Geochemistry and Mineralogy of the Sangan Iron Ore Deposit

Karimpour, M.H.
Ferdowsi University of Mashhad, Mashhad, IRAN

Key Words: Sangan Mine, Hedenbergite, Ferro-actinolite, Ripodolite, Andradite, Ferro-pargasitic Hornblende.

Abstract: The Sangan iron ore deposit is located 298 km south east of Mashhad. The magnetite ore body is 4.2 km long and 30 to 300 meter wide. The mineralization is hosted by carbonate of upper Jurassic-lower Cretaceous. Magnetite and associated minerals are analyzed by electron microscope. The Ti, Mn, Ni, Cr, P and Mg content of magnetite are very low. The MgO content of magnetite in Dardway, Baghian and C-north is between 1 to 3.5 percent. Paragenesis of magnetite in A deposit are andradite, hedenbergite, calcite, and a rare amphibole such as ferro-pargasitic hornblende, in the A, B and C deposits are ferro-actinolite, calcite and Fe-rich chlorite such as ripidolite, in Dardway deposit are phlogopite, siderite and garnet and for Baghain deposit are dolomite, phlogopite and clinchlore. The temperature of formation of A deposit was higher than 400 based on the mineralogy and the intrusive rocks. The temperature of formation of B deposit were calculated 300 based on the composition of chlorite. The Fe-rich magmatic fluid associated with the quartz monzonite (outercrop at A') was reacted with the dolomitic limestone and formed the magnetite skarn. Chlorine rich amphibole may indicate that iron were carried as chlorine complexes in the fluid.
ژئوشیمی و کانی شناسی کانسار سنگ آهن سنگان خراسان

محمد حسن کریم پور
دانشگاه فردوسی مشهد

چکیده: کانسار سنگ آهن سنگان خراسان در ۲۹۸ کیلومتری جنوب جنوب شرقی مشهد و در نزدیکی مرز افغانستان واقع شده است. توده‌های مگنتیتی به طول بیش از ۲٫۱ کیلومتر و عرض بیش از ۰٫۳ کیلومتر در سراسر کناره کریستال زوراسیک کوه فلک نشسته که به طور مداوم اکتشافاتی و [دگرنهاید] تشکیل شده است. کانسار سنگان به لحاظ بالا بودن عیار آهن و میزان ذخایر آن، با این که عناصر کوچک و قستری، از جمله ذخایر مهم آهن نوع اسکارین ایران و دنیا به‌شمار می‌آید. با بررسی‌هایی که با استفاده از میکروسکوپ الکترونی روی مگنتیت و کانی‌های همراه آن انجام گرفت، معلوم شد که میزان فراوانی عناصر Mg و Mn ، Ti , P , Ca , Cr , Ni در مگنتیت بسیار ناچیز است، و MgO در مناطق درونی (منطقه شمالی C) و بااعض (شکل ۱) به حدود ۱ الی ۲۵ درصد می‌رسد.

پارازیت مگنتیت در بخش A شامل آندرادید، هدن‌گوت، کلسیت و آمفيوب کمیاب غذایی از نوع فروپاراماسیت، نوارستان این در بخش B و بخش جنوبی C در فروکتیلونیت، کلریت غذایی از آهن نوع ریودویت و کلسیت تشکیل شده است. پارازیت بخش شمالی C و بااعض، دولومیت، کلسیوکار و فلوگیتوپت و بخش درونی شامل فلوگیتوپت و سیدریت است.

واژه‌های کلیدی: معدن سنگان، پیروکس، غذایی از آهن، اکتینولیت غذایی از آهن، کلریت غذایی از آهن، آندرادید.
زمین شناسی منطقه

