Geochemistry and Mineralogy of the Sangan Iron Ore Deposit

Karimpour, M.H.

Ferdowsi University of Mashhad,
Mashhad, IRAN

Key Words: Sangan Mine, Hedenbergite, Ferro-actinolite, Riptodolite, Andradite, Ferro-pargasitic Hornblende.

Abstract: The Sangan iron ore deposit is located 298km south east of Mashhad. The magnetite ore body is 4.2km long and 30 to 300 meter wide. The mineralization is hosted by carbonate of upper Jurassic-lower Cretaceous. Magnetite and associated minerals are analyzed by electron microscope. The Ti, Mn, Ni, Cr, P and Mg content of magnetite are very low. The MgO content of magnetite in Dardway, Baghian and C—north is between 1 to 3.5 percent. Paragenesis of magnetite in A deposit are andradite, hedenbergite, calcite, and a rare amphibole such as ferro—pargasitic hornblende, in the A, B and C deposits are ferro—actinolite, calcite and Fe—rich chlorite such as ripidolite, in Dardway deposit are phlogopite, siderite and garnet and for Baghain deposit are dolomite, phlogopite and clinchlore. The temperature of formation of A deposit was higher than 400 based on the mineralogy and the intrusive rocks. The temperature of formation of B deposit were calculated 300 based on the composition of chlorite. The Fe—rich magmatic fluid associated with the quartz monzonite (outerop at A’) was reacted with the dolomitic limestone and formed the magnetite skarn. Chlorine rich amphibole may indicate that iron were carried as chlorine complexes in the fluid.
پژوهشی

زهرشیمی و کانیشناسی کانسار سنگی آهن سنگان خراسان

محمد حسن کریم پور
دانشگاه فردوسی مشهد

چکیده: کانسار سنگی آهن سنگان خراسان در ۲۹۸ کیلومتری جنوب غربی شرقی مشهد و در نزدیکی مرز افغانستان واقع شده است. نتایج مکتبتی به طول ۲۴ کیلومتر و عرض ۱۰۰ متری و ۳۰۰ متری بر اساس مایتری [دکنکرده] تشکیل شده است. کانسار سنگان به لحاظ عناصر فلزی آهن، نیکل، کروم و مس نیز به شمار می‌آید. با استفاده از مایتکتیوکیمی و الکتروشیمیایی در مکتبتی تشکیل شده است. عناصر می‌توانند در مکتبتی بسیار ناچیز است و Mg, Mn, Ti, P, Ca, Cr, Ni معلوم شده که با استفاده از الکتروشیمی و الکتروشیمیایی روز مکتبتی و کانی‌های همرود آن، انگیزه‌گر در مکتبتی بسیار ناچیز است. در مکتبتی (منطقه شمالی C)، و با غیپ (شکل ۱) به حدود ۱ تا ۵ درصد می‌رسد.

پارازیتو مکتبتی در بخش A شامل آندرادیت، هیدروگیت، کلیسیت و آفیبول کمیاب غنی از کلر نوع فروپاراسیبیک مربی‌بند است، پارازیت بخش‌های B و بخش جنوبی C از فروکتیل کلیسیت غنی از آهن نوع رسولپت و کلیسیت تشکیل شده است. پارازیت بخش شمالي C و با غیپ، دولاویت، کلیسیت و فلوکوپریدست و بخش در دردی شامل فلوکوپریدست و سیدریت است.

واژه‌های کلیدی: معدن سنگان، پیروکسن غنی از آهن، اکتینولیت غنی از آهن، کلریت غنی از آهن، آندرادیت.
زمین شناسی منطقه

کانسیور سبک آهن سنگان خراسان در شرق رشته کوههایی که از درونه تا افغانستان ادامه دارد، واویند شده است. گسل درونه در جنوب این رشته کوههایی اصلی قرار دارد. آهکهای دولومیتی زووارسیک فرانی کریستال رشته تحت لنز [1] سنگ میزان آهن‌اند. توده‌های آهن در راستای شرقی-غربی به طول تقریبی 4 کیلومتر قرار گرفته‌اند. شیل‌های سیلسیس در شمال توده‌های آهن واویند شده‌اند (شکل 1). این خرده‌گاه جنوبی توده‌های آهن گسلی است. در جنوب توده‌های آهن سنگهای بیوروکلاستیکی و لایه‌ای كلاستیکی با تركیب اندزیت و داسیت وجود دارند، که در آنها به مقدار زیادی دایک و شیل و ویژه‌ای که در این منطقه سنگ‌های آذرین کالک آبیکر [آهکهای فلایی] با تركیب اسیدی خاک و حاوی صورت دایکی، شیل و استوک به فرآیند وجود دارند [2]. یک سنگ‌های آذرین تحت تأثیر درکسیلاریک و سرپینیک و واویند شده‌اند. [فعلیاتهای ما‌گیمی]، ما گواهی برای زمان تشکیل کانسیور آهن و پس از آن ادامه داشته است. در سمت شمال توده‌های آهن، گرانیت سروسنر رخنمون شده‌اند (شکل 1). سن این گرانیت 238 میلیون سال تعیین شد.

