Mineralogical study of Gharebagh mica mine and relationship between mineralization and plutonic, metamorphic host rocks.

Modjtahedi, M. – Jahangiri, A.
Tabriz University – Department of Geology.

Key Words: Phlogopite, Apatite, Nonorogeny granite type A, Assimilation, pneumatolite to hydrothermal phase.

Abstract: Microscopic and XRD investigations indicate that the main mica is phlogopite. There are also a small amount of Muscovite in the east part. Trend of mica layers is NE-SW.
Host rocks are Gneiss, micaschists, granite and gabbro. Minerals assemblage of this mine is phlogopite, apatite and calcite. Chemical and microscopical investigations of granite indicate that they are nonorogen alkali granite type A. The major minerals are potassic feldspars and albite (with microperthite texture) and quartz (with micrographic texture). Garnet and calcite are minor minerals. Phlogopite, Apatite and calcite vein is resulted in pneumatolite to hydrothermal phase from a granitic melt with high Mg, K, Ca and P.
مطالعه و بررسی کانی‌های معدن میکا قره‌باغ و ارتباط کانی‌سازی آن با سنگ‌های نفوذی و دگرگونی منطقه

منصور مجتهدی - احمد جهانگیری
دانشگاه تبریز - گروه زمین شناسی

چکیده: مطالعات میکروسکوپی و XRD نشان می‌دهند که اصولاً میکا معدن فلوجه پیت است و در بخش شرقی معدن موسکویت به مقدار کمتر مشاهده می‌شود. در این معدن میکا به صورت لایه‌ای است و در امتداد شمال شرقی- جنوب غربی قرار گرفته است. دیواره معدن با آن سنگ‌های دگرگونی کننده و میکاکاهیت است و یا از گرانیت‌های درشت دانه و کابرو پارازنت‌کاهی‌های این معدن از فلوجه پیت، کلسیت، و آپاتیت تشکیل شده است. مطالعات شیمیایی و میکروسکوپی گرانیت‌های دیواره‌های دیواره‌بندن معدن، از نوع غیرکوه‌ای است. این گرانیت‌ها دارای کانی‌های اصلی فلزد، خوراکی، آلیت (به صورت بافت میکروبرتنی)، و کوارتز بوده و ضمن‌اکنیه گرونا و کلسیت‌های تیز در آنها دیده می‌شوند. به گونه که اختیار احتمالاً حاصل هضم سنگ‌های دگرگونی دیواره‌های دیواره‌بندن معدن، فرآیند فلوجه پیت و آپاتیت زائده در منطقه حاکم است، و این کانی‌ها در مراحل پنیما تولیدیکی تا هیدرورترمال از باقی‌مانده گرانیت مذاب که از منیزیت، پتاسیم، کلسیم و فسفر غنی بوده و تیز از هضم سنگ‌های دگرگونی بوجود آمده‌اند.

واژه‌های کلیدی: فلوجه پیت، آپاتیت، گرانیت‌ها غیرکوه‌ای نوع A، هضم سنگ‌های دگرگونی، مراحل پنیما تولیدیکی تا هیدرورترمال.
مقدمه

منطقه‌ای که معدن میکای قره‌باغ در آن قرار دارد، از شرق به دریاچه ارومیه و از غرب به جاده ارومیه - سلماس محدود می‌شود. قبلاً تیرن سنگ‌های منطقه شامل سنگ‌های دگرگونی میکاپیست، کوارتزیت، آمفیبولیت، مورر و گنیس و سنگ‌های آذین گابر و گابرو دیوریت حاصله عدسی هایی از پیره کربن، و روپولیت هستند. در کرتاسه فوقانی به درون این سنگ‌ها، گرانیتهای قره‌باغ و قوسُشی بر اساسی در حدود 150×20 کیلومتر نفوذ کرده‌اند. کاسمار میکا در مجاور سنگ‌های گرانیت با سنگ‌های دگرگونی و گابر تشکیل شده‌است (شکل 1). این معدن از سال 1348 شمسی در حال استخراج است [1]. از این معدن سالانه در حدود 800 تن میکا استخراج می‌شود و واردات ذخیره برآورد شده میکای معدن و مناطق اطراف در حدود 45000 تن برآورد شده است [2].

