مشخصه یابی مونت موریلونیت در فرآیند خالص سازی برای تولید نانورس

مریم ویسکرما، مهین منصوری اصفهانی، مهدی تبریزی سروی

دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان، ایران

(دریافت مقاله: 89/01/28، نسخه نهایی: 89/06/30)

چکیده: با توجه به گسترده‌گری کاربرد کانی‌های رس و اهمیت آنها در صنایع مختلف، شناخت کانی‌هایی که به‌طور زیاد در برخی فرآیندهای متروکه‌سازی رس‌ها قابلیت ایمنی‌ها را در زمینه‌های نیتروفسائی اهمیت دارد. در این مقاله، از فرآیندهای خالص سازی رس‌ها استفاده کرده و ارائه نتایج آنها را در زمینه‌های پیشرفته‌های حموجون‌تکنیک‌های پلیمری و نانوپودرها در پی داشته است. در این راستا خالص سازی مونت موریلونیت برای رس‌های خالص‌سازی رس‌ها توسط داده داشته است. در این آزمایش مونت موریلونیت با استفاده از همکاری‌ها و تولید نانورس خالص شده و ویژگی‌های آنها با روش‌های مختلف شناسایی شد. نتایج نشان داد که کاربرد ترتیب‌های این روش‌ها می‌تواند در شناخت کانی‌های رس‌های خالص‌سازی‌های همراه کانی‌های رس‌های تغییر منخصاب‌های مورد نیاز شناخت ویژگی‌های نانورس به کار آید. ترتیب نتایج XRDS و XRF به کار می‌رود استفاده قرار گیرد. همچنین، میزان خالص‌سازی شدن کانی‌های رس‌های مختلفی در ارزیابی میزان خالص‌سازی شدن کانی‌های رس‌های مختلفی در محیط‌های میزان خالص‌سازی شدن کانی‌های رس‌های مختلفی در محیط‌های

واژه‌های کلیدی: مونت موریلونیت، نانورس، مشخصه یابی، خالص سازی

مقدمه

امروزه رس‌ها به‌طور گسترده‌ای مورد استفاده قرار می‌گیرند. یکی از روش‌های جدید استفاده از مونت موریلونیت در کاربردهای پیشرفته این روش به‌طور گسترده‌ای استفاده می‌شود. این سیری به‌طور کلی در سطح نانورس به‌طور کلی در سطح نانورس یکی از روش‌های جدید استفاده از مونت موریلونیت در کاربردهای پیشرفته این روش به‌طور کلی در سطح نانورس به‌طور کلی در سطح نانورس یکی از روش‌های جدید استفاده از

آفریدی خلوت مونت موریلونیت و ارتباط قابلیت‌های آن به

منظور استفاده از مونت موریلونیت در کاربردهای پیشرفته

انجام شده است که در این بخش، به‌طور کلی در سطح

الگوهای ریشه‌ای به مونت موریلونیت با بیشترین میزان

خلوک و کمترین نیازی نسبت به ساختار آن است. در این راستا

کیفیت ویژه و خاصیت‌های رس امر مهمی است. هر چند

بررسی‌های کامل در این زمینه به انجام نرسیده است.

بررسی‌های مختلفی از شناخت و مشخصه‌یابی

بررسی‌های مختلفی از شناخت و مشخصه‌یابی

SEM و XRF و XRD 2

mansoori@cc.iut.ac.ir

Copyright © 2018, Iranian Journal of Clinical Pharmacy and Biopharmacy

DOI: 10.18869/acadpub.ijcm.25.3.557
کدام از این روش‌ها اطلاعات مفیدی را در رابطه با کیفیت رس و خصوصیات آن به دست می‌دهند. با این وجود هر روش به نهایی محدودیت‌هایی در راستای خشایاره سیستم دارد. با توجه به اینکه هر آدرس، به‌صورت خشایاره صورت گرفته، دارای اگری برای مشخصه است که اساس بررسی برش، برش دراس پرتو ایکس است. در این روش به‌عنوان اصل این روی روش مشخصه و برشی رسم در و بررسی آن به شمار می‌آید. بر اساس موارد فوق، در صفحات رس را به‌دست آورده شده‌است. برای روی‌پرداز فریمورک (FTIR)، به‌عنوان روی‌پرداز (MS) مهندسی روش‌های فلزی سنج روش‌های قدرت و توسه به‌رافین ساخت و اندازه‌گیری گونه‌ها شیمیایی و ترکیبات آلی در چهار کار می‌رود. بررسی گرمایی (TG/DTA) به کمک اتاق‌الام توپولوژی صورت گرفته است. همراه نظیری و ترکیب‌های فازی موجود در نمونه به دست می‌آید.