کانسار سنگ آهن سنگان خراسان در شرق رشته کوههایی که از درونه تا افغانستان ادامه دارد، واقع شده است. گسل درونه در جنوب یکی رشته کوههای اصلی قرار دارد. آهکهای دولومیتی زوراسیک فروغی کر تاسه تحتانی [1] سنگ میزبان آهن اند. نودههای آهن در راستای شرقی-
غربی به طول تقریبی ۴ کیلومتر قرار گرفته‌اند. شیل‌های سیلیس‌دار در شمال نودههای آهن واقع شده‌اند (شکل ۱). برخوردگاه جنوبی نودههای آهن گسلی است. در جنوب نودههای آهن، سنگ‌های بیور و کلاستیکی و اپی کلاستیکی با ترکیب اندزیت و داسیت وجود دارند، که در آنها به مقدار زیادی دایک و شیل نفوذ کرده‌اند. در این منطقه سنگ‌های آذرین کالک آکلانون (آهکی فلایی) با ترکیب اسید تا حد واسط به‌صورت دایک، شیل و استوک به فراوانی وجود دارند [۱۱]. اکثر سنگ‌های آذرین تحت تأثیر دگرسانی اوزیلیک و سرسیک واقع شده‌اند. [فعالیت‌های ماگما]؛ ما گمان می‌کنیم در زمان تشکیل کانسار آهن و پس از آن ادامه داشته است. در سمت شمال نودههای آهن، گراتین سرنوسر رخت‌مون شده‌اند (شکل ۱). سنین گراتین ۲۳۸ میلیون سال تعیین شد.

روش تحلیل

به منظور بررسی ترکیب شیمیایی مگنتیت و کانی‌های همراه، از تمامی نودههای آهن از سطح زمین و از مغزه‌ها نمونه برداری شد. تحلیل عنصری کانی‌ها با استفاده از میکروسکوپ الکترونی Cameca SX-50 در دانشگاه تاسمانیا (استرالیا) انجام شد. شرایط تحلیل کانی‌ها در جدول شماره (۱) گزارش شده است.

جدول ۱ شرایط تحلیل عنصری کانی‌ها

<table>
<thead>
<tr>
<th>نام کانی</th>
<th>ماژور</th>
<th>کاتالیت، کربنات و فلوکوبیت</th>
<th>آمینول</th>
<th>مگنتیت</th>
<th>گرانیت و پروکسین</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰۰۰۰۰</td>
<td>۱۰</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰</td>
<td>۲۰</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
</tr>
<tr>
<td>۴۰۰۰۰۰۰۰</td>
<td>۲۰</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
</tr>
</tbody>
</table>
پارازئن، کانی سازی توده‌های مگنتیت مگنتیت مهم‌ترین کانی آهن در نزدیک کنار سیستان است. کانی سازی مگنتیت در سنگ‌های کربناته (زوراسیک فوقانی - کرتاسه تحتانی) صورت گرفته است. توده‌های مگنتیت در راستای شرقی غربی تشکیل شده و از شرق به غرب شامل توده‌های 'A', 'A', 'B' و 'C' بخش جنوبی، شمالی 'C', غربی و دردوز است (شکل 1).

توئه مگنتیت 'A' توده 'A' در شمال غربی تشکیل شده و جنوب توئه مگنتیت کوچکی در آن دیده می‌شود. کوارتزمونزونیت و گرانيت پوریت، در سنگ‌های کربناته نفوذ کرده و موجب تشکیل اسکارن آهن شده‌اند. پارازئن مگنتیت عبارت است از گرانیت، آمفیبول، پیتروکسن، کلسیت و کوارتز. بعد از مگنتیت گرانیت فراوانی در کانی است. اندازه بلورهای گارنت ها به ۲۰ سانتی‌متر می‌رسد. تجربی شیمیایی گارنت ها در جدول ۲ گزارش شده‌اند. گارنت ها با جنوب آن در دست رد ۴۸ درصد گروه سیلیسیت و ۵۱ درصد آلساندین و ۱ درصد آلساندین و ۱.
درصد اسپیسر دارند (شکل 2). پیرویکس از نوع هدنبیگیت است و به مقدار بسیار زیاد به شکل منجر شده است. این اسپیسری بیش از (\(2/3 = 1\))، واژ نوع فرمول‌گویی که در آیزومورفیسم هورنبلد است (شکل 4).

شکل 2: ترکیب کاتیو شناختی گارنتهای منطقه A.

