تهیه و مطالعه ساختار مولکولی
\{[\text{Li(TMEDA)_3}[\text{Sm(CH_3_6)_6}]\} \cdot \text{THF}

با پراش پرتوا

حسین افایبرگ*، سندره گماروتا** و کورین بنسیمون

* بخش شیمی دانشگاه تربیت معلم تهران - ایران

** بخش شیمی دانشگاه اوتاوا - اوتاوا - کانادا

چکیده: در تراپیدروفوران \(\text{MeLi} + \text{SmCl}_3(\text{THF})_3\) گیاهان میکلیک مولکولی \{[\text{Li(TMEDA)}_3][\text{Sm(CH_3_6)_6}]\} \cdot \text{THF} عنصری، طیف IR و اندازه‌گیری مغناطیسی این کمپلکس طلاهه سه است. ساختار مولکولی این کمپلکس به روش پراش سنجی تکک بلور پرتوا \(X\) تعمیم شده است. بلورهایی این کمپلکس در سیستم با شش مولکول در یاخته به تبلور می‌شود. \(R = \frac{\text{مقدار}}{\text{پراش}} \times 100\) است.

\(10^\Delta = 10 \quad \text{و} \quad 16 \quad 16 \quad 6 \quad 6 \quad 6 \quad 4 \quad 24 \quad = \quad c\)

\(10^\Delta = 10 \quad \text{و} \quad 16 \quad 16 \quad 6 \quad 6 \quad 6 \quad 4 \quad 24 \quad = \quad c\)

IR طیف، \{[\text{Li(TMEDA)}_3][\text{Sm(CH_3_6)_6}]\} \cdot \text{THF}

واندهای کلیدی: ساختار مولکولی، اندازه‌گیری مغناطیسی.
PREPARATION AND MOLECULAR STRUCTURE OF TRIS[(N, N, N', N' – TETRAMETHYLETHYLENE – DIAMINE) LITHIUM] HEXAMETHYLSAMARATE(III), \{[\text{Li(TMEDA)}]_3 \text{[Sm(CH}_3\text{)}_6]\}.\text{THF}

Aghabozorg', Hossein
Department of Chemistry, Faculty of Sciences,
Teacher Training Univ., Tehran, IRAN.
Gambarotta, Sandro and Bensimon, Corinne
Department of Chemistry University of Ottawa, Ottawa, Ontario, CANADA

Key Words: Preparation, Molecular Structure, \{[\text{Li(TMEDA)}]_3 \text{[Sm(CH}_3\text{)}_6]\}.\text{THF}, IR Spectrum, Magnetic Measurement.

Abstract: The \text{SmCl}_3(\text{THF})_3 reacts with methyllithium in \text{THF} in the presence of tetramethylethylenediamine, \text{TMEDA}, to give \{[\text{Li(TMEDA)}]_3\text{[Sm(CH}_3\text{)}_6]\}.\text{THF}. The complex has been characterized by elemental analyses, IR spectrum and magnetic measurement. Molecular and crystal structure of this complex has been determined by a single crystal X-ray diffraction. The crystals are trigonal with \(a = 16.684(10)\AA, c = 24.946(10)\AA\), space group \text{R}3\text{c}, and six molecules/unit cell. The final \(R\) value is 0.043 for 2340 reflections measured.

INTRODUCTION
The organolanthanides of any type are usually thermally stable, but air and moisture sensitive. A variety of organo compounds of lanthanides are known, the main types being cyclopentadienides and cyclooctatetraenides and some

* Corresponding author
compounds with M–C bonds are known [1–22]. Methyl derivatives and organosamarium complexes have been prepared and characterized recently [23]. In this research project [Li(TMEDA)]₃[Sm(CH₃)₆].THF complex, has been prepared and characterized by a single-crystal X-ray diffraction method.

