Quantitative X-ray Fluorescent Analysis
Without Reference Samples

Baradaran Dilmaghani, S.
Department of Physics, Faculty of Sciences,
University of Tabriz, Tabriz-IRAN.

Mantler, M.
University of Technology, Vienna-Austria.

Key Words: X-ray Spectroscopy, X-ray Fluorescent, First and Second Excitations.

Abstract: Quantitative analysis of elements by X-ray spectroscopy has many applications. In order to measure a relative amount of an element in a material it is necessary to use standard samples. However, using too many standard samples with different percent of elements needs a long processing time and calculations. X-rays with definite energies are incident to the sample, penetrate to a certain depth, and excite atoms to emit X-ray fluorescence. The emitted X-ray passes through the sample and reaches the detector. In this work we have calculated exactly the fluorescent intensity throughout its passage in the sample.
تحلیل کمی با طرف سنجی پرتو XRF بدون نمونه‌های شاهد

سعید بادران دیلمقانی - پروفسور. مانتل
گروه فیزیک دانشگاه تبریز - ایران
دانشگاه فنی وین - اترش

چکیده: تحلیل کمی عناصر با طرف سنجی پرتو XRF به مقدار عناصر موجود در یک ماده از نمونه‌های استاندارد استفاده می‌شود. استفاده از تعداد زیادی از نمونه‌های استاندارد با درصد اعضا معلوم عناصر، اصولاً همراه با صرف وقت و محاسبات طولانی است. پرتو X با انرژی معین به سطح نمونه می‌تابد و نتایج معمول در آن نفوذ می‌کند، و در حجم معلوم ماده، اتم‌ها را برای گسترش پرتو X استخراج می‌سازند. پرتو X حاصل بعد از عبور از داخل ماده و خروج از آن به نمایش ساز می‌رسد و سپس اندراز گیری می‌شود در سرآسمانی این سیستم آنچه که روی می‌دهد دقت محاسبه شده و سپس شدت پرتو X حاصل به شکل یک فرمول ریاضی استخراج شده است.

واژه‌های کلیدی: طرف سنجی پرتو XRF ؛ فلورسسانس پرتو X ؛ نمونه‌های شاهد ؛ پرانتئین‌هایی اولیه پرانتئین‌های دوم.
مقدمه

تحليل کمی مواد با استفاده از فلتوئورسنسی پرتو X

تأشیف فلتوئورسنسی این امکان را دارد که با تولید گروه هماهنگ نیست. در تولید طیف مشخصه پرتو X با برافکسیکست یک مقدار زیادی نازی به صورت گرمای یک می شود. از این نظر تولید طیف مشخصه عنصر با روشن فلتوئورسنسی، برافکسیکست سرود نام دارد. از امپاژات این روشن این است که نمونه مورد آزمایش زیر بار گرمایی قرار نمی گیرد و چون این کار می تواند به تجزیه شیمیایی ماده منجر شود.

پرسی نظری پرتو فلتوئورسنسی

طرح مشخصه یک نمونه که به روشن فلتوئورسنسی پرتو X تولید می شود، می تواند در اثر برافکسیکست نمونه با تابش طیف سفید و یا طیف مشخصه یک لامپ پرتو X برآن باشد. شرایط برای ممکن است پرتو فلتوئورسنسی عنصر دیگر موجود در نمونه نیز موجب برافکسیکست اتمی مها می باشد که در موارد زیادی شرایط میزان سهم این اثر در برافکسیکست دوم اشکاره کرده است [7].
پارامترهای اولیه و روابط معمولی با داشتن تعداد زیادی نمونه شاهد، تحلیل کمی به روش XRF و به طور مقایسه‌ای انجام می‌گیرد. در اینجا سعی می‌شود با استفاده از مفاهیم اساسی و پارامترهای تعیین گردند، کمیت شدت خطوط مشخصات فلوتوتران پرتون محاسبه شود. از شدت اوج نمونه‌های شاهد فقط برای بهبود کردن معادلات استفاده می‌شود، لذا امکان دارد که از یک عنصر خالص به عنوان نمونه‌شاهد استفاده شود. اگر پارامترهای دستگاه طیف سنگ کاملاً معلوم باشد، که در دستگاه‌های پخشش انرژی چنین است، می‌توان بدون نمونه شاهد، تحلیل به روش فلوتوتران پرتون X را انجام داد. قبل از اینکه معادلات مربوط به مقداری کمی پرتون‌های فلوتوترانی را بدست آوریم لازم است به تعدادی از مفاهیم لازم آنها شویم.

