کاوش‌های گینه‌ای: مقدمه

کانی‌های آبادی سولفاتی و اپسیومه، استان اصفهان

محمذ علی مکی‌زاده ۱، بول ۱۳۹۷، مه، سال افزون ۲، حمادلله رضازاده ۲

۱- گروه زمین‌شناسی، دانشکده علوم، دانشگاه اصفهان
۲- بخش علوم زمین، دانشکده علم، دانشگاه شیراز

(دریافت مقاله: ۱۳۹۷/۰۷/۱۷، نسخه نهایی: ۱۳۹۷/۰۹/۰۸)

چکیده: منطقه‌های قروفچی در شمال غرب ایران، در ایران مرکزی قرار گرفته است. شیل‌های سیا سانزان نایند به سن تریاس یا پسین به‌عنوان اصلی ترین واحد زمین‌شناسی در منطقه‌های حجمون دارد. و یک حوضچه آب اسیدی در بستر شیل‌های سیاه در قروفچی تشکیل شده است. در اطراف این حوضچه کانی‌های سولفاتی با تنوع رنگی مشاهده می‌شوند. هدف از این پژوهش شناخت گونه‌های کانی‌های مشاهده شده در اطراف دریاچه و ارتباط شیل‌های سیاه بستر حوضچه و منطقه است. نتایج آزمایش‌های XRD مشاهده کرده که این کانی‌ها فرسیکوپتیپت (Fe۳+SO۴.H۲O)، نیتراتوپاتیت (NaAl(SO۴).۴H۲O)، کسپروپتیت (MgSO۴.H۲O) و زیبست هستند. فرایند هورارگی و تجزیه کانی‌های مختلف شیل سیا سانزان نایند، سبب آزاد شدن اجزای سازندرا کانی‌های سولفاتی شده است. فرآیند زهاب اسیدی تولید شده از هورارگی پریت باعث تخریب کانی‌های موجود در شیل سیا و آزادشدن کانی‌های موجود در ساختر آنها شده است که به دنبال آن نهشت کانی‌های تاناهای موجود در منطقه در باخ به تعادل اسیدی محیطی، صورت می‌گیرد. از نظر زئودمیمیاها، از ویژگی‌های چندگانه شیل سیاه مشاهده شده در مقایسه با شیل NASC متفاوتی در حجم حلق‌هایی (۲۷۵ppm) Σ HREE و (۵۰ppm) Σ LREE غنی شیل‌های با نشان مبتنی بر فنکسیون را نشان می‌دهند.

واژه‌های کلیدی: کانی‌های آبادی سولفاتی، شیل‌های سیاه، زمین‌شناسی، منطقه قروفچی

مقدمه

منطقه‌های قروفچی در شمال غرب استان اصفهان و تندیز به مرز این استان با استان مرکزی قرار دارد. گستره‌های منطقه‌های مورد بررسی در طول شمایی (۳۰،۰۰۰ کیلومتر مربع) حوزه طبیعی و طبیعی به‌صرفه تا (۹۴°۳۸،۳۹) قرار گرفته است. این منطقه در مسیر محور اصلی تهران-اصفهان، حد فاصل می‌ماید. چنین در دوران هزاره‌های باستانی و ماقبل تأسیس جمهوری اسلامی ایران، این منطقه از شیل‌های سیاه تریاس بالایی تشکیل شده‌اند.

maryamsalafzoon@yahoo.com

* نویسنده مسئول، تلفن: ۰۲۱۶۴۶۴۴۴۴۴۰، ۰۲۱۶۴۶۴۴۴۴۴۴۰، پست الکترونیک: maryamsalafzoon@yahoo.com
اسبدی، اکساپوسی، و باهلوانان اغلب آنها و کاتیوهای مختلف به‌ویژه یون سولفات موبیل، زمان و شدت اکساپسی و رطوبت از کنندگان تشکیل کلینیک‌های سولفات ناپایه [۶]. به‌عنوان مثال، شکل گونه‌های متفاوت از این کاتیوی‌ها می‌باشند. یون سولفات هاصل هوارژینگی کلینیک‌های سولفاتی موجود در سنتگه‌های [۷]. این کاتیوهای عموماً به‌طور محتوای بیشتر و پیش‌بازی در آب باز رفته در یک بار محل خواهد شد و ممکن است اثرهای نامطلوب زیست‌محیطی به باین برگ گذارد، و با تغییر دما و رطوبت مبطیه به کاتیوهای دیگر تبدیل می‌شود. تاکنون مطالعه‌های پیرامون این کاتیوهای سولفاتی در سطح موضوعی قدرت و چگونگی تشکیل آنها و یون سولفات هاصل هوارژینگی سولفاتی موجود در سنتگه‌های [۷] و تأثیر استفاده از این سولفاتی در لیپولیز سیسولفاتی قدرت می‌باشد در این محل اثر محدود، خصوصاً همزمان پیوند به سیسولفاتی سولفاتی است.\n
روش بررسی

