بررسی زمین شناسی و زئو تومی رگه‌های منگنزدر بشگر شمال شرق بیرجند.

خراسان جنوبی

بهنام برقی۱، علی اصغر کلاگری۲، محمد حسین زرین کوب۳، و ارطوان سیمونز۴

۱- گروه علم زمین، دانشکده علوم طبيعي، دانشگاه تبریز
۲- گروه زمین شناسی، دانشکده علوم، دانشگاه بیرجند
۳- مرکز تحقیقات علم پایه، دانشگاه تبریز

چکیده: رگه‌های منگنزدر بشگر در ۴۵ کیلومتری شمال شرق بیرجند، خراسان جنوبی و در شرق ایران قرار گرفته‌اند. این رگه‌ها به ضخامت ۱.۵ متر و طول ۳۰ متر به صورت ناحیه‌ای در حجم وسیعی از سنگ‌های آتشنشان-آدنواری مشوب به پلاژولون (پیوند لیتوس) قرار دارند. سنگ میزان رگه‌های منگنز، توده‌های با ترکیب روپیداسیت- داسنتی است. کاني‌های منگنز در منطقه‌ی بریش و لابیلی توفي با قطعات آندزینی نیز دیده می‌شوند. عبارت منگنز در رگه‌ز چگرها به ۶۰٪ به مرس. کاني‌های اصلی پیروپولیت، کریبتینول و پیلسولمان است. کاني‌های کاسباری فلت‌ها کلوفرین، بر پرندگان قبلاً فضایی را نشنده دهند. مهم‌ترین باطله سیلیس‌های این شكل هستند. مقدار سیلیس بین ۲۴/۲-۲۱ در رگه منگنز تا ۲۰/۰۷ در منطقه‌ی سیلوسیس می‌رسد. براساس یافته‌های کاني شناسی و زئو تومی، چکنگی تشکیل کاني‌های منگنز بدين صورت است که نخست اکسید هیدروکسید منگنز بکل وجود می‌آید و به مور پیلسولمان پسن پیروپولیت تشکیل می‌شود. با توجه به میزان نسبی همراه با افزایش Zn, U, Sr, Ba صورت گرفت به رگه‌ز منگنز در بشگر می‌باشد که به ۶/۳۱ اسد و افزایش همراه با افزایش Mn/Fe.

صوروت گرماب و روغنده بوده است.

واژه‌های کلیدی: منگنز؛ پیلسولمان؛ سیلیس به شکل‌های مختلفی

مقدمه
کاسباری شناخت ایران از نظر زمین و مکانیک به شش گروه تقسیم می‌شود: ۱- کاسدار و منگنز در پرکامبرین پستان- کامترین پشین، در این برهه زمین کاسدار و منگنز از نوع آتشنشان-رسویی و آتشنشانی در ایران مربوط است و کاسباری تشکیل شده است. [۱] - ۲- بالانظوریتی به شکل‌های مختلفی کاسدار و منگنز در خاور ایران، ایران دارای این گروه و سیلیسی. کاسداری که کاسدار منگنز در بزرگی از آهن هستند [۲] . ۳- کاسدار بریش منگنز در کاسدار، در کاسباری پشین از نوع منگنز-سندر. شناسی به صورت کاسداری منگنز-سندر به شکل‌های مختلفی خاص است. کاسداری رگه‌های منگنز در بزرگی از آهن هستند. [۲] . ۴- کاسدار منگنز پسی-پنی-پیلسولمان، کاسباری

barghibehnaz@yahoo.com
شاخه منگنز بشگز در گسترهی ۲۸°۷\(^\circ\) عرض شمالی و ۴۶° ۳۹\(^\circ\) طول خاوری که در نقشه ۱۰۰۰۰۰۰ سرشبیشه قرار می‌گیرد (شکل ۱ الف و شکل ۴)
این شاخه در منطقه سیستان و بلوک لوت واقع شده است. در ناحیه لوت سیستان قرارگیری تنها سیگنالی اشکافی (گدازه، سنگ‌های پیروکالاستیک) و شبیه اشکافی به سن انسین-البگودس قرار دارند (۱۰۱). اشکافی‌ها در طول دوره قزوینی بین صفه‌های عربی و صفه‌های روزان شکل گرفته‌اند و بخشی برگی از شرق ایران را به ضخامت ۲۰۰۰ متر می‌پوشاند (۱۱-۱۲). پتانسیل زیادی برای انتخاب یک ناحیه کامپرسی در این گستره وجود دارد (۱۲) بر خلاف کم‌بیندهای اشکافی ایران که به صورت خطی و منحنی شکل دارند، مانند کم‌بیند اشکافی ارومیه -