1. یک دوربین انرژی فلوتوتران (E) برحس زود یا (\(E \)) برحس آنگستروم (Å) و با بسامد (N) مشخص می‌شود. ویل در آرایه‌ای کارا، انرژی کوانتو Damage به تصور خواهد شد.

2. آشکارسازهای که در فیزیک پرتون X مرد استفاده قرار می‌گیرند، مانند سیستم‌شناسی، شمارگر گیرنده مولول، آشکارساز نیمارسانا، تک روش‌هایی را به صورت تب کلیکی ثبت می‌کند.

اکثر آشکارسازهای می‌توانند به‌طوری که انرژی متفاوت را از هم جدا کنند و با آشکارساز با یک دستگاه تفکیک طول موج مربوط می‌شود. با اینکه وجود دارد که به‌طور معمول، در تحلیل‌ها انرژی مختلفی را اندکی شباهت و ثبت کرد. معمولاً در تحلیل‌ها با پرتون X شمارش در واحد زمان به عنوان واحد استاندارد به کار می‌روند و واحد آن است. ویژگی دیگری که می‌توان به این تهیه نسبت داد انرژی کوانتو تیم آن‌هاست. اگر شمارش در واحد با انرژی کوانتو تیم آن‌هاست. اگر شمارش تهیه را در انتخابی کوانتو تیمی شبست و به کارایی آشکارساز و مساحت (ورودی) آشکارساز تفسیر کنیم شد.
بی‌دست می‌آید.

۳- برای مشخص کردن ضریب جذب گرمی کل، یعنی که در یک‌هایهای با ضریب بالا، از دو شاخص بین a و b و استفاده می‌کنیم. مثلاً در معده m\(^7\) Kg\(^{-1}\) شیم، از b و X برای عنصر جذب کننده a مشخص گردیده. خود a با شاخص i و b با شاخص j و k که i معرف عنصر هدف در لامپ برتو X تراز را برای خودش به وسیله پرتو X در نمونه که تراز ایست که از آنجا محل خالی در تراز ب در می‌شود.

b = Cr و k = L\(_{\alpha\alpha}\) i = K، j = Al

با مثال زیر موضوع روشن تر می‌شود. مثلاً Cr بنابراین نشان دهنده ضریب جذب کاربردی تأسیس Al K\(_\alpha\) است.

۴- ضریب جذب خلیقی کل برحسب 1 m\(^{-1}\) از ضریب جذب گرمی کل \(\mu_{a,b}\) با ضریب جذب کننده \(\rho_b\) را در تکسات \(\mu_{a,b}\) و جرم واحد سطح است. در مثال بالا:

\[\mu_{Al K\alpha, Cr} = \mu_{Al K\alpha, Cr} \cdot \rho_{Cr}\]

معمولاً منظور از ضریب جذب همان ضریب جذب گرمی است، مگر غیر از آن قید شود.

فرض کنیم یک دسته موازی از پرتوهای X تکان عمود بر سطح یک جذب کننده تیتایه و در آن تلفظ کنند. جذب کننده دارای ضخامت t و جرم واحد سطح است. در این صورت می‌توان نوشت:

\[\frac{m}{f} = \rho_{b} \cdot t\]

ضریب جذب خلیقی با استفاده از ضریب جذب کلی و

\[\mu_{a,b}\]

با رابطه تضعیف پرتو X زیر می‌باید:

\[\mu_{a,b}\]
\[\exp \left[- \mu_{a,b} \cdot \frac{m}{t} \right] = \exp \left[- \mu_{a,b} \cdot \rho_{b} \cdot t \right] = \exp \left[- \bar{\mu}_{a,b} \cdot t \right] \]

بنابراین در یک جزء نازک (dt) از عنصر جذب کننده، بخش جذب شده پرتو به صورت زیر است:

\[\mu_{a,b} \cdot d\left(\frac{m}{t}\right) = \mu_{a,b} \cdot \rho dt = \bar{\mu}_{a,b} \cdot dt \]

5- ضریب جذب کلی یک جذب کننده b که از n عنصر تشکیل شده و کسرهای وزنی \(\alpha \) برای برآورده کردن \(p_{ij} \) به صورت زیر محاسبه می‌شود:

\[\mu_{a,b} = \sum_{q=1}^{n} C_{q} \mu_{a,q} \]

که در آن \(\mu_{a,q} \) ضریب جذب کلی عنصر خالص q است که مقدار آن در جدول داده شده است.