EXPERIMENTAL
All the operations were carried out under a dry-box oxygen-free nitrogen atmosphere using standard Schlenk techniques. THF and N, N, N', N'-tetramethylethlenediamine, TMEDA, were dried and distilled by standard method before using. Infrared spectrum was recorded on a Perkin-Elmer 393 instrument from Nujol mulls prepared in a dry-box. Sample for magnetic susceptibility measurement was sealed in calibrated tube inside a dry-box. Measurement was carried out at room temperature using a Gouy balance (Johnson-Mathey). Magnetic moment was calculated by following standard methods [24], and corrections for underlying diamagnetism was applied to the data[25].

Preparation of Complex
A suspension of 10.00g (14.66mmol) of SmCl₃(THF)₃ in 250mL of THF and 17.19g (147.92mmol) of N,N,N',N'-tetramethylethlenediamine, TMEDA, was treated at ≈ -40°C dropwise with 22.3mL of 1.7M solution of methyllithium in diethylether. The mixture was stirred and allowed to warm slowly to ambient temperature(1h). The cloudy yellow solution was filtered. Yellow crystals of ([Li(TMEDA)]₃[Sm(CH₃)₆]).THF separated from the resulting light yellow solution upon standing overnight at refrigerator and then at-30°C. The large single yellow crystals were filtered and dried and stored under nitrogen in sealed ampoules (yield ≈ 68%). IR (Nujol mull, KBr, cm⁻¹):
[Nujol: 3000–2860(vs), 1455(s), 1375(s), 1345(w,sh)]. 1290(s),1285(m), 1260(m), 1180(m), 1160(m), 1130(s), 1105(s), 1060(s), 1035(s), 1020(s), 950(s), 910(w), 790(s), 770(w), 720(vw), 580(m), 520–380 (broad, not resolved).
Magnetic measurement: μₑff = 1.51B M.

Data Collection and Reduction
A yellow crystal of C₂₈H₇₄SmLi₃N₆O having approximated dimensions of 0.20,0.20x0.20mm was mounted on a glass fiber. All measurements were made on a Rigaku AFC6S diffractometer with graphite monochromated Mo-Kα
radiation and a 12kW rotating anode generator. Cell dimensions were obtained from 24 reflections with 2θ angle in the range 40.00–50.00 degrees. Absorption corrections were made. The minimum and maximum transmission factors are 0.105599 and 0.171574. The crystals are trigonal with space group R3c. The unit cell and crystal data are reported in Table 1.

Structure Determination and Refinement
Data were collected at -160°C. The structure was solved by direct methods. The non–hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated but not refined. The final cycles of full–matrix least–squares refinement was based on the number of observed reflection with I>2.5σ(I) and corresponding parameters. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.650 and -1.0203e/Å³. The final R values were 0.043 and R_w = 0.035 for 2340 reflections measured. Fractional atomic coordinates are given in Table 2, and anisotropic thermal parameters are available.

RESULTS and DISCUSSION
The crystal consists of \{[Li(TMEDA)]_3[Sm(CH_3)_6]\}.THF, illustrated in Fig.1. Stereoview of the packing of this complex in the unit cell is given in Fig.2. The samarium atom is surrounded by six methyl groups in a slightly distorted octahedral arrangement (the symmetry of the molecule is D_3) and the site symmetry of Sm is 3. The lithium atoms are located at the centers of tetrahedral made up of two methyl groups and the two nitrogen atoms of one TMEDA molecule. The Sm–C bond distance is 2.639(5)Å which is significantly shorter than the average Sm–C bond distances in Sm(η^6–C_6Me_6)(η^6–AlCl_4)_3 (2.89(5)Å) [9] and Sm(C_6Me_6)_3 (2.82(5)Å) [22] and significantly longer than the Sm–C(Terminal methyl) bond distance in (C_6Me_6)SmMe(THF) (2.484(14)Å) [23]. Therefore, the Sm–C bond distance in this complex is reasonable.
Table 1
Crystal Data for \{[\text{Li(TMEDA)}]_3[\text{Sm(CH}_3)_6]\}.THF*