طول این معدن در حدود 400 متر و عرض آن در حدود 100 متر است [3].

ضخامت‌های لایه‌های میکا از چند سنترمتر تا بیش از یک متر است. و از 30 تا 80 درصد فلورپیت تشکیل شده‌اند. اندمازه میکاها از چند میلیمتر تا بزرگتر از 12×12 سنتریمتر است (شکل 2).

آپاتیت‌های به رنگ سبز تا سبز زیتونی بوده و غالباً به صورت منشورهای شش‌کوشی در پیرامیت‌های میکا شوند (شکل 3). کانی شیشه‌ای نیز به همراه آپاتیت و فلورپیت در آن وجود دارند که رنگ آنها سرخ و صورتی است و اندمازه برخوردارهای لوزی رخ کلسیت تا 10 سنترمتر هم می‌رسد.

در منطقه‌ای قره‌باغ و قوسُشی بزرگ‌ترین توده نفوذی گرانیت‌ها هستند که به شکل باتولیت بوده و در رنگ‌های مختلف ظاهر شده‌اند. این گرانیت به رنگ‌های صورتی، سفید، سرخ، و طلائی دیده می‌شود و بیشتر آنها در جنوب شرقی و رنگ‌شان به خاطر وجود ناخالصی آهن در کانی‌های فلسفی‌سات است. این گرانیت‌ها به عنوان سنگ‌های زمین‌ساختی در و شکاف برداشته و متاسفانه به عنوان سنگ‌های ساختمانی مناسب نیستند. گرانیتهای معدن میکای قره‌باغ بیشتر از نوع صورتی و درشت دانه‌اند. به نظر...
LEGEND

Pre-Cambrian

Mesozoic Cretac

Cenozoic Quat

Eolian

Alluvial

Granite (LARAMID)

Rhyolite

Gabbro-Diorite

Greiss & Migmatite

Micaschist-Quartzite

Amphibolite-Marble

Village

Road

Scale

Mica Mine

Gharebagh

Geology By: K. Modjehedi - A. Jahangiri
مطالعات و بررسی کانی‌های معدن میکا قره‌باغ و...

شکل ۲- میکا (فلوگوپیت) با طولی در حدود ۱۲ سانتی‌متر

می‌رسد که این گرانیت‌ها هم‌زمان با کوه‌هایی لارامید تشکیل شده بودند. گرانیت‌های ذکرتو، پتاسیت گاوبرویی یا قلم‌مند و آنکلاوی‌هایی از گابرو در درون این گرانیت‌ها دیده می‌شود. مطالعات میکروسکوپی گرانیت‌های صورتی معدن، بافت شبه پورفیری و بافت گرافیتی از کوارتز و فلدسپات‌ها نشان می‌دهد. میکروکلیس و اورتوکلاز در آن پرندگاه است. پلاژیوکلاز (آلیت) به مقدار کم و بیتیت به همراه کانی‌های ثانوی و فرعي کاتولیت، سریزیت، اپیدوت، آبیت، اپاتیت، زیرکن، و کانی‌های ایکس و اسفن در این معدن وجود دارد. مطالعات میکروسکوپی نمونه‌های گرانیت حاصله معدن میکا نشان داد که علارو بر کانی‌های بالا بلوارهای نسبتاً درشت گرونا و کلسیت نیز در آن وجود دارند، که احتمالاً به علت هضم سنگ‌های دیواره به وسیله این گرانیت شکل گرفته‌اند (شکل ۲).