6- ضریب جذب کلی (ضریب تضعیف کلی) از مجموعه ضریب تضعیف شده است:

\[\mu_{a,b} = \tau_{a,b} + \sigma_{coh_{a,b}} + \sigma_{inc_{a,b}} \]

اصطلاح ضریب تضعیف با ضریب جذب به خودی خودی چگونگی و نوع تضعیف را مشخص نمی‌سازد، مگر اینکه در رابطه فوق مقدارهای پارامتر معلوم باشد. در تحلیل‌های کمی با فلئورسنس پرتو X با بخش مربوط به پراکنده پرتو X در حدود یک درصد فوتون‌های است، در نتیجه می‌توان در محاسبات از بخش پراکنده شده پرتو جذبی کرده تا فقط بخش مربوط به فوتون‌های جذبی را وارد کرد.
بله ی جذب \((S_{ij})\) با بهره دوم مقدار ضرب فوتو جذبی تعیین می شود و برای نشان دادن آن به عنوان تغییرات فوتو جذبی عنصر \(i\) به صورت تابعی از انرژی کوارتومی \(E\) در محدوده لبه جذب رسوم می شود. اگر انرژی کوارتومی \(E\) که چکتر از انرژی لبه جذب باشد، این انرژی برابر است به انرژی لبه جذب \((E_{ij})\) شود در این صورت کوارتومهای پرتو \(X\) در مدار ی جذب انرژی فوتو جذبی تا گهه با لایه برابر \\(S_{ij}\) از هستند. عبارت اندادا:

\[
\tau_{E_{ij}} - dE_{ij} + \tau_{E_{ij}} + dE_{ij}
\]

و با استفاده از آنها \\(S_{ij}\) برابر است با:

\[
S_{ij} = \frac{\tau_{E_{ij}} + dE_{ij}}{\tau_{E_{ij}} - dE_{ij}}
\]

براینرخستی اول

نمونه ی یکتای دارای نتایج اول گزارش شکل 1 یکن باریکهای از پرتو \(X\) با زاویه \(\alpha\) برای عمود بر آن می تابد. مساحت سطح فروند پرتو \(X\) به انرژی \(E\) چگالی شار انرژی پرتو \(X\) در واحد گستره انرژی \(E\) در واحد زمان \(\beta\) است در این سطح کوارتوم پرتو \(X_{E}\) به انرژی \(E\) برخوردار می کند.

برای محاسبه تعداد کوارتومهای پرتو \(X\) که به وسیله عنصر \(i\) در عنصر حجم بزرگ در عمق 1 جذب می شوند (فوتو جذبی) ، لازم است ابتدا تضعیف شدت پرتو در مسیر خورد از سطح تا عمق 1 (طول راه \(\frac{1}{\cos \alpha}\) را که برای مقدار زیر است در نظر گرفت:

\[
\exp\left[-\tau_{E_{i},j} \rho_{i} \cdot \frac{1}{\cos \alpha}\right]
\]
که بر حسب یکاهای $\tau_{E,c}$ و $t_{E,c}$، نشاندهنده ضریب فتوژنیک پرتو X با انرژی کواتومی E با انرژی کواتومی E به حساب گرفته‌اند. ρ_c در نمونه‌مرکب را با نسبت به ρ_c در نمونه‌مرکب را با

$X_{E} \cdot dE \cdot A \cos \alpha \cdot \exp \left[-\frac{\tau_{E,c} \cdot \rho_c}{\cos \alpha} \right] \cdot \frac{dt}{\cos \alpha} \tau_{E,c} \cdot \rho_c$
برای پیشنهاد یافته های دیگری مثل

\[K : M_{ik} = \frac{S_{ik} - 1}{S_{ik}} \]

\[L_1 : M_{iL_1} = \frac{1}{S_{ik}} \cdot \frac{S_{iL_1} - 1}{S_{iL_1}} \]

\[L_\gamma : M_{iL_\gamma} = \frac{1}{S_{ik}} \cdot \frac{1}{S_{iL_\gamma}} \cdot \frac{S_{iL_\gamma} - 1}{S_{iL_\gamma}} \]

\[L_\beta : M_{iL_\beta} = \frac{1}{S_{ik}} \cdot \frac{1}{S_{iL_\beta}} \cdot \frac{1}{S_{iL_\beta}} \cdot \frac{S_{iL_\beta} - 1}{S_{iL_\beta}} \]