شکل 3: ترکیب کاتیو شناختی بروکسنیهای منطقه A.
توده‌های مگنتیت A و B بخش جنوبی
بخش مهم ذخیره آلی در این سه توده قرار دارد. صخامت توده‌های مکنتیت حدود 200 سانتی‌متر و شبیه آنها 85 درجه به سمت جنوب است. توده‌های مکنتیت در سمت شمال به شیل‌های سیلیسی دار بروخوردار می‌کنند. در جنوب سنتی‌های پیروکلاسیک و آلی کلاسیک به صورت بروخور دگرگونی قرار دارند. در زون گلی مکنتیت، دولومیت، شیل سیلیس دار و سنتی‌های آذرین به‌دست می‌آیند. پارانژی مکنتیت در این توده شامل اکتیبولیت، کلریت، کوارتز و کلسیت است. ترکیب شیمیایی اکتیبولیت‌ها در جدول شماره 3 گزارش شده است.

به‌عنوان نمودار شکل 5، تقسیم‌بندی آمیفیل‌ها، اکتیبولیت‌های غنی از آهن از نوع فرواکتیبولیت اندازه‌گیری و طول بلوپیلو اکتیبولیت در بعضی نقاط به 10 سانتی‌مرد می‌رسد. ترکیب شیمیایی کلریت‌های توده‌B در جدول شماره 3 گزارش شده است. در نمودار شکل 6 تقسیم‌بندی کلریت‌ها به صورت کلریت‌های غنی از آهن و از نوع ریپ Colovent دیده می‌شوند. دمای تشکیل کلریت‌ها و مکنتیت براساس ترکیب شیمیایی کلریت‌ها [3]، 259 تا 310وC محسوب شده (شکل 7).

شکل 4 آمیفیل کم‌بخاری عینی از کلر بخش A.
جدول ۳ ترکیب شیمیایی گارتنهای بخش

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>۱۸۸۶۳</td>
<td>۲۲۶۵۷</td>
<td>۲۳۳۸۹</td>
<td>۳۱۶۹۹</td>
<td>۲۳۱۲۵</td>
<td>۲۵۸۲۳</td>
<td>۲۶۸۸۹</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۹۱۶۲۷</td>
<td>۹۷۱۴۸</td>
<td>۹۱۸۲۷</td>
<td>۹۴۲۸۹</td>
<td>۹۴۲۸۹</td>
<td>۹۴۲۸۹</td>
<td>۹۴۲۸۹</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۱۶۴۸</td>
<td>۱۶۴۸</td>
<td>۱۶۴۸</td>
<td>۱۶۴۸</td>
<td>۱۶۴۸</td>
<td>۱۶۴۸</td>
<td>۱۶۴۸</td>
</tr>
<tr>
<td>Fe۲O۳</td>
<td>۳۱۸۲۴</td>
<td>۳۱۸۲۴</td>
<td>۳۱۸۲۴</td>
<td>۳۱۸۲۴</td>
<td>۳۱۸۲۴</td>
<td>۳۱۸۲۴</td>
<td>۳۱۸۲۴</td>
</tr>
<tr>
<td>MgO</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
</tr>
<tr>
<td>CaO</td>
<td>۲۳۶۵۷</td>
<td>۲۳۶۵۷</td>
<td>۲۳۶۵۷</td>
<td>۲۳۶۵۷</td>
<td>۲۳۶۵۷</td>
<td>۲۳۶۵۷</td>
<td>۲۳۶۵۷</td>
</tr>
<tr>
<td>MnO</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
</tr>
<tr>
<td>FeO</td>
<td>۱۹۴۲</td>
<td>۱۹۴۲</td>
<td>۱۹۴۲</td>
<td>۱۹۴۲</td>
<td>۱۹۴۲</td>
<td>۱۹۴۲</td>
<td>۱۹۴۲</td>
</tr>
<tr>
<td>Na۲O</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
</tr>
<tr>
<td>K۲O</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
<td>۱۸۳۸۹</td>
</tr>
<tr>
<td>F</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
</tr>
<tr>
<td>Cl</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
<td>۲۲۴۸۰</td>
</tr>
<tr>
<td>Total</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
</tr>
<tr>
<td>UV</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
</tr>
<tr>
<td>AD</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
</tr>
<tr>
<td>GR</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
</tr>
<tr>
<td>PY</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
</tr>
<tr>
<td>SP</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
</tr>
<tr>
<td>Al</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
<td>۹۹۳۰۶</td>
</tr>
</tbody>
</table>