با این توصیف بنظر رسانده، این روش‌ها معنی‌دارند در شناخت مشخصات مواد مختلف به کمک چنین برجای شناخت است. تنظیم تأثیر این روش‌ها در بازیابی داده‌ها از سایر تکنیک‌ها و تحقیقات اصلی مورد نظر بوده که با کتاب‌نگاران به همراه می‌تواند منابعی باشد. فاکتور اصلی در این نوع مورد تهیه‌نامه‌های اهماره‌ای بستگی، تغییر مشخصات سهمی سطح آن، تغییر در فاصله‌های بین صفحات، تغییر در میزان ظرفیت تبادل کاتیونی، امکان تغییر و تروری چرخه پردازه‌ی نوین داربستی وجود دارد. سطح نانو رسان و وجود این اندیشه‌های آن همراه چهارم را می‌آورد.

با توجه به این آمار محاسباتی شده که با بکر روش به نهایی تحقیق شده است، در صفحه‌ای از تحقیق‌های مادرد ساخت و دقت در تغییر میزان گرمایی کرده است. به‌همین دلیل این تحقیقات در روی روش متفاوت شناخت نانوسیستم‌های بازیابی دیدگاه به‌عنوان کیفیت سنجی رس است. مدل متغیران از روش‌های مهندسی است. در کنار الگوریتم‌های سخت و تغییر، که رابطه‌ای است و مدل متوسط نمونه‌گیری موجود در تحقیق‌های مختلف CEC و TG/DTA، FTIR، SEM/EDX، XRD است. شده است که هر کدام اطلاعات خاصی را فراهم می‌آورد.

مواد و روش بررسی

مواد شیمیایی مورد استفاده از این پژوهش از نوع ازامیشگاه‌های بوده و در تأمین آزمایشی از آب مقرر استفاده شد. بستگی‌های رسمی روش در نظریه سیستم‌ها است. به‌منظور
گروه پیشین از ایکس اکسیک آن استفاده کرد [16].

شکل 1، مربوط به آن XRD رسم خام (آی آن زنگ) و رس بعد از استفاده از تیمارهای اتانول گلیکول، پنتاسیم و ایکس
گرما در برای شناسایی استفاده شد و از انجام تیمار مورد نظر نمونه حاصل با استفاده از پرتو X را مورد ارزیابی قرار
گرفت (شکل 1، الف). ماده ای از گلیکول (پیشنهاد اتانول گلیکول و
گلیسرول) به عنوان یک ماده کمکی برای مناسب کردن رس-
های متوم شونده (از جمله مونت موریلونیت) به کار می‌رود و
هدف بررسی میزان انقباض و به دست آوردن اطلاعات تکمیلی
برای شناسایی کانی‌ها است. تیمارهای گرما در دماهای
گوناگون (انجای در دمای 30 درجه سانتیگراد) با تغییرات
مشخص در فضای ساختار بلوئی ایا دست دادن ساختار می-
شود. در نتیجه به شناسایی نوع رس کمک می‌کند. بسته به
دما و نوع رس این تیمارها می‌تواند با آنزیم‌ها، ساختارهای
لیزری از نظر کنن. گاهی می‌توان تغییرات حاصل از این تیمارها
مکانیک‌استفکتی باشد و در طی سرعت ساختاری مجدداً با نسبت رخ دهنده مونت موریلونیت می‌تواند در اثر
جذب یا از دست دادن آب موادی می‌تواند در فضایی می-
لایه‌های خود تا 4% دستخوش تغییرات حجمی شود که از
همین خصوصیت می‌توان برای شناسایی قله‌های حاصل از

\[
\text{c/s} \quad \begin{array}{c}
\text{Normal (Mg)} \\
\text{Chlorapatite} \\
\text{K} \\
\text{H (SO)}
\end{array}
\]

\[
\begin{align*}
0 & 1000 \\
3 & 7 \\
6 & 12 \\
\end{align*}
\]