همانطور که قبلاً تعریف شد، لبه ی جذب از تراز \(Z \) (لبه جذب \(Z \)) است.

\[S_{ij} \]

هر چیز خالی در یک تراز مورف نظر نمی‌تواند نشان دهند که گرسنگی پرتو فلز‌ورسانس منجر شود؛ چون ممکن است الکترون‌های اوزه (Auger) تولید شوند. بنابراین کارایی
فلوتوسیانی، نتایج می‌کند که چه درصدی از پوشه‌های ترازِ \\(\alpha \) عصرِ یا باکسیل
فلوتوسیانی به حالت پاپه‌ای بر می‌گردد. ضمناً، به‌وجود آمدن یک کره برای پرسند یک جای
خارج امکان‌های متعددی وجود دارد. احتمال پرسند ترازِ یا پوشه‌ای که الکترون از ترازِ \\(K \) در اتم
دیاوی می‌شود.

گذشته پورتو فلوتوسیان در همه جهات فضا به طور یکنواخت انجام می‌گیرد. آشکار
ساز فقط به‌شکل از \(2\pi \) زاویه‌فسایی بین، \(\Omega \)، را دریافت می‌کند. آن مقدار از پورتو فلوتوسیان
ایجاد شده در حجم جزئی به عمقِ 1 که در مسیر خود تا به سطح نمونه، \(t / \cos \beta \) تضعیف
می‌شود برای است باید:

\[
\exp[-\tau_{ijk,c} \rho_c \frac{t}{\cos \beta}]
\]

ضریب فتوتو جذبی پورتو فلوتوسیان مشخصهِ \(jk \) عتنص‌ا در نمونه موارک، از
رابطه زیر به دست می‌آید.

\[
\tau_{ijk,c} = \sum_{q=1}^{n} C_q \tau_{ijk,q}
\]

زاویهِ \(\beta \) در روابط بالا به نسبت آن پورتو فلوتوسیان مشاهده می‌شود. سپس در

به عمود بر سطح نمونه در نظر گرفته شده است.

بالاخره دستگاه آشکار ساز به لحاظ فیزیکی، به‌عنوان آزمایشگاه فلوتوسیان دار
دریافت و آشکار می‌کند که با ضریب کارایی آشکار ساز در نظر گرفته می‌شود. بنابراین
از کل

برای جزء پورتو اولیه، \(A dt \) پورتو فلوتوسیان

برای است باید:

\[n_{ijk} (prim) \]

ب در نکات اولیه پورتو فلوتوسیان
\[\text{dn}_{ijk}(\text{prim}) = X_E \cdot dE \cdot A \cdot \exp\left[-\tau_{E,c} \cdot \rho_c \cdot \frac{t}{\cos \alpha} \right] \cdot \Omega \cdot \exp\left[-\tau_{ijk,c} \cdot \rho_c \cdot \frac{t}{\cos \beta} \right] \cdot \omega_{ijk} \cdot \frac{\Omega}{\varphi \pi} \cdot \omega_{ijk} \cdot \Omega \cdot \frac{\tau_{E,i}}{\cos \alpha} + \frac{\tau_{ijk,c}}{\cos \beta} \]

از انتگرال کردن جزو جذر از $t = \infty$ و $t = 0$, دست می‌آید به

\[\text{dn}_{ijk}(\text{prim}) = X_E \cdot dE \cdot A \cdot c_i \cdot M_{ij} \cdot \omega_{ijk} \cdot \frac{\Omega}{\varphi \pi} \cdot \omega_{ijk} \cdot \Omega \cdot \frac{\tau_{E,i}}{\cos \alpha} + \frac{\tau_{ijk,c}}{\cos \beta} \]

و اگر انرژی لامب پرتوا یکسی $E_o = eU$ و انرژی پیوندی الکترون‌ها در تراز Z از عنصر i باشد، خواهیم داشت:

\[n_{ijk}(\text{prim}) = A \cdot c_i \cdot M_{ij} \cdot \omega_{ijk} \cdot \frac{\Omega}{\varphi \pi} \cdot \omega_{ijk} \cdot \Omega \cdot \frac{\tau_{E,i}}{\cos \alpha} + \frac{\tau_{ijk,c}}{\cos \beta} \]