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>C_{28}H_{74}SmLi_3N_6O</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>682.0</td>
</tr>
<tr>
<td>Crystal Dimensions (mm)</td>
<td>0.20 x 0.20 x 0.20</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Trigonal</td>
</tr>
<tr>
<td>Lattice Parameters</td>
<td>a = 16.684(10)Å, c = 24.946(10)Å, V = 6014(4)Å³</td>
</tr>
<tr>
<td>Space Group</td>
<td>R3c</td>
</tr>
<tr>
<td>z</td>
<td>6</td>
</tr>
<tr>
<td>D_{calc}(g/cm³)</td>
<td>1.120</td>
</tr>
<tr>
<td>No of Reflections Measured</td>
<td>2340</td>
</tr>
<tr>
<td>R, R_w</td>
<td>0.043, 0.035</td>
</tr>
</tbody>
</table>

* TMEDA = (CH₃)₂NCH₂CH₂N(CH₃)₂

Table 2
The final positional parameters and Biso for the non-hydrogen atoms

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Biso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm1</td>
<td>0</td>
<td>0</td>
<td>3/4</td>
<td>2.471(22)</td>
</tr>
<tr>
<td>N1</td>
<td>0.2351(3)</td>
<td>0.3144(4)</td>
<td>0.71473(20)</td>
<td>3.3(3)</td>
</tr>
<tr>
<td>C1</td>
<td>0.1507(4)</td>
<td>0.0774(6)</td>
<td>0.69021(21)</td>
<td>3.5(5)</td>
</tr>
<tr>
<td>C2</td>
<td>0.3230(5)</td>
<td>0.3696(4)</td>
<td>0.7449(4)</td>
<td>5.8(5)</td>
</tr>
<tr>
<td>C3</td>
<td>0.1751(7)</td>
<td>0.3526(4)</td>
<td>0.72478(24)</td>
<td>5.2(6)</td>
</tr>
<tr>
<td>C4</td>
<td>0.2460(5)</td>
<td>0.3095(5)</td>
<td>0.6565(3)</td>
<td>5.7(6)</td>
</tr>
<tr>
<td>C5</td>
<td>0.0293(3)</td>
<td>0.0490(9)</td>
<td>0.0410(4)</td>
<td>5.6(18)</td>
</tr>
<tr>
<td>C6</td>
<td>0.0174(4)</td>
<td>0.0882(23)</td>
<td>0.0100(20)</td>
<td>8.3(28)</td>
</tr>
<tr>
<td>Li</td>
<td>0.1824(9)</td>
<td>0.1824(9)</td>
<td>3/4</td>
<td>2.5(7)</td>
</tr>
</tbody>
</table>
Figure 1 An ORTEP view of $\{[\text{Li(TMEDA)}]_3[\text{Sm(CH}_3)_6]\}\cdot\text{THF}$

Selected Bond Distances and Angles:

$\text{Sm}-\text{C}(1) = 2.639(5)$Å, $\text{Li}-\text{C}(1) = 2.155(11)$Å, $\text{Li}-\text{N}(1) = 2.113(12)$Å
$\text{N}(1)-\text{C}(2) = 1.488(9)$Å
$\text{N}(1)-\text{C}(3) = 1.453(12)$Å
$\text{N}(1)-\text{C}(4) = 1.470(9)$Å

$\text{Sm}-\text{C}(1)-\text{Li} = 78.1(4)^\circ$, $\text{Li}-\text{N}(1)-\text{C}(2) = 101.7(5)^\circ$

$\text{C}(2)-\text{N}(1)-\text{C}(3) = 108.9(5)^\circ$

$\text{C}(2)-\text{N}(1)-\text{C}(4) = 115.0(6)^\circ$

$\text{C}(3)-\text{N}(1)-\text{C}(4) = 109.0(5)^\circ$
Figure 2: Stereoview of the packing of \([\text{Li(TMEDA)}_3\text{Sm(CH}_3)_6]\cdot\text{THF}\) in the unit cell.
REFERENCES