مطالعات XRD، میکروسکوپی و تجزیه شیمیایی

از مطالعات XRD معلوم شد که در آنها کانی فلوگوپیت تایتانیولیت وجود دارد. در این روی سطح شکسته سطح پودر نمونه میکا زیر فشار (Taeniolit)
شکل ۳: منشور ششگوشه‌ای در پیامب‌ال‌آبانت با طول تقریبی ۹ سانتی‌متر.

شکل ۴: کانی‌های کلسیت و گرونا در گرانیت.
کمتری قرار گیرد تا بلوک‌های لایه‌ای میکا کمتر به موازات هم درآیند، و در نتیجه بتوان
قله‌های واضحتری را مشاهده کرد. از بررسی‌های XRD کلیسیت و آباینت معلوم شد که
اولی از نوع Mg و دومی از نوع کلردار است.
با استفاده از میکروسکوپ پلاریزه‌ای و دیوره‌های ثب‌دار نوری میکا‌ها اندازه‌گیری شد و
عده‌ی در حدود ۴ درجه به دست آمد.
تجزیه شیمیایی گرانت‌های قره‌باغ نشان می‌دهد که گرانت‌های آن منطقه آلکالی
است و مقادیر زیادی عنصر Na2O و K2O در آن بیش از
غیرکوه‌هایی نوع A و مقدار Rb در آن وجود دارند (۲۴).
لازم به ذکر است که این معدن در مقابل شمارک گاگای - مولر- پرتوژایی
بالایی را نشان می‌دهند.

نتیجه و برداشت
بر اساس بررسی هاکاتی شناسی و سنج‌شناختی معدن میکا قره‌باغ، می‌شود گفت که
این معدن در مجاور گرانیت‌های قره‌باغ با سنگ‌های دگرسانه و گزاره‌ها بوجود آمده و
ت تشکیل کانی‌های درشت بلوک میکا و آباینت کلیسیت در نتیجه تاثیر محلول‌های ناشی
از ماگما‌های گرانیت با سنگ‌های دیواره مذاب گرانیت‌های و نیز هضم سنگ‌های مجاور که در
اصل دارای میکا‌های تیره و روش‌های بوده‌اند صورت گرفته است. رگه‌های معدنی معمولاً
در مجاور بیوئیت شیست‌های ریزدانه قرار دارند. نواکند فلورگوییتی شدن و آباینتی شدن در
محلی‌های مناسب، موجب تشکیل کانسارهای فلورگوییت به صورت لایه‌ای به
ضخامت جند سانتی‌متر تا بیش از یک متر شده است. این نوع کانسارهای فلورگوییت که
در اثر گرانیتهای سنگ‌های دگرسانه و سنگ‌های دیواره مذاب و کوه‌های قندی بزویش تا بلاسیتی تشکیل شده‌اند که
سنگ‌های بازیک دارند، در نقاط دیگر به مرحله میکروفازهایی کانی‌های، و ماداگاسکار نیز مشاهده
شده‌اند (۵). کانسارهای فلورگوییت، آباینت و کلسیت در مرحله بینمیاک‌شناسی تا
هیدروترمال از باقی‌مانده‌گرانیت مذاب که دارای منیزیم، پتاسیم، کلسیم و فسفور غنی
بوده است و نیز از هضم سنگ‌های دگرسانه بوجود آمده‌اند.
مراجع

۱- علیپور، ص. (۱۳۶۴): گزارش اکتشافی نیمه تفصیلی معدن میکای قربان. اداره کل معدن و فلزات آذربایجان غربی.

۲- غفاری زاده (۱۳۶۷): گزارش زمین شناسی معدن میکای قربان آذربایجان غربی - شرکت خدمات اکتشافی کشور.


۴- جهانگیری، ا. (۱۳۷۵): برسی بتون و لوزیک و زتوشیمیایی گرانیت‌های منطقه قربانی پایان نامه کارشناسی ارشد.