در معادلهٔ بالا برای $n_{ijk}(\text{prim})$ مقدار را می‌توان از جدول زیر به کرد:

- M_{ij}: لیه گنج
- c_i: کارآیی ترموآنتال
- ω_{ijk}: شدت‌های نسبی
- P_{ijk}: کارآیی آنتی‌کار
- s_{ij} (و آنها)
- e_{ijk} (و آنها)
- X_E (فقط برای آنتی‌کار ساز‌های نیمارسانا)
- E_{ijk} و E_{ij}
- $E_o = eU$
- $\tau_{a,b}$ و τ
- β و α

در شرح دستگاه
منادی A و ضریب ثابت \(X_E \) هنوز نامعلوم و لیل در طول یک آزمایش ثابت اند.

\[B_{ijk} = C \cdot \tau_{ij,ik} \cdot \varepsilon_{ijk} \]

اگر تمام مقادیر نامعلوم، به استثنای \(C \) و \(\varepsilon_{ijk} \) و مقادیر معلوم رادر خلاصه کنیم در این صورت خواهیم داشت:

\[
n_{ijk} = C \cdot C_i \cdot B_{ijk} \cdot \varepsilon_{ijk}
\]

در رابطه بالا غلظت مورد نظر (\(C_i \)) علماهو بر اینکه در ظاهر معاادله دیده می‌شود در نیز وجود دارد. \(\tau_{ijk,c} \) و \(\tau_{E,c} \)

برانگیختنی دوم

حالات برانگیختنی دوم به این ترتیب به وجود می‌آید که پرتو فلوروسان به وسیله پرتو \(ijk \) مشخصه یک عنصر دیگر نمونه تولید شود. مثالاً نمونه‌ای از مس و روزی به صورت آلفا برنج خود قادerno است تراز K عنصر مس را در نظر می‌گیریم. نتیجه‌گیری که پرتو فلوروسان \(K_\alpha \) مس را اندامی می‌گیرد، علیاً بر برانگیختنی Zn \(K_\alpha \) اول مس به وسیله پرتو بتو \(X_E \) که قبلاً محاسبه شده برتو \(K_\beta \) تولید می‌شود که با یک به حساب آورده شود.

محاسبه سهم ناشی از برانگیختنی دوم در شمارش پرتو فلوروسان، با استفاده از شکل ۲ انجام می‌گیرد. مشابه برانگیختنی اول یک حجم جزئی \(A.\varepsilon \) در نظر می‌گیریم. در این حجم پرتویی که از لامپ می‌رسد، نسبت تابش مشخصه فلوروسان مس می‌شود. این پرتو با بجاگی \(ij \) مشخص می‌کنیم. \(x/y/z \) تولید می‌شود، به حرف اول Zn \(K_\beta \) مثال از آلفا برنج و تابش که در اثر Cu \(K_\alpha \) وس هر حرف دوم \(k = L_{\alpha}, j = K, i = Cu \) معروف هستند.

\[z = M_{\alpha}, y = K, x = Zn \]
پرتو فلورورسان $\vec{x}_\mu\vec{y}_\nu\vec{z}_\omega$ که در جریه ϕ تولید شده در همه زاویه فضایی 4π به طور یکنواخت پرا کنده می‌شود. اگر بخشی از پرتو که تحت زاویه γ نسبت به عمود بر سطح در پراکنده می‌شود را در نظر بگیریم، در محدوده $\Phi\tau\xi\Phi\gamma$ و γ یا، این داشت:

$$\int_0^{2\pi} r(r\sin\gamma)\cdot r\sin\gamma\,d\gamma = \frac{\sin\gamma\,d\gamma}{\sin\gamma}$$

با هم یا یاد کاهش شدت پرتو $\vec{x}_\mu\vec{y}_\nu\vec{z}_\omega$ در طول راه r در نظر گرفته شود. مقدار r با استفاده از شکل ۲ پس از اینجاست با:

$$r = \frac{t - \xi}{\cos\gamma}$$

و از آنجا مسیری به درازای جزء dr در عرض حجم $A\,dt$ پاسخ است با:
در محاسبات زیر پرتو فلورورسان ijk که در طول راه dr تولید شده در نظر گرفته می شود ولی ملاحظات همه شبیه برانگیختنی اول است. مقدار (مطابق $\frac{dr}{\cos \gamma}$)