شکل 1. الگوی پیشین XRD رس خام (آی آن زنگ) و رس بعد از استفاده از تیمارهای اتانول گلیکول (پنتاسیم زرکش زنگ)، پنتاسیم و ایکس-گرما در 50 درجه سانتیگراد (فرم زنگ).
با توجه به اینکه کانال غلظ موجود در نمونه رسم مورد استفاده مونت مورلپویت است (که نشان دهنده انتخاب درست
نمونه رسم مورد بررسی است)، آن را برای سنجش
نمونه‌های ناتوان خالص شده استفاده شد. طرفین تبادل بینی
غیر از دو گروه CEC (یک گروه CEC)، گروهی از از خواص اساسی رس و ازاری برای براورد خواص شیمیایی
همانه است. آن در و است. کاربردهای همچون داروسازی که همیشه
سطح و طرفین تبادل کانالوئیک ژنودار است. آن. روش‌های
متعادل برای ارزیابی یک گروه CEC است که برای ان
پژوهش از روش درصد اشباع استات یون‌های برمی برای
تانسته این استفاده از روش درصد اشباع استات تانسته
۱۸ تبادل بینی از خلوص پیشتر مونت
مورد بررسی و حذف خاصیت همه‌رسی است. آن
نتایج اندازه‌گیری مقدار
نمونه‌های دو در کنار
رنگ CEC
دیواره مونت مورلپویت مهی‌پوشانه در
از ارزیابی سازگاری مخرب مونت مورلپویت موجود
در نمونه ناتوان خالص شده بر شعر. هر چند این پارامتر
کمتر از مقدار CEC (یک گروه CEC)، گروهی از
دهه ویژه از تاثیر ارزیابی یک گروه CEC می‌توان به
بر ارزیابی تبادل بینی نمونه‌های ناتوان یک بار مورد
تخویش گیرنده تبادل CEC: چنین تغییرات
خلص CEC
است. CEC
تشابه قابل یافتن با نمود
سازگاری و ناخالصی و سازگاری نادرست مونت مورلپویت
نمونه‌های ناتوان خالص شده از مونت پرتو X بر روی
نمونه‌ها انجام شد.
بر این روش بررسی که کمک تعداد، شدت و مساحت زیر
نمونه قلیا، می توان نمونه رس مورد نظر از
نخستین مقدار رس، نون خالصی نکته که همچنون مورد
در نمونه رس و فاصله بین لایه‌ای رس بررسی کرد [۱۸] به
به‌التهب. اینکه کانال غلظ موجود در نمونه رسم مورد
موجود در موضعی ناتوان مختلف از زوایای ۹۰ از قله نمایش
است. همچنین به منظور تیمی دادن مونت موریلوپنتیت از سایر کالی‌ها مخصوصاً ناحیه‌های همچون کریستوبالیت و کوارتز Mg و Ca، Fe، O، Al، Si با استفاده از سیستم EDX عناصر در هم نمونه‌ها تصویر شدند. از آنجا که با روش‌های معنی‌دار شیم‌پی و انجام تجزیههای معمولی ریزسنجی در میکروسکوپ‌های الکترونی همراه با ابزار مهیب برای تشخیص ویژگی‌های انواع مواد جامد درآمده است. با استفاده از این روش می‌توان و روی و با عدم وجود عناصر مختلف تشکیل دهنده فازهای موجود در نمونه را به منظور مقایسه در نمونه‌ها مشاهده کند. [7، 19] در اینجا بر اساس دارایی با استفاده از فیلتر حضور عناصر مختلف موجود در کالی‌های مختلف از این روش برای پژوهش‌های ریخت‌شناسی کالی‌های مختلف در نمونه‌های ناونس استفاده کرده است.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>نامwares</th>
<th>NaOH (میل)</th>
<th>NaOH (میل)</th>
<th>HCl (میل)</th>
<th>HCl (میل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Raw sample</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>XRD</td>
<td>0.5</td>
<td>1.0</td>
<td>0.64</td>
<td>0.46</td>
</tr>
<tr>
<td>10</td>
<td>NaOH</td>
<td>2.5</td>
<td>1.0</td>
<td>0.64</td>
<td>0.46</td>
</tr>
<tr>
<td>10.5</td>
<td>HCl</td>
<td>2.5</td>
<td>1.0</td>
<td>0.64</td>
<td>0.46</td>
</tr>
</tbody>
</table>

شکل 2. نمونه‌های رس و ناونس (Mt: مونت موریلوپنتیت، Mn: مونت موریلوپنتیت، I: الیت، Q: کوارتز، Cr: کریستوبالیت) XRD
استفاده قرار گرفت. نتایج نشان می‌دهد که میزان نقاطه‌بندی در مواد Ca-Si-Al-Mg-OH دقیق‌تر از مواد Ca-Si-Al-Mg-OH باعث کاهش حضور عنصر مورد نظر و داشتن باشند با داده‌های گزارش [37]. تصویر حاصل نشان دهنده نقاطه رنگی است که به ویژه باعث داشتن ناحیه‌ای مناسب بررسی در سطح مواد است. با تلفیق نتایج به دست آمده از این آزمایش، نتایج آنالیز XRD در مواد Ca-Si-Al-Mg-OH باعث کاهش همگونی ممکن است.

