average ratio of Mn/Fe in Beshgaz manganese-bearing veins is 26.31 and positive correlation of manages with Ba, Sr, U, and Zn in Mn-bearing veins indicate that these veins have formed as epigenetic by hydrothermal fluids.

Keywords: manganese; Pyrolusite; Psilomelane; Amorphous silica; South-Khorasan.