توده مکتبت در دو روش

این توده در نزدیکی گراییل سبز واقع بوده است. پارازه زانی سبزی توده شبته است. از فلزگریت، آندیت و گنبد بروز کرده. در این توده شیمیایی کربنیکه ها به این قرار است: (MnCO۳، Fe۲O۳، Mg۲O) (CaCO۳)۳۷٪۵۴٪۱۳٪. به عنوان این توده به لحاظ بالابودن عبارت آن و ذخیره آن و ناحیه بودن میزان P، به عنوان

پارازه بردنی توده در این منطقه است و بهره برداری می‌شود.
شکل ۵ نمودار تعیین نوع اکتینولیت.

شکل ۶ نمودار تعیین نوع کلریت.
جدول 3 ترکیب شیمیایی اکتوبولت و کلریت

<table>
<thead>
<tr>
<th>اسیدها</th>
<th>اکتوبولت</th>
<th>اکتوبولت</th>
<th>اکتوبولت</th>
<th>کلریت</th>
<th>کلریت</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>46.9</td>
<td>68.95</td>
<td>46.95</td>
<td>46.95</td>
<td>46.95</td>
</tr>
<tr>
<td>TiO₂</td>
<td>29.05</td>
<td>29.05</td>
<td>29.05</td>
<td>29.05</td>
<td>29.05</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>7.16</td>
<td>7.16</td>
<td>7.16</td>
<td>7.16</td>
<td>7.16</td>
</tr>
<tr>
<td>CaO</td>
<td>1.59</td>
<td>1.59</td>
<td>1.59</td>
<td>1.59</td>
<td>1.59</td>
</tr>
<tr>
<td>MnO</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>FeO</td>
<td>9.72</td>
<td>9.72</td>
<td>9.72</td>
<td>9.72</td>
<td>9.72</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.25</td>
<td>3.25</td>
<td>3.25</td>
<td>3.25</td>
<td>3.25</td>
</tr>
<tr>
<td>H₂O</td>
<td>38.45</td>
<td>38.45</td>
<td>38.45</td>
<td>38.45</td>
<td>38.45</td>
</tr>
<tr>
<td>F</td>
<td>n.d.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Cl</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
</tr>
<tr>
<td>Total</td>
<td>99.23</td>
<td>99.23</td>
<td>99.23</td>
<td>99.23</td>
<td>99.23</td>
</tr>
</tbody>
</table>
تزود مگنتیت ناگین
ابن تزود در شرق منطقه واقع شده و در امتداذ تزود بخش شمالی قرار دارد. مگنتیت به صورت لایه‌ای همراه با دولومیت پافت می‌شود. پاراژنز کانی ساز مگنتیت شامل دولومیت و کلینوکلر است. در مغزه‌ها، فلگورتیت نیز درد می‌شود. ترکیب شیمیایی دولومیت شامل: (16/15)MgCO₃، (2/23)FeCO₃، (119/299)MgCO₃، و (36/16)CaCO₃ است.

ترکیب شیمیایی فلگورتیت و کلینوکلر در جدول شماره ۴ گزارش شده است.

<table>
<thead>
<tr>
<th>اکسیدها</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۳۱.۴۷</td>
<td>۳۱.۶۶</td>
<td>۳۱.۷۴</td>
<td>۳۱.۸۲</td>
<td>۳۱.۹۰</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰.۵۱</td>
<td>۰.۵۲</td>
<td>۰.۵۳</td>
<td>۰.۵۴</td>
<td>۰.۵۵</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۱۷.۸۸</td>
<td>۱۸.۱۶</td>
<td>۱۸.۴۴</td>
<td>۱۸.۷۲</td>
<td>۱۸.۹۰</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>۰.۱۲</td>
<td>۰.۱۳</td>
<td>۰.۱۴</td>
<td>۰.۱۵</td>
<td>۰.۱۶</td>
</tr>
<tr>
<td>MgO</td>
<td>۲۵.۳۹</td>
<td>۲۵.۴۲</td>
<td>۲۵.۴۵</td>
<td>۲۵.۴۸</td>
<td>۲۵.۵۰</td>
</tr>
<tr>
<td>CaO</td>
<td>۰.۶۴</td>
<td>۰.۶۵</td>
<td>۰.۶۶</td>
<td>۰.۶۷</td>
<td>۰.۶۸</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۲۲</td>
<td>۰.۲۴</td>
<td>۰.۲۶</td>
<td>۰.۲۶</td>
<td>۰.۲۶</td>
</tr>
<tr>
<td>FeO</td>
<td>۱۱.۶۵</td>
<td>۱۱.۷۲</td>
<td>۱۱.۷۹</td>
<td>۱۱.۸۶</td>
<td>۱۱.۹۱</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۰.۵۰</td>
<td>۰.۴۸</td>
<td>۰.۴۵</td>
<td>۰.۴۴</td>
<td>۰.۴۳</td>
</tr>
<tr>
<td>K₂O</td>
<td>۰.۳۲</td>
<td>۰.۳۳</td>
<td>۰.۳۴</td>
<td>۰.۳۵</td>
<td>۰.۳۶</td>
</tr>
<tr>
<td>F</td>
<td>۰.۷۷</td>
<td>۰.۸۷</td>
<td>۰.۹۷</td>
<td>۱.۰۷</td>
<td>۱.۱۷</td>
</tr>
<tr>
<td>Cl</td>
<td>۰.۳۶</td>
<td>۰.۴۴</td>
<td>۰.۵۲</td>
<td>۰.۶۰</td>
<td>۰.۶۸</td>
</tr>
<tr>
<td>H₂O</td>
<td>۱۱.۸۷</td>
<td>۱۲.۹۱</td>
<td>۱۳.۱۶</td>
<td>۱۳.۲۲</td>
<td>۱۳.۲۸</td>
</tr>
<tr>
<td>Total</td>
<td>۹۹.۵۵</td>
<td>۱۰۰.۳۴</td>
<td>۱۰۰.۴۵</td>
<td>۱۰۰.۵۶</td>
<td>۱۰۰.۶۷</td>
</tr>
</tbody>
</table>

کانی شناختی و ضوئی اسمق آهن
مگنتیت مهمترین کانی اسمق آهن است که در مراحل اولیه تشکیل شده است. این کانی در سطح زمین و مناطقی که تحت تأثیر محیط‌های گرمایی قرار دارد، به مقدار جزیی به هم می‌آید.
اکسید شده است. مگنتیت به صورت بلورهای هشت وجهی در اندازه‌های 1 تا 10 میلی‌متر
یافت می‌شود. مقدار کمی پریت هپروتیت، آرسینوپریت و کالکسپریت نیز همراه و یا
پس از مگنتیت تشکیل شده‌اند.

ترکیب شیمیایی مگنتیت از توده‌های مختلف در جدول 5 گزارش شده است. میزان
اکسیدهای MnO، NiO، CaO، Cr2O3، TiO2 در مگنتیت بسیار کم است (جدول 5). میزان
MgO در مگنتیت توده‌های دردودی، بخش شمالي C و باغین بيش از سایر توده‌های است و بین
50% تا 65% است (جدول 5). میزان MgO در مگنتیت و سیلیکات‌های همراف رابطه
مستقيم دارند. پارانژن مگنتیت در بخش شمالي C، باگین و دردودی، فلوگوپیت
کلسیت، کلریت و اکسیکولریت غنی از آهن است.

میزان ذخیره معدن سنگان 222 میلیون تن برآورده است، که در 439 میلیون تن
آن عیار آهن (%Fe) و در 283 میلیون تن 43% است. میزان گوگرد فسفور این کاسار
به‌ازای و 20% گوگرد تشکیل شده است.