شکل ۳ تصویر SEM نمونه‌های رس و نانو خالص شده (نام نمونه‌ها به توجه به جدول شماره ۱).

در آنالیز EDX به صورت انتخابی دستگاه قابلیت به تصویر کشیدن نقاطه از سطح نمونه که احتمال حضور عنصر مورد بررسی در سطح نمونه است. با تلفیق نتایج به دست آمده از این آزمایش، نتایج آنالیز XRD در مواد Ca-Si-Al-Mg-OH باعث کاهش همگونی ممکن است.

شکل ۳ تصویر SEM نمونه‌های رس و نانو خالص شده (نام نمونه‌ها به توجه به جدول شماره ۱).

در آنالیز EDX به صورت انتخابی دستگاه قابلیت به تصویر کشیدن نقاطه از سطح نمونه که احتمال حضور عنصر مورد بررسی در سطح نمونه است. با تلفیق نتایج به دست آمده از این آزمایش، نتایج آنالیز XRD در مواد Ca-Si-Al-Mg-OH باعث کاهش همگونی ممکن است.

شکل ۳ تصویر SEM نمونه‌های رس و نانو خالص شده (نام نمونه‌ها به توجه به جدول شماره ۱).

در آنالیز EDX به صورت انتخابی دستگاه قابلیت به تصویر کشیدن نقاطه از سطح نمونه که احتمال حضور عنصر مورد بررسی در سطح نمونه است. با تلفیق نتایج به دست آمده از این آزمایش، نتایج آنالیز XRD در مواد Ca-Si-Al-Mg-OH باعث کاهش همگونی ممکن است.

شکل ۳ تصویر SEM نمونه‌های رس و نانو خالص شده (نام نمونه‌ها به توجه به جدول شماره ۱).

در آنالیز EDX به صورت انتخابی دستگاه قابلیت به تصویر کشیدن نقاطه از سطح نمونه که احتمال حضور عنصر مورد بررسی در سطح نمونه است. با تلفیق نتایج به دست آمده از این آزمایش، نتایج آنالیز XRD در مواد Ca-Si-Al-Mg-OH باعث کاهش همگونی ممکن است.

شکل ۳ تصویر SEM نمونه‌های رس و نانو خالص شده (نام نمونه‌ها به توجه به جدول شماره ۱).

در آنالیز EDX به صورت انتخابی دستگاه قابلیت به تصویر کشیدن نقاطه از سطح نمونه که احتمال حضور عنصر مورد بررسی در سطح نمونه است. با تلفیق نتایج به دست آمده از این آزمایش، نتایج آنالیز XRD در مواد Ca-Si-Al-Mg-OH باعث کاهش همگونی ممکن است.

شکل ۳ تصویر SEM نمونه‌های رس و نانو خالص شده (نام نمونه‌ها به توجه به جدول شماره ۱).

در آنالیز EDX به صورت انتخابی دستگاه قابلیت به تصویر کشیدن نقاطه از سطح نمونه که احتمال حضور عنصر مورد بررسی در سطح نمونه است. با تلفیق نتایج به دست آمده از این آزمایش، نتایج آنالیز XRD در مواد Ca-Si-Al-Mg-OH باعث کاهش همگونی ممکن است.

شکل ۳ تصویر SEM نمونه‌های رس و نانو خالص شده (نام نمونه‌ها به توجه به جدول شماره ۱).

در آنالیز EDX به صورت انتخابی دستگاه قابلیت به تصویر کشیدن نقاطه از سطح نمونه که احتمال حضور عنصر مورد بررسی در سطح نمونه است. با تلفیق نتایج به دست آمده از این آزمایش، نتایج آنالیز XRD در مواد Ca-Si-Al-Mg-OH باعث کاهش همگونی ممکن است.

شکل ۳ تصویر SEM نمونه‌های رس و نانو خالص شده (نام نمونه‌ها به توجه به جدول شماره ۱).