شکل ۱ الف) نقشه ایران و موقعیت محل مورد بررسی ب) موقعیت اشکافی‌های شرق ایران و موقعیت منطقه‌ی مورد بررسی در مرز منطقه‌ی سیستان و لوت (۹).
روش بررسی
این بررسی در دو بخش میکروسکوپی انرژی اتمی و آزمایشگاهی انجام گرفت.

بررسی‌های میکروسکوپی شامل پیمایش‌های میکروسکوپی باٌری اکستینو یافته‌های ماهیگیران و اجزای دیگر، و باٌرهای 50% اند انتهای 2.00 در دانشگاه برخی از آماده‌سازی و 7 نمونه (سنگی و نرمی) از مرکز گره اندازخوانی شده و برداشت گردید.

یکی از روش‌های میکروسکوپی نزدیک آزمایشگاهی (ICP-ES-MS) آنلایز جفت شده‌های قابلت کانادا از نظر عناصر اصلی، فرعی و کم‌پرداز بررسی Acme شویمایی قرار گرفتند (جدول 1)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>حد آکترک سایر</th>
<th>حد آکترک</th>
<th>0.01</th>
<th>0.1</th>
<th>0.5</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>ppm</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>%</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

جدول 1 نتایج آنالیز عناصر اصلی، فرعی و جزیی در نمونه‌های میکروسکوپی انرژی اتمی رشته SiO2 و آئوپیزی ICP-ES-MS و آنالیز روش به روش
زمین شناسی محل مورد بررسی منطقه‌ی مورد بررسی در ۴۵ کیلومتری شمال‌شرقی برخوردار شرق ایران واقع شده است. که در ناحیه‌ی ۱/۱۰۰۰۰۰ سرشته قرار می‌گیرد [۲۵]. مهم‌ترین ایندیک‌های سنجش در این منطقه از قبیل می‌باشد (شکل ۲‌الف). بر اساس سرشت‌های شیشه‌ای توقفی و توقفی‌های نااخلاقی و درون‌بودن (پالوسن-ایوسون)، توقف‌های سیز ریوداسیستی-دارسیسی (پالوسن-ایوسون) توقف‌هایی از توقف‌های آرژنیکی در غربون و تراورس (کواتنری) هستند.

سنگ‌نگاره‌ی واحد‌های سنگی منطقه شامل توقف دارسیتی، ریوداسیستی: این واحد اولین رخ‌های آدراوری در این منطقه است که با گسترش شمایی-جنوبی، با ترکیب حد واسط (ریوداسیست-دارسیسی) دیده می‌شود که سگ‌های میزبان اصلی رگه‌های منگنز (شکل ۲‌ب) و ضخامت آن‌ها به بخش

![Image](https://example.com/image.jpg)
بررسی زمین‌شناسی و زئوشیمی رگه‌های منگنزدار بشگر ...
فتوکیست‌هایی از پلازموکلاستر و پیروکسین در یک زمینه‌ای ریز‌دایا با ترکیبات مستقل‌دار که شامل (7/8 - 3/5) است بیشتر از کوارتز، فرومنگن و کالی‌های دگرگان از (کالی‌های ریسی است). فتوکیست‌های شامل پلازموکلاستر (5/5 - 3/3) بیشتر از نوع آنتیژن شکل‌دار که به کالی‌های فرومنگن بیشتر از کالی‌های دگرگان شده است.