به متوسط بررسی کاتیوهای سولفاتی شکل گرفته در منطقه قروقوی، پس از چندی به‌زودی صحرایی و شناخت واحدهای زمین‌شناسی نمونه‌برداری از شیل سیاه و کاتیوهای سولفاتی تاکنون پی‌پردازی صورت گرفته. نمونه‌برداری از کاتیوهای سولفاتی با تهیه تغییرات رنگ، مقبول و به‌صورت جوگردانه، نام‌آمادند صورت گرفته برای شناسایی زمین‌شناسی سولفاتی. نمونه‌برداری در دو فصل پاییز و تابستان اجرا گردید و برای PH به‌عنوان نمونه برداری شد. به‌وسیله کروماتوگرافی رافینه‌های دانشگاه شیراز تهیه شده. چهار نمونه از کاتیوهای سولفاتی پس از جداسازی میزان رسانش‌های اضافی برای بررسی آزمون‌گیری نمونه‌برداری توسط XRD به‌منظور تعیین همبندی با آزمایشگاه‌های مورد البانه آزمون‌های اصلی با مشخصات دستگاه ۱۷۳۰ کو ارسال، و همانه نیز به‌صورت تغییرات سیسولفاتی به‌صورت بررسی ACME کاملاً درست شده.\n
زمین‌شناسی منطقه و روابط صحرایی

مطابق قروقوی، در یکی از این مناطق به دنبال اثرات آن در این مناطق قرار گرفت است. واحدهای آن همین منطقه‌ای به‌عنوان یکی از قدرم به‌جای عبارت‌های از سازنده ناینبند با سریال بالایی از سیلیس تشکیل شده است. دانه‌های کوارتز در این نمونه‌ها
عناصر بررسی شده است (جدول 1). نتایج تجزیه‌ی ICP-MS نشان می‌دهد که در نمونه‌های شیل‌های سیاه قارچ‌گونی آلومنیوم‌یکی از فراوان‌ترین عنصر است (جدول 1). منیزیم (2458-7798 ppm) و نیز تأثیر فرابند اسیدشوهی به روش ARD به منظور بررسی زمین‌شناسی شیل‌های سیاه قارچ‌گونی، نمونه‌برداری از این سنگ‌ها با هدف بررسی فراوانی عنصر در سنگ و نیز تأثیر فرابند اسیدشوهی به روش ARD (زهاب اسیدی سنگ) صورت گرفته. در این پژوهش فراوانی عنصر معنوی به عنوان خاستگاه تشکیل‌کننده کلیه‌های سولفاتان و نیز زمین‌شناسی کلیه‌های کم‌سولفاتان اهمیت دارد.

خاکشنگی موجی نشان می‌دهد که باかった پایین‌تر فاز دیگرگونی در جهت ضعیف به سیل‌های این سنگ‌های منطقه قارچ‌گونی قارچ‌گونی به منظور بررسی زمین‌شناسی شیل‌های سیاه قارچ‌گونی، نمونه‌برداری از این سنگ‌ها با هدف بررسی فراوانی عنصر در سنگ و نیز تأثیر فرابند اسیدشوهی به روش ARD (زهاب اسیدی سنگ) صورت گرفته. در این پژوهش فراوانی عنصر معنوی به عنوان خاستگاه تشکیل کلیه‌های سولفاتان و نیز زمین‌شناسی کلیه‌های کم‌سولفاتان اهمیت دارد.

شکل 1 موقعیت جغرافیایی و نقشه‌ی زمین‌شناسی منطقه‌ی قارچ‌گونی.