شکل 2 برای استفاده با:

\[
d^\gamma n_{ijk}(sec,xyz) = X_E \cdot dE \cdot A \cdot \exp \left[- \tau_{E,c} \cdot \frac{\xi}{\cos \alpha} \right] \cdot d\xi \cdot \rho_c \cdot C_x \cdot \tau_{E,x} \cdot M_{xy} \cdot \omega_{xy} \cdot P_{xyz} \cdot \sin \gamma \exp \left[- \tau_{xyz,c} \cdot \frac{1 - \xi}{\cos \gamma} \right] \cdot \frac{dt}{\cos \gamma} \cdot \tau_{xyz,c}.
\]

\[
C_i \cdot \rho_c \cdot \tau_{xyz,i} \cdot M_{ij} \cdot P_{ijk} \cdot \frac{\Omega}{\pi} \exp \left[- \tau_{ijk,c} \cdot \frac{1}{\cos \beta} \right] \cdot \epsilon_{ijk}.
\]

محدوده التکرار کیکی برای ξ (مطابق شکل 2) از صفر تا $\tau_{ijk,c}$ است.

برای اینکه از (مطابق شکل 2) در $n_{ijk}(sec,xyz)$ به $d^\gamma n_{ijk}(sec,xyz)$ محدوده ξ از صفر تا $\tau_{ijk,c}$ می شود از $\tau_{ijk,c}$ به بعد $C_i \cdot \rho_c \cdot \tau_{xyz,i} \cdot M_{ij} \cdot P_{ijk} \cdot \frac{\Omega}{\pi} \exp \left[- \tau_{ijk,c} \cdot \frac{1}{\cos \beta} \right] \cdot \epsilon_{ijk}$ با استفاده از روابط زیر

\[
C = A \cdot \frac{\Omega}{\pi \cdot \pi} \cdot \text{Const.}
\]

\[
B_{ijk} = M_{ij} \cdot \omega_{ijk} \cdot P_{ijk}
\]

\[
B_{xyz} = M_{xy} \cdot \omega_{xy} \cdot P_{xyz}
\]

به نتیجه زیر منجر می شود.
تحلیل گمی یا XRF

de = \text{E} \cdot \frac{X_E \cdot \tau_{E_X}}{\frac{\tau_E}{\cos \alpha} + \frac{\tau_{E_X}}{\cos \beta}}

\left[\frac{\cos \beta}{\tau_{ik,c}} \ln \left(1 + \frac{1}{\cos \beta} \cdot \frac{\tau_{ik,c}}{\tau_{xyz,c}} \right) \right] \cdot \ln \left[1 + \frac{1}{\cos \alpha} \cdot \frac{\tau_{E,c}}{\tau_{xyz,c}} \right] \cdot dE

بحث و نتیجه‌گیری:

نظریهٔ ارائه شده در این مقاله در محاسبات مربوط به ترکیبات دو عنصری مانند برنج که دارای براون‌گیختگی دوم استفاده شده است. اگر نمونه‌های آزمایش‌دار (Cu - Zn) ترکیبی بیش از دو عنصر باشد، مانند فولاد ضدزنگ (Cr - Fe - Ni)، شرایط جدیدی در آزمایش حاصل می‌شود که نیازمند تجدید نظر در این نظریه است. برای شرح بیشتر این مسئله مثال زیر را بررسی می‌کنیم.

در فولاد ضدزنگ، اگر بخواهیم با استفاده از پرتو Fe Kβ و Fe Kα، Ni Kβ و Ni Kα تحلیل کمی خود را انجام دهیم، بهتر توجه داشته باشیم که پرتوهای مشخصه Cr Kα می‌توانند اتم‌های کروم (Cr) را برای گسل پرتو مشخصه براون‌گیختگی سازند. از طرف دیگر Fe Kβ و Fe Kα نیز پرتوهای مشخصه Ni Kβ و Ni Kα پرتوهای مشخصه Cr Kα را تولید می‌کنند. در نتیجه برای تولید پرتو مشخصه Cr Kα چهار عامل براون‌گیختگی دوم مؤثر خواهند بود که از رابطه زیر می‌توان بهره‌گرفت:

\[n_{CrK\gamma\gamma} = n_{CrK\gamma\gamma}^{(prim)} + \sum_{u=1}^{6} n_{CrK\gamma\gamma}^{(sec,x\gamma\gamma,u\gamma\gamma)} \]

\[u = 1 \equiv Ni K\alpha \quad u = 2 \equiv Ni K\beta \quad u = 3 \equiv Fe K\alpha \quad u = 4 \equiv Fe K\beta \]
به طور کلی در مثال بالا می‌توان دنباله‌های زیر را در پرانگیختن اتم‌ها برای گسیل پرتو در X_E نظر گرفت.