شکل ۳. شکم‌گیر میکروکوکیونی آفتاب‌فانیک-شیب‌ساز و حاوی فتوکیست‌هایی از پلازموکلاستر و پیروکسین در پیک زمینه‌ای ریز‌دایا با ترکیبات شیشه و کالی‌های دیگر که شامل (7/8 - 3/5) است بیشتر شیشه، کالی‌های دگرگان (کلیسنت و کالی‌های ریسی) است. فتوکیست‌ها شامل پلازموکلاستر (5/5 - 3/3) بیشتر از نوع آنتیژن شکل‌دار که به کالی‌های دگرگان شده کالی‌های فرومنگن هورنلند با حاشیه سخته (5/5 - 3/3) و کالی‌پروکسین از نوع دیپسید و اوازیت (3/5 - 2/5) است (شکل ۳)

لاحظه‌ای آنتیژن‌یاب‌گر: این واحد آنتی‌ژن‌یاب آماده قرار می‌گیرد و مولکول‌های دستی این واحد به رنگ خاکستری تیره و دارای فلزی‌سازی فراوان یونه که با...
کاتی نگاری

با توجه به مشکل شناسایی کانه‌های منگنز و جدایی آن‌ها از یکدیگر در بررسی‌های میکروسکوپی نمودارها برای بررسی XRD آماده شدند. بر اساس بررسی (XRD) کانه‌ها پیروپوسیت، پسیلومان و کریپتونیم هستند که با بررسی میکروسکوپی نواحی نارک، صفحه کانه‌های پیروپوسیت، پسیلومان، شناسایی شدند که در این میان پیروپوسیت از فرآیند پیشتر برخوردار است. رگه‌های منگنز بستگی دارای بافت‌های کلورفورمی، پرکندگی فضای خالی است. در بافت کلورفورم نخست پسیلومان در اطراف آن پیروپوسیت در حال شکل‌گیری است (شکل 5 الف، ب). بافت‌های پرکندگی فضای خالی به‌وسیله پیروپوسیت بر شده است (شکل 5 ب، ت).

خاک‌شناسی

نتایج بررسی عناصر اصلی، فرعی و جزئی در نمونه‌های منگنزدار منطقه به‌گزینه روش ICP-ES-MS و آنالیز SiO₂ به‌وسیله RDX به روش ICP در (جدول 1) مشخص شدند.

عناصر اصلی و فرعی

ارتباط و همبستگی عناصر با یکدیگر و نسبت عناصر اصلی به...
مقایسه سیلیس و آلومینیوم

از نسبت Si/Al می‌توان به عنوان ابزار ساده‌ای برای تشخیص نهشت‌های گرمه‌ای استفاده کرد (31-32). کانسارهای
گرمه‌ای عموماً در ارتقاء نزدیک با زلیستی سیلیسی آهن‌دار شکل می‌گیرند از همین رو نسبت Si به Al
است. در حالت که در کانسارهای با خاستگاه تخریبی، Si نسبت به Al درصد بالاتری دارد که این ناشی از تخرب و
تجزیه فلدسپارها طی حمل و نقل به حوضه رسوبی است (35).

[32] بر این باورند که اگر نهشت‌های گرمه‌ای با ذرات تخربی Si/Al (کانهای رسی) مخلوط شوند، ممکن است نسبت
کمتر شود و در نهشت‌های آزاد این نسبت 3- است (37).

نمونه‌های منگنزدار بشگر به دلیل وجود نسبت Si/Al بالاتر از

![نمودار 6](image6.png)

بر این اساس نمونه‌های مورد بررسی در

![نمودار 7](image7.png)

کانسارهای خاستگاهی گرمه‌ای قرار می‌گیرد.
کمیابی کانسارهای گرماپی اهن-مگنز را از کانسارهای رسوبی-دریایی جدا کنند. [۳۳] نمودار اولیه عنصر Mn-Fe و (Ni + Co + Cu) × ۱۰ دریایی و گرماپی اهن مگنز از هم رسم کرد. در (شکل ۹) [۴۴۰] نمونه‌های مورد بررسی در موقعیت کانسارهای گرماپی قرار می‌گیرند. این نمودار نشان می‌دهد که اکسیدهای گرماپی از عنصر در مقایسه با کانسارهای رسوبی دریایی تهی شدن، که علت آن می‌تواند رشد کند و در نتیجه حضور طلوایی آن‌ها در آب دریا و تاثیر فرآیندهای مختلفی که هر جذب این عنصر می‌شود، باشد. [۴۱].

[۴۲] کیانی به شدت جذب اکسیدهای مگنز می‌شود و مقدار میانگین آن در ذخایر گرماپی کاهش می‌یابد. [۴۴].