روش تحلیل

به منظور بررسی تركیب شیمیایی مگنتیت و کانی‌های همره در از توده‌های آهن از سطح زمین و از مغزها نمونه‌برداری شد. تحلیل عنصری کانی‌ها با استفاده از میکروسکوپ اکترونیکی SX-50-Cameca در دانشگاه تاسمانیا (استرالیا) انجام شد. شرایط تحلیل کانی‌ها در جدول شماره (1) گزارش شده است.

جدول 1 شرایط تحلیل عنصری کانی‌ها

<table>
<thead>
<tr>
<th>درشت نمایی</th>
<th>P8</th>
<th>K7</th>
<th>نام کانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000</td>
<td>10</td>
<td>15</td>
<td>کالرنیت، کربنات و فلوریت</td>
</tr>
<tr>
<td>100000</td>
<td>15</td>
<td>15</td>
<td>آمینیل</td>
</tr>
<tr>
<td>100000</td>
<td>20</td>
<td>15</td>
<td>مگنتیت</td>
</tr>
<tr>
<td>200000</td>
<td>20</td>
<td>15</td>
<td>کارنیت و پیروksen</td>
</tr>
</tbody>
</table>
پارازنگ، کانی سازی توده‌های مگنتیت

مگنتیت مهم‌ترین کانی آهن در نوع‌های کانسار سنگان است که باید مگنتیت در سنگ‌های کربناته (زوراسیک، فوقانی - کرتاسه تحتانی) صورت گرفته است. توده‌های مگنتیت در راستای شرقی غربی تشکیل شده و از شرق به غرب شامل توده‌های A، B، A'، C، B، A'، A در شرق آن توده مگنتیت A در شمال غربی تشکیل شده، و جنگل‌های مکزیک کوچک در آن دیده می‌شود. کوارتز مکزیک و قرازین پورفیر در سنگ‌های کربناته نفوذ کرده و موجب تشکیل اسکارن آهن شده‌اند. باورنژک، مکزیک عبارت است از: گارنت، آمفیبول، پسرکس، کلسیت و کوارتز. بعد از مکزیک گارنت فراوان‌ترین کانی است. اندازه بلورهای گارنت هر 4 cm می‌رسد. تجربه شیمیایی گارنت‌ها در جدول گزارش شده‌اند. گارنت‌های نوع آندزندان و حداکثر به میزان 48 درصد گرو‌سالرات، 5 درصد آلساندین و 19
درصد اسپارتن دارند (شکل ۲). پروکسین از نوع هپتگونیت است و به امکان برداشت این تأثیر می‌شود (شکل ۳). ضمناً یک نوع آمفیپول بسیار نادر در برتخدگان مکنتین با تنظیم‌های نفوذی تشکیل شده است. این آمفیپول غنی از (۲/۱ = Cl)، و از نوع فروپارگسیتیک هورنی‌ردن است (شکل ۴).

شکل ۲. ترکیب کانی شناختی ورشته‌ای منطقه‌ای A

شکل ۳. ترکیب کانی شناختی پروکسین‌های منطقه‌ای A
توده‌های مگنتیتی A و B و بخش جنوبی C

بخش مهم ذخیره‌های آهن در این سه توده قرار دارد. ضخامت توده‌های مگنتیت حداکثر ۳۰۰ میلی‌متر و شیب آنها ۸۵ درجه به سمت جنوب است. توده‌های مگنتیت در سمت شمال به شیل‌های سیلیسیوس دار برخوردار می‌باشند. در جنوب سنگ‌های پیچک‌کلاسیکی و آبی کلاسیکی به صورت برخوردارگی گسل قرار دارند. در زون گسل مگنتیت، دولومیت، شیل سیلیسیوس و سنگ‌های آذرین یافت می‌شوند. پارانژ مگنتیت در این توده شامل اکتینولیت، کلسیت، کوارتز و کلسیت است. ترکیب شیمیایی اکتینولیت‌ها در جدول شماره ۳‌گزارش شده است.

بنابر نمودار شکل ۵، تقسیم‌بندی آمپیوله‌ها، اکتینولیت‌های غنی از آهن از نوع فرواکینولیت است. طول بلورهای اکتینولیت در بعضی نقاط به ۱۰ سانتی‌متر می‌رسد. ترکیب شیمیایی کلریت‌های توده B در جدول شماره ۳ گزارش شده است. در نمودار شکل ۶ تقسیم‌بندی کلریت‌ها به صورت گروه‌ای غنی از آهن و از نوع ریبیدولیت دیده می‌شوند.

دما تشكل کلریت‌ها و مکانیسم بر اساس ترکیب شیمیایی کلریت‌ها [۱۳]، ۲۵۹ الی ۳۱۰°C محاسبه شد. (شکل ۷)

شکل ۲ آمپیول کمبای غنی از کلر بخش A
<table>
<thead>
<tr>
<th>اکیده</th>
<th>A-1-R</th>
<th>A-1-C</th>
<th>A-4-R</th>
<th>A-4-C</th>
<th>SK-4</th>
<th>SK-7</th>
<th>SK-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۶۶.۴۹</td>
<td>۶۶.۷۵</td>
<td>۶۶.۹۹</td>
<td>۶۶.۸۶</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۶۶.۸۹</td>
<td>۶۶.۱۱</td>
<td>۶۶.۸۹</td>
<td>۶۶.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۶۷.۸۹</td>
<td>۶۷.۱۱</td>
<td>۶۷.۸۹</td>
<td>۶۷.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۶۷.۸۹</td>
<td>۶۷.۱۱</td>
<td>۶۷.۸۹</td>
<td>۶۷.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>MgO</td>
<td>۶۷.۸۹</td>
<td>۶۷.۱۱</td>
<td>۶۷.۸۹</td>
<td>۶۷.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>CaO</td>
<td>۶۷.۸۹</td>
<td>۶۷.۱۱</td>
<td>۶۷.۸۹</td>
<td>۶۷.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>MnO</td>
<td>۶۷.۸۹</td>
<td>۶۷.۱۱</td>
<td>۶۷.۸۹</td>
<td>۶۷.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>FeO</td>
<td>۶۷.۸۹</td>
<td>۶۷.۱۱</td>
<td>۶۷.۸۹</td>
<td>۶۷.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۶۷.۸۹</td>
<td>۶۷.۱۱</td>
<td>۶۷.۸۹</td>
<td>۶۷.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>K₂O</td>
<td>۶۷.۸۹</td>
<td>۶۷.۱۱</td>
<td>۶۷.۸۹</td>
<td>۶۷.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>F</td>
<td>۶۷.۸۹</td>
<td>۶۷.۱۱</td>
<td>۶۷.۸۹</td>
<td>۶۷.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>Cl</td>
<td>۶۷.۸۹</td>
<td>۶۷.۱۱</td>
<td>۶۷.۸۹</td>
<td>۶۷.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
<tr>
<td>Total</td>
<td>۶۷.۸۹</td>
<td>۶۷.۱۱</td>
<td>۶۷.۸۹</td>
<td>۶۷.۸۹</td>
<td>۶۷.۵۱</td>
<td>۶۷.۱۳</td>
<td>۶۷.۸۹</td>
</tr>
</tbody>
</table>

توده مکتبت دردوز

این توده در نزدیکی گرنت سروسر واقع شده است. پارازنت کانی سازی مکتبت عبارت از، فلوجه، آندرادیت و کربنات است. در صد ترکیب شیمیایی کربناتها به این قرار است (MnCO₃) (FeCO₃) (MgCO₃) (CaCO₃) (۲۹٪) (۶۸٪) (۲۹٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪) (۴۶٪)...
شکل 5. نمودار تعیین نوع آکتنولیت.

شکل 6. نمودار تعیین نوع کلیروکاربت.
جدول 3 ترکیب شیمیایی اکتیبولت و کلریت

<table>
<thead>
<tr>
<th>اکسیدها</th>
<th>اکتیبولت</th>
<th>اکتیبولت</th>
<th>کلریت</th>
<th>کلریت</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>48.29</td>
<td>58.56</td>
<td>49.18</td>
<td>58.88</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.24</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.1</td>
<td>9.81</td>
<td>18.46</td>
<td>18.46</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.05</td>
<td>n.d.</td>
<td>0.02</td>
<td>n.d.</td>
</tr>
<tr>
<td>MgO</td>
<td>2.68</td>
<td>2.68</td>
<td>2.68</td>
<td>2.68</td>
</tr>
<tr>
<td>CaO</td>
<td>11.3</td>
<td>11.3</td>
<td>8.34</td>
<td>8.34</td>
</tr>
<tr>
<td>MnO</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>FeO</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.028</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.022</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>H₂O</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>F</td>
<td>0.13</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Cl</td>
<td>0.15</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Total</td>
<td>99.98</td>
<td>99.98</td>
<td>100.07</td>
<td>100.07</td>
</tr>
</tbody>
</table>

شکل 7 نمودار دمای تشكیل کلریت های بخش B
توان مگنتیت باقی

این نوده در شرق منطقه واقع شده و در امتیاز توده بهشت شمالی قرار دارد. مگنتیت به صورت لاک‌های همرنده با دولومیت، یافت می‌شود. پاراژون کانی‌های مگنتیت شامل دومونِیت و کلینوکلار است. در موزه‌ها، فلوجیپس نیز دیده می‌شود. ترکیب شیمیایی دولومیت شامل: ۴۲/۵۰۰% MgCO₃، ۲۳/۰۰۰% FeCO₃ و ۱۲/۵۰۰% CaCO₃ است.

ترکیب شیمیایی فلوجیپس و کلینوکلر در جدول شماره ۴ گزارش شده است.

<table>
<thead>
<tr>
<th></th>
<th>اکسیدها</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۳۱/۸۵</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۵۰/۰۰</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۱۷/۸۸</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>۱۱/۰۵</td>
</tr>
<tr>
<td>MgO</td>
<td>۲۵/۱۸</td>
</tr>
<tr>
<td>CaO</td>
<td>۴۸/۰۰</td>
</tr>
<tr>
<td>MnO</td>
<td>۲۳/۰۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۱۴/۰۰</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۱۹/۰۰</td>
</tr>
<tr>
<td>K₂O</td>
<td>۲۳/۰۰</td>
</tr>
<tr>
<td>F</td>
<td>۷/۰۰</td>
</tr>
<tr>
<td>Cl</td>
<td>۶/۲۷</td>
</tr>
<tr>
<td>H₂O</td>
<td>۹۹/۰۰</td>
</tr>
<tr>
<td>Total</td>
<td>۱۰۰/۰۰</td>
</tr>
</tbody>
</table>

کانی شناختی و رئوشی سنج آهن

مگنتیت مهم‌ترین کانی سنگ آهن است که در مراحل اولیه تشکیل شده است. این کانی در سطح زمین و مناطقی که تحت تأثیر محلول‌های گرمایی قرار دارد، به مقادیر جزئی به هم‌تیت
تکریم شیمیایی مگنتیت از توده‌های مختلف در جدول ۵ گزارش شده است. میزان اکسیدهای MnO، NiO، CaO، Cr_{2}O_{3}، TiO_{2} در مگنتیت سپارک کم است (جدول ۵). میزان MgO در مگنتیت توده‌های صورتی و بخش شمالی C و باگین به‌شماره ۵۰٪ در میان در مکنتیت و سیلبیکاتهای همرنگ رابطه مستقیم دارد. پارانزا مگنتیت در بخش شمالي C، باگین و دردودی، فلورگوپیت کلینوکلرولومیت است. در صورتی که در توده‌های A و B و بخش جنوبی C کلینوکلرولومیت، کلریت و اکتینولیت غنی از آهن است.

میزان ذخیره معدن سنگان ۲۲ میلیون تن برآورد شده است، که در ۴۲۹ میلیون تن آن عبارت آهن (Fe) ۵۳٪ و در ۱۸۲ میلیون تن ۳۳٪ است. میزان گوگرد و فسفر این کسانار بسیار ناچیز و از ۲۰٪ فسفر و ۲۵٪ گوگرد تشکیل شده است.