جدول 5: ترکیب شیمیایی مگنتیت توده‌های مختلف

<table>
<thead>
<tr>
<th></th>
<th>Fe2O3</th>
<th>FeO</th>
<th>TiO2</th>
<th>MgO</th>
<th>CaO</th>
<th>MnO</th>
<th>NiO</th>
<th>Cr2O3</th>
<th>نسبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - 1</td>
<td>0.26</td>
<td>0.31</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.12</td>
<td>n.d.</td>
<td>0.03</td>
<td>0.09</td>
<td>99.9</td>
</tr>
<tr>
<td>A - 2</td>
<td>0.53</td>
<td>0.09</td>
<td>0.03</td>
<td>n.d.</td>
<td>0.14</td>
<td>n.d.</td>
<td>0.03</td>
<td>0.08</td>
<td>99.8</td>
</tr>
<tr>
<td>A - 4</td>
<td>0.30</td>
<td>0.04</td>
<td>n.d.</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>99.93</td>
</tr>
<tr>
<td>Bagh - 1</td>
<td>0.19</td>
<td>0.12</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>99.8</td>
</tr>
<tr>
<td>Bagh - 5</td>
<td>0.14</td>
<td>0.21</td>
<td>0.03</td>
<td>n.d.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>99.5</td>
</tr>
<tr>
<td>Bagh - 5</td>
<td>0.18</td>
<td>0.25</td>
<td>n.d.</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>99.4</td>
</tr>
<tr>
<td>D - 1</td>
<td>0.18</td>
<td>0.22</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>99.2</td>
</tr>
<tr>
<td>D - 1</td>
<td>0.25</td>
<td>0.28</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>99.0</td>
</tr>
<tr>
<td>B</td>
<td>0.26</td>
<td>0.31</td>
<td>n.d.</td>
<td>0.03</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>99.9</td>
</tr>
<tr>
<td>B</td>
<td>0.26</td>
<td>0.31</td>
<td>n.d.</td>
<td>0.03</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>99.9</td>
</tr>
<tr>
<td>C-north</td>
<td>0.19</td>
<td>0.21</td>
<td>0.03</td>
<td>n.d.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>89.8</td>
</tr>
<tr>
<td>C-north</td>
<td>0.19</td>
<td>0.21</td>
<td>0.03</td>
<td>n.d.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>89.8</td>
</tr>
</tbody>
</table>
نتیجه گیری
کانسیر سنگ آهن سنگان خراسان به لحاظ بالابودن عیار آهن و میزان ذخیره آن و پایین بودن میزان گوگرد و فسفر از جمله ذخایر مهم آهن اسکارین ایران و دنیا محاسبه می شود. محلولهای مگنیسیا مغناطیسی از آهن همراه با تودههای کوارتز، مونزونیت و گرانتی پورفیری در بخش 'A' رخ می‌دهند. در سنگهای کربناتی، زئوتوراسیک فوقانی کرناهای تختانی به طریقه دگرگونی دیگر توده‌های مگنتیت داده است. در بخش 'A' بناهایی در محل، وجود آسیاد و هدفینگیت و برخوردهای مگنتیت با توده‌های نفوذی موید تشکیل مگنتیت در دمای بخش از 400 درجه سانتی‌گراد شکل می‌گیرد. به ویژه در مناطق سطحی بر C و B و B است. دمای تشکیل تودههای مگنتیت C بخش 400 درجه سانتی‌گراد است. بخش‌های با دمای کمتر از 400 درجه سانتی‌گراد به دلیل فرسایش زنجیره‌های شبه کلیلند در بخش 'A' به دلیل افت شدید میزان اکسیژن و دوام آمپیلول غنی از کلر در بخش 'A' مؤثر حمل آلی به صورت کمپلکس کلر می‌تواند باشد.

مراجع


2 - کرمانی، محمد حسن، بررسی منشأ و جگنگی تشکیل کانسیر آهن سنگان خراسان، سمینار سنگ آهن، دانشگاه فنی دانشگاه تهران، بهمن 1359.


4 - عابدی، علیرضا، ۱۳۶۸، زنگ‌کانسیر آهن سنگان خراسان، پایان‌نامه دوره کارشناسی دانشگاه فردوسی مشهد.