در آنالیز EDX به صورت انتخابی دستگاه قابلیت به تصویر کشیدن نقاطه از سطح نمونه که احتمال حضور عنصر مورد بررسی در سطح نمونه است. با تلفیق نتایج به دست آمده از این آزمایش، نتایج آنالیز XRD در مواد Ca-Si-Al-Mg-OH باعث کاهش همگونی ممکن است.
امده قبل از با توجه به نتایج بدنست آمده هیچ گونه جدیدی بیان کننده وجود ناخالصی‌های آلی در نمونه های نانورس مشاهده نمی‌شود.

است قله قوی (cm⁻¹) 1028 مربوط به پیوندهای کششی Si-O

یک گونه بر وجود سیلیس و کوارتز به عنوان ناخالصی در نانورس‌های تولیدی است که موجب نتایج بدنست

شکل 4 تصویری نمونه‌ها برای عناصر سیلیس، اکسیژن، الومینیوم، آهن، کلسیوم و مولیبدن در نمونه‌های مختلف رس خام و نانورس

خلاص شده (نام نمونه‌ها با توجه به جدول 1).
شکل ۵ اگوی طیف‌سنجی فروسیر نمونه رس خام و نانو رس‌های خالص شده (نام نمونه‌ها با توجه به جدول ۱).

یکی دیگر از آنالیز‌های انجام شده که در راستای شناخت ناخالص‌های همرود مولولیت در این تحقیق معرفی شده است، آنالیز گرامادی است. در روش بررسی گرامادی تغییر در خصوصیت ماده را به واسطه قرار گرفتن در برادر تغییرات دمایی مورد ارزیابی قرار می‌دهد [10، 11]. بررسی گرامادی در گستره دمایی (TG) ۲۰۰-۴۰۰ درجه سانتی‌گراد بر دقتی در اتصاف نیتروژن برای نمونه‌های نانوس انجام شد (شکل ۶). این چک‌گاه این که می‌تواند تغییرات در گستره دمایی (TG) ۲۰۰-۴۰۰ تخیبی ندارد و

قلم‌های هم برای آن مشاهده نمی‌شود زیرا تخریب دمایی مونت مورولیت در ۱۰۰ درجه سانتی‌گراد دانست و نیز با اثباتی که در گستره دمایی (TG) ۲۰۰-۴۰۰ درجه سانتی‌گراد بر دقتی در اتصاف نیتروژن برای نمونه‌های خالص شده (شکل ۶). این چک‌گاه این که می‌تواند تغییرات در گستره دمایی (TG) ۲۰۰-۴۰۰ تخیبی ندارد و

شکل ۶ نتایج بررسی گرامادی (TG). شکل سمت راست و نتایج آنالیز گرامایشی تغییرات (DTA). شکل سمت چپ، نمونه رس خام و نانو رس‌های خالص شده (نام نمونه‌ها با توجه به جدول ۱).
قدیرانی
نگارش‌گذار از داشته‌ایم و قطعه‌ای از این نوشتار
پذیرفته، صمیمانه سیاست‌گذاری می‌نمایند. از دوستان محتوای
مجله بلوشرنیس و کانی‌شناسی ایران به خاطر راهنماهایی
از آنها تقدیر و تشکر می‌شود.

مراجع
[1] Shirzad-Sibonia M., Khataeeec A., Hassanid A.,
Karaca S., “Preparation, characterization and application of a CTAB-modified nano-clay for the
adsorption of an herbicide from aqueous solutions: Kinetic and equilibrium studies”, Comptes Rendus
[2] Ngumpetchouin M. G. M., Ngassoum M. B.,
Kamga R., Ceballos S., Nkomo G., Liegeois J.,
Lagere S., Gastaldi E., Chalier P., Cretin M.,
“Characterization of inorganic and organic clay modified materials: An approach for adsorption of an insecticidal terpenic
110-118.
2, “Structure and Mineralogy of Clay Minerals”, in
Developments in Clay Science, B. Faíza and L.
Gerhard, Editors. 2013, Elsevier. 21-81.
Introduction: Clays, Clay Minerals, and Clay
Science, in Developments in Clay Science”, B.
1-19.
of organoclay - an X-ray diffraction and
thermogravimetric analysis study”. Journal of
Colloid and Interface Science, 277 (2004) 116-120
analysis of clays. Crystal Structures of Clay
Minerals and Their X-ray Identification”, 1980
411-438.
“Influence of the purity of montmorillonite on its
surface modification with an alkyl-ammonium
[8] Gharagozloz M., Neghchi S., “Preparation of
vitamin B12–TiO2 nanohybrid studied by TEM,
FTIR and optical analysis techniques”, Materials
166-173.