نمودار دوتایی (Ni+Co) در مقابل (As + Cu + Mo + Pb + V + Zn) این نمودار اولین بار توسط [۳۱] برای جداکردن کانسارهای گرماپی، رسوبی-دریایی و کانسارهای حاصل از آب‌های شیرین Sb، Pb، به کار برده شد. یکی از نتایج در مجموعه عنصر را نشان کانسارهای گرماپی (Mo، Li، Cu، Ba، As، Zn، V، Sr، Ni، Co، Sb، Pb، Mo، Li، Cu، Ba، As، Zn، V، Sr، Ni، Co، Sb، Pb) دانسته و این باور است که این کانسارهای عنصر تهی شده‌اند. نمونه‌های واپسی به مانگی بستگی از عنصر Ni غنی‌تر از عنصر و As + Cu + Mo + Pb + V + Zn تهی شده‌اند و در گستره کانسارهای گرماپی قرار می‌گیرند (شکل ۸).

Fe، Mn و (Ni + Co + Cu) × ۱۰ نگارندگان بسیاری نیاز کرده‌اند تا با استفاده از عنصر اصلی و

نمودار دوتایی ۱۰ در مقابل Co+Ni [۳۱] As + Cu + Mo + Pb + V + Pb در مقایل Co+Ni نمونه‌هایی که در محدوده گرماپی قرار می‌گیرند. [۴۴، ۴۱، ۳۳، ۱۰] Fe، Mn و (Ni + Co + Cu) × ۱۰ نمونه‌هایی که در موقعیت کانسارهای گرماپی قرار دارند.
ارتباط بین عناصر اصلی و کمیاب به دلیل تفاوت در رفتار Mn با Ti و Al، Zn، Sr، Fe، Mg، Ti، Al و Fe، Mg، Ti، Al و کمیابی زئوشیمیایی بکسان منفی را با عنصر کمک گرفته و دردکردنی می‌شود. منفی روند می‌شود. منفی روند می‌شود.

Page 496

شکل 10 نمودارهای توزیع عنصر Fe و Mg، Ti، Al، U، Sr، Zn، Ba، Mn از مرکز رگه به سمت منطقه‌های دریان.
برداشت
رگه‌های مغنیزیوم به‌شکل دو نمونه از جویه‌آی آدرائو در حجم گسترش‌دهنده از تیپ‌های سبز رنگ رودودنی ایجاد شده از نظر تاریکی و ناحیه قابل بررسی و تابع فضایی به‌عنوان یکی از عوامل اصلی بررسی‌های Rb-Sr و کلی و شیمی‌های پیوسته و پیلولوسته ساخت RDX رگه، رگه‌های وجود بافت‌های کلیوپروپ و پروپنه فضای خالی در رگه‌های مغنیزیوم و منطقه آرژیلیک و سپس‌های یپِشک در محل مورد بررسی مشخص است. بر اساس بررسی‌های شیمی‌محیطی، عبارت متوسط منگنز در رگه‌های 45% است و بلاً بودن نسبت (ب) مانگان/ژنرال Mn/Fe U/Th Si/Al در نسبت‌های کانسپراسیو گرم. است. بررسی داده‌های زمان‌شناسی و شیمی‌محیطی، تشکیل رگه‌های مغنیزیوم به‌شدت چرخش ناحیه رگه‌های مغنیزیوم به صورت یک‌راحتی تشکیل شده است و با توجه به حضور قطعات آندریتین و آندرینت تزاری درون منطقه، نشان دهنده مانند Mn4+.

روش‌شناسی تشکیل شده و سپس تبدیل به سیسی مانند Mn4+ هیدروکسید غنی از Ba2+ و Mn4+ پیلولوسته شده است و به مورز زمان پیوسته شکل می‌گیرد. با توجه به گسترش سبز‌سرهای آتش‌نشان در منطقه‌های لو و رختاد کاپ‌های زایه‌ی متعادل منگنز در آن می‌توان از این کاپ‌پرای آلگی به منظور پی‌گیری دخیل جدی اقتصادی منگنز در منطقه به‌پربرداری کرد.

مراجع

[18] Saadat S., Stern C.R., Karimpour M.H., "Quaternary mafic volcanic rocks along the

For further information, please refer to the following publications:

