Mineralogical study of Gharebagh mica mine and relationship between mineralization and plutonic, metamorphic host rocks.

Modjtahedi, M. – Jahangiri, A.
Tabriz University – Department of Geology.

Key Words: Phlogopite, Apatite, Nonorogeny granite type A, Assimilation, pneumatolite to hydrothermal phase.

Abstract: Microscopic and XRD investigations indicate that the main mica is phlogopite. There are also a small amount of Muscovite in the east part. Trend of mica layers is NE-SW.

Host rocks are Gneiss, micaschists, granite and gabbro. Minerals assemblage of this mine is phlogopite, apatite and calcite. Chemical and microscopical investigations of granite indicate that they are nonorogen alkaligranite type A. The major minerals are potassic feldspars and albite (with microperthite texture) and quartz (with micrographic texture). Garnet and calcite are minor minerals. Phlogopite, Apatite and calcite vein is resulted in pneumatolite to hydrothermal phase from a granitic melt with high Mg, K, Ca and P.
مقاله و بررسی کانی‌های معدن میکا قره باغ و ارتباط کانی‌سازی آن با سنگ‌های نفوذی و دگرگونی منطقه

منصور مجتهدی - احمد جهانگیری
دانشگاه تبریز - گروه ژمنی شناسی

چکیده: مطالعات میکروسکوپی و XRD نشان می‌دهند که اصولاً میکا معدن قره‌باغ از نوع فلوگوپیت است، و در بخش شرقی معدن موسکوپی به مقدار کمتر مشاهده می‌شود. در این معدن میکا به صورت لایه‌ای است و در امتداد شمال شرقی - جنوب غربی قرار گرفته است. دیواره معدن یا از سنگ‌های دگرگونی گلیس و میکا است و یا از گرانیت‌های درشت دانه و کابرو. پارازیگرودن‌های این معدن از فلوگوپیت، کلسیت، و آپاتیت تشکیل شده است. مطالعات شیمیایی و میکروسکوپی گرانیت‌های دربرگیرنده معدن، از نوع غیرگوپی‌ای A است. این گرانیت‌ها دارای کانی‌های اصلی فلسفید پتاسیک، آلبیت (به صورت بافت میکروپتی‌ای)، و کوارتز بوده و ضمناً کانی‌های گردون و کلسیت نیز در آن‌ها دیده می‌شوند. ژمنی اثر احتمالاً حاصل هضم سنگ‌های دگرگونی دیواره‌هایی که به کانی‌های غیرگوپی‌ای هستند. فراوانی فلوگوپیت و آپاتیت زاگی در منطقه حاکم است، و این کانی‌ها در مراحل پنجم تولیدیک‌ها تا هیدروترمال از بقایا‌ماده گرانیت مذاب که از منیزیم، پتاسیم، کلسیم و فسفر غنی بوده و نیز از هضم سنگ‌های دگرگونی بوجود آمده‌اند.

واژه‌های کلیدی: فلوگوپیت، آپاتیت، گرانیت‌ها غیرگوپی‌ای نوع A، هضم سنگ‌های دگرگونی، مراحل پنیماتولیتیک‌ها هیدروترمال.
مقدمه

منطقه‌ای که معدن میکای قربانی در آن قرار دارد، از مشرف به دریاچه ارومیه و از مغرب به جاده ارومیه - سلماس محدود می‌شود. قدمتی توری سنگ‌های منطقه شامل سنگ‌های دگرگونی میکاکشیست، کوارتزیت، آمفیبولیت، مورری و گنیس و سنگ‌های آذین غرب و گاپرو دیوریت حاکی عدیسی‌هایی از نپرو کسپیت، وریولیت هستند. در کرتاسه فوقانی به درون این سنگ‌ها، گرانت‌های قربانی و قارچی با عوامل در حدود 15×20 کیلومتر نفوذ کرده‌اند. کانسار میکا در مجاور سنگ‌های گرانت‌های با سنگ‌های دگرگونی و گاپرو تشکیل شده است (شکل 1). این معدن از سال 1348 شمسی در حال استخراج است [1]. از این معدن سالانه در حدود 800 تن میکا استخراج می‌شود و حداقل ذخیره بی‌آورد شده میکای معدن و مناطق اطراف در حدود 65000 تن برآورد شده است [2].

طول این معدن در حدود 400 متر و عرض آن در حدود 100 متر است [3].

ضخامت‌های میکا از جنوب سنگ‌های تا بیش از 12 متر است. و از 30 تا 80 درصد فلوراگوییت تشکیل شده‌اند. اندیشه میکاها از جنوب میلیتر تا بزرگتر از 12×12 سانتی‌متر است، (شکل 2).

آبانتی‌ها به رنگ سبز تا سیاه زیتونی بوده و غالباً به صورت سنگ هم‌منشورهای سنگ‌کشی دی پرآرامده دیده می‌شوند (شکل 3). کانی کلسیت نیز به همراه آبانتی و فلوراگوییت در آن وجود دارند که رنگ آنها سرخ و صورتی است و اندیشه بلورهای لوزی رخ کلسیت تا 10 سانتی‌متر هم می‌رسد.