برانگیختنی اول برای گسیل Cr که با دنباله‌ای زیر شروع می‌شود.

$X_E \rightarrow Cr\,\alpha$

برانگیختنی دوم با دنباله‌های زیر ادامه می‌یابد:

$X_E \rightarrow Ni\,\alpha \rightarrow Cr\,\alpha$

$X_E \rightarrow Ni\,\beta \rightarrow Cr\,\alpha$

$X_E \rightarrow Fe\,\alpha \rightarrow Cr\,\alpha$

$X_E \rightarrow Fe\,\beta \rightarrow Cr\,\alpha$

$Ni\,\alpha$ که در نتیجه پرانگیختنی اتم آهن با پرتوهای مشخصه $Fe\,\beta$ و $Fe\,\alpha$ پرتوهای تولید شده‌اند، به نوبت خود می‌توانند در تولید پرتو مشخصه $Cr\,\alpha$ شرکت کنند. بنابراین دنباله‌ای زیر را می‌توان در نظر گرفت:

$X_E \rightarrow Ni\,\alpha \rightarrow Fe\,\alpha \rightarrow Cr\,\alpha$

$X_E \rightarrow Ni\,\alpha \rightarrow Fe\,\beta \rightarrow Cr\,\alpha$

$X_E \rightarrow Ni\,\beta \rightarrow Fe\,\alpha \rightarrow Cr\,\alpha$

$X_E \rightarrow Ni\,\beta \rightarrow Fe\,\beta \rightarrow Cr\,\alpha$

دنباله‌های بالا که منجر به تولید پرتو $Cr\alpha$ می‌شوند باید نقشه‌بازی که برای محاسبه شدت پرانگیختنی اول و دوم بسته آمد، معلوم می‌شود که محاسبه شدت پرانگیختنی سوم مفصل‌تر و پیچیده‌تر خواهد بود و نیز مستلزم صرف زمانی طولانی تر جهت انجام محاسبه است، در صورتی که سهم پرانگیختنی سوم در شدت نهایی به نسبت قابل ملاحظه‌ای کمتر است. این موضوع برداشته‌ای است از نتیجه
جدول 1
درصد شدت‌های بدست آمده از فولاد ضدزنگ به ترتیب برانگیختگی اول، دوم و سوم درصد تركیب

Ni	Fe	Cr	X_E	Ni	Fe	جمع
10	80	10	71/8	1/15	26/7	1/8
20	70	10	72/5	2/52	23/5	1/5
40	50	10	76/6	7/10	17/10	2/4
70	20	10	76/5	16/3	6/98	2/3
10	30	60	80/6	1/49	17/6	1/5
20	50	10	81/2	3/20	14/6	3/9
30	70	10	82/7	1/3	5/9	1/2
40	50	10	87/2	1/79	10/7	1/3
60	50	10	88/0	8/92	3/65	1/4

اندازه‌گیری‌های شیمیایی و فیزیولوژی [17] روی نمونه‌ای از فولاد ضدزنگ. نتایج آزمایش‌های ذکردر جدول 1 آورده شده است. این جدول نشان می‌دهد که برانگیختگی سوم جدای از سایر جدول‌ها می‌توان از آن صرف نظر کرد.

در حال حاضر در آزمایشگاه‌های پروتو X و شناخت مواد دانشگاه تبریز فعالیت‌هایی در ارتباط با جمع آوری جداول لازم برای تحلیل کمی نتایج تحریم با استفاده از نظریه ارائه شده در این مقاله در شرف انجام است و امید است نتایج پژوهش‌های در حال انجام در مقالات بعدی اعلام شود.
قد ردانی

از دانشگاه فنی وین به خاطر در اختیار گذارشتن تمام مقالات علمی مربوط و فراهم آوردن امکانات جهت انجام این کار تقدیر و تشکر به عمل می‌آید از دانشگاه تبریک که با اعطای فرصت مطالعاتی و حمایت مالی موجهات این تحقیق را فراهم آوردن، سپاسگزاری می‌شود.

مراجع