جدول ۵ ترکیب شیمیایی مگنتیت توده‌های مختلف

<table>
<thead>
<tr>
<th></th>
<th>Fe_{2}O_{3}</th>
<th>FeO</th>
<th>TiO_{2}</th>
<th>MgO</th>
<th>CaO</th>
<th>MnO</th>
<th>NiO</th>
<th>Cr_{2}O_{3}</th>
<th>نسبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>۱۲</td>
<td>۱۱</td>
<td>۳۱</td>
<td>۲۰</td>
<td>۳۲</td>
<td>n.d.</td>
<td>n.d.</td>
<td>۹۹ ۰۹</td>
<td></td>
</tr>
<tr>
<td>A-3</td>
<td>۶۸</td>
<td>۷۸</td>
<td>۳۷</td>
<td>۵۰</td>
<td>۳۰</td>
<td>n.d.</td>
<td>n.d.</td>
<td>۹۹ ۰۸</td>
<td></td>
</tr>
<tr>
<td>A-4</td>
<td>۴۸</td>
<td>۸۸</td>
<td>۴۸</td>
<td>۵۰</td>
<td>۳۰</td>
<td>n.d.</td>
<td>n.d.</td>
<td>۹۹ ۰۸</td>
<td></td>
</tr>
<tr>
<td>Bagh-1</td>
<td>۹۹ ۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۵۰</td>
<td>۵۰</td>
<td>n.d.</td>
<td>n.d.</td>
<td>۹۹ ۰۹</td>
<td></td>
</tr>
<tr>
<td>Bagh-5</td>
<td>۱۹ ۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>n.d.</td>
<td>n.d.</td>
<td>۹۹ ۰۹</td>
<td></td>
</tr>
<tr>
<td>Bagh-6</td>
<td>۱۹ ۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>n.d.</td>
<td>n.d.</td>
<td>۹۹ ۰۹</td>
<td></td>
</tr>
<tr>
<td>D-1</td>
<td>۶۸</td>
<td>۷۸</td>
<td>۴۸</td>
<td>۵۰</td>
<td>۳۰</td>
<td>n.d.</td>
<td>n.d.</td>
<td>۹۹ ۰۹</td>
<td></td>
</tr>
<tr>
<td>D-2</td>
<td>۶۸</td>
<td>۷۸</td>
<td>۴۸</td>
<td>۵۰</td>
<td>۳۰</td>
<td>n.d.</td>
<td>n.d.</td>
<td>۹۹ ۰۹</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>۶۸</td>
<td>۷۸</td>
<td>۴۸</td>
<td>۵۰</td>
<td>۳۰</td>
<td>n.d.</td>
<td>n.d.</td>
<td>۹۹ ۰۹</td>
<td></td>
</tr>
<tr>
<td>C-north</td>
<td>۶۸ ۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>n.d.</td>
<td>n.d.</td>
<td>۹۹ ۰۹</td>
<td></td>
</tr>
</tbody>
</table>
نتیجه‌گیری

کانسار سنگ آهن سنگان خراسان به لحاظ بالا بودن عیار آهن و میزان ذخیره آن، پاپین بودن میزان گوگرد و فسفر، از جمله ذخایر مهم آهن اسکارنی ایران و دنیا محسوب می‌شود. محلولهای ماگمایی غنی از آهن همراه با توده‌های کوارتز، مونزونیت و گراژنیت پورفری (در بخش 'A' رختنمود شده‌اند). در سنگ‌های کریستالی زروراسیک فوکانی کریستال تختانی به طبیعت دگرنهادی تشکیل ذخیره مگنتیت داده است. در بخش 'A' نابه دلایلی وجود آسید‌رایت، هژوئیت و برخورد مکتیت با توده‌های نفوذی مویید تشکیل مگنتیت در دمای بیش از 600 درجه سانتی‌گراد است. دمای تشکیل توده‌های مگنتیت C:B:A و بخش جنوبی بر اساس پارامتر کانی‌سازی و ترکیب شیمیایی کلریت حدود 600 درجه سانتی‌گراد است. بخش‌های با دمای کمتر از 600 درجه سانتی‌گراد به دلیل فرسایش حذف شده‌اند. وجود آمفیبول غنی از کلر در بخش A' مؤید حمل آهن به صورت کم‌بلک کلر می‌تواند باشد.

مراجع


2 - Karamipour, Mohammad H., بررسی منشا و چگونگی تشکیل کانسار آهن سنگان خراسان، سمینار سنگ آهن، دانشکده فنی دانشگاه تهران، بهمن 89.


4 - عابدی، علیرضا، ۱۳۶۸، زنگ‌کانسار آهن سنگان خراسان، پایان‌نامه دورة کارشناسی دانشگاه فردوسی مشهد.