در منطقه قربانی و قارچی بزرگ‌ترین توده فلوراگویی گرانت‌ها هستند که به شکل باشیسته توده و در رنگ‌های مختلف ظاهر شده‌اند. این گرانت‌های به رنگ‌های صورتی، سفید، سرخ، و طلائی دیده می‌شوند و بیشتر آنها درخت کننده و رنگ‌های به خاطر وجود ناخالصی آهن در کاتانه‌های فلوراگویی است. این گرانت‌های به علت فشارهای زمین ساختی در و شکاف برداشته و متاسفانه به عنوان سنگ‌های نمای ساختمانی مناسب نیستند. گرانت‌های معدن میکای قربانی بیشتر از نوع صورتی و درخت دانه‌اند. به نظر
مطالعه و بررسی کانی‌های معدن میکا قره‌باغ و ... می‌رود که این گرانیت‌ها هم‌زمان با کوه‌زایی لارامید تشکیل شده باشند. گرانیت‌های مذکور توده‌های گابروی را قطع می‌کند و آن‌کلاروی‌ای از گابرو در درون این گرانیت‌ها دیده می‌شود. مطالعه میکروسکوپی گرانیت‌های معدنی بافت روبه‌روی و بافت گرافیکی آن کوارتز و فلدسپات را نشان می‌دهد. میکروکلین و اورتوکلاز در آن پریشیده است. پلاژیوکلاز (آیت) به مقدار کم و بی‌پروپت به همراه کانی‌های ثانوی و فرعی کانولینیت، سریزیت، اپیدوت، آپاتیت، زیبرنک، و کانی‌های ایبک و اسفن در این معدن وجود دارد. مطالعه میکروسکوپی نمونه‌های گرانیت حاشیه معدن میکا نشان داد که علماء بر کانی‌های بالا بلوه‌های نسبتاً درشت گرونا و کلسیت نیز در آن وجود دارند که احتمالاً به علت هضم سنگ‌های دیوآر به سیل این گرانیت شکل گرفته‌اند (شکل ۴).

مطالعات XRD، میکروسکوپی، و تجزیه شیمیایی

از مطالعات XRD معلوم شد که در آن‌ها کانی فلورگوپایت تیتانیت‌دار تانینولیت وجود دارد. در این روش سعی شده که سطح پودر نمونه میکا زیر فشار (Taeniolit)
شکل ۳: منشور شکوفه‌ای چپ‌سپاری دی پیرامیدال آبانت به طول تقریبی ۹ سانتی‌متر.

شکل ۴: کانی‌های کلسیت و گرونا در گرانیت.
کمتری قرار گیرد تا بلورهای لایهای میکا کمتر به موارد هم درآیند، و در نتیجه بتوان قله‌های واضح تری را مشاهده کرد. از بررسی‌های XRD، کلسیت و آباییت معلوم شده که اولی از نوع Mg و دومی از نوع کلسیت است. با استفاده از میکروسکوپ پلرایزر زاویه محورهای نوری میکاها اندازه‌گیری شد و عددی در حدود ۴ درجه به دست آمد.

تجزیه شیمیایی گرانیت‌های قربانی نشان می‌دهد که گرانیت آن منطقه آلکالی است، و مقادیر زیادی عنصر Na2O و K2O در آن بیش از A و مقدار غيرکوژنی نوع Rb و Rb در آن وجود دارد [۲۴].

لازم می‌باشد و آباییت دار این معدن در مقابل شمارگرهای غیرکلسیت مشابه گایگر - مولر پرتوپاسی بالایی را نشان می‌دهد.

نتیجه و برداشت

بر اساس بورسی‌های کانی‌ای شناسی و سنگ شناسی معدن میکا قره باغ، می‌شود گفت که این معدن در مجاور گرانیت‌های قره باغ با سنگ‌های ذغالس و گابروها بوجود آمده و تشکیل کانی‌های دیواره میکا و آباییت و کلسیت در نتیجه تأثیر محلول‌های ناشی از ماهیت گرانیت‌های با سنگ‌های ذغالس می‌باشد. نیز هضم سنگ‌های مجاور که در اصل دارای میکاهای تیره و روسی بوده‌اند صورت گرفته است. رگه‌های معدنی معمولاً در مجاور بیوتیت شیست‌های ریزدانه قرار دارند. فرایند فلژیت و شدن و آباییت شدن در محل‌های مناسب، موجب تشکیل کانسارهای فلژیت به صورت لایه‌ای به ضخامت حدود سانتی‌متر تا پنج متر شده است. این نوع کانسارهای فلژیته که در اثر گرانیت‌های سنگ‌های ذغالس قبیلی ترکیبی که تشکیل شده‌اند [۵]. کانسارهای فلژیت، آباییت و کلسیت در مراحل بنیان‌گذاری می‌باشند. شاهد اند [۶]. کانسارهای فلژیت، آباییت و کلسیت در مراحل بنیان‌گذاری می‌باشند. و بوده است و نیز از هضم سنگ‌های ذغالسی وجود آمده‌اند.
مراجع

1 - علیپور، ص. (۱۳۶۴): گزارش اکتشافی نیمه تفصیلی معدن میکای قرباباغ. اداره کل معدن و
فلزات آذربایجان غربی.

2 - غفاری زاده (۱۳۶۷): گزارش زمین شناسی معدن میکای قرباباغ آذربایجان غربی - شرکت
خدمات اکتشافی کشور.

3 - امامعلی پور، ع. - میر محمدی، م. ص. - عارف، س. (۱۳۷۰): تحقیقات زمین شناسی و
پتانسیلهای معدن قرباباغ (ارومیه) پایان‌نامه کارشناسی.

4 - جهانگیری، ا. (۱۳۷۰): بررسی پتروپروسسیکی و زمین‌شناسی گرافیت‌های منطقه قرباباغ
پایان‌نامه کارشناسی ارشد.

5 - Troger, W. E. (1970) optische bestimmung der gesteinsbildenden Minerale,
Teil 2, seite, 185, 519.