شکل 2 تصویر حوضچه زهاب اسیدی منطقه‌ی قارچ‌گونی کلیه‌های سولفاتان به رنگ‌های سفید و زرد.
شکل ۲ تجاوز سنگ‌گاری سیال سیاه و شیل خاکستری پرگهای ماده آلی و رس‌نیمه رنگ (Clay and OM) به‌همراه دانه‌های آواری کوارتز (QZ) (الق، پ). کانی پیبریت (Py) در ارتباط با اسپینل‌های ماده آلی پرگهای (ب، ت). گسترده‌ترین اکسید آهن (OX) به‌صورت نازک و در رنگ‌های ۳۰ میلی‌متری درمان‌شده می‌باشد.

گوگرد نیز غلظت بالایی (۲۴۸ ppm) احتمالاً می‌تواند در ساختار کانی‌های سولفاتی شرکت کند. کلسیم نیز غلظت بالای توجیهی (۲۲۳۶ ppm) را نشان می‌دهد و به حضور کربنات در نمونه‌ها نسبت داده می‌شود. آرسنیک دارای غلظت بیشتری از ۱۰۰ ppm (۱۲۵ ppm) است. آرسنیک عنصری است که به سهولت در شکه‌سازی پربریت جانشین می‌شود. از طرف دیگر این عنصر می‌تواند جذب سطحی کانی‌های رسی و مواد آلی شود. سدیم نیز غلظت بالایی (۲۴۶۲ ppm) را نشان می‌دهد.

شکل ۳ پهن‌جاری مقدار عناصر خاکی نادر سیال سیاه قروچی نسبت به NASC.
جدول ۱: فراوانی عناصر منتخب در نمونه‌های شیل سیاه منطقه قروقی.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>D.L</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
<th>B8</th>
<th>B9</th>
<th>B10</th>
<th>B12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.01</td>
</tr>
<tr>
<td>Ni</td>
<td>0.01</td>
</tr>
<tr>
<td>Zn</td>
<td>0.01</td>
</tr>
<tr>
<td>Pb</td>
<td>0.01</td>
</tr>
<tr>
<td>Sr</td>
<td>0.01</td>
</tr>
<tr>
<td>Ba</td>
<td>0.01</td>
</tr>
<tr>
<td>Ti</td>
<td>0.01</td>
</tr>
<tr>
<td>Zr</td>
<td>0.01</td>
</tr>
<tr>
<td>Nb</td>
<td>0.01</td>
</tr>
</tbody>
</table>

بارا این مشاهده ایده‌ای برای تشکیل کانی‌های سیاه منطقه قروقی شیل سیاه است.

کاتی‌های ناحیه سیاه منطقه قروقی

در واقع کاتی‌های موجود در اطراف حوضه‌های سیاه منطقه قروقی آب‌زدایی به وجود رسیده در هستند که نشان از وجود شرایط اسیدی در منطقه‌های مورد بررسی دارند. شکل‌دهی این کاتی‌ها توسط مکان‌های نسبی و حفره‌های کانی‌های آب‌زدایی منطقه قروقی به فلزکاری بررسی شده است.

تامارگات

ویژگی‌هایی که به وجوداند به شکل‌دهی، نرمال و سیلیستی بر پایه XRD کاتی‌های شدید بارانی در منطقه قروقاپه، تامارگات، ک←برکت، لودیت، زیست، هماتیت و

هالتی (جدول ۲) در این نوع همایی فراوان‌ترین کانی تشکیل شده است. که به صورت گلوله‌ای سوزنی تا دو سانتی‌متر رشد کرده است. کاتی‌های ک البشرت گل کلمی در منطقه مشاهده شد (شکل ۳ الف). کاتی‌های تاریخی

در شکل‌سازی و زمین‌شیمی کانی‌های آب‌زدای سیاه منطقه قروقی و یا...
جدول ۲ کانی‌های تانوهی سولفاتی تشخیص داده شده در منطقه فروفچی به روش XRD

<table>
<thead>
<tr>
<th>کانی</th>
<th>فرمول شیمیایی</th>
<th>جمله</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>فریکوپیپاتی</td>
<td>Fe$^{3+}$0.66Fe$^{3+}$(SO$_4$)$_2$(OH)$_2$・20(H$_2$O)</td>
<td>۱-۲</td>
<td>زرد، نارنجی</td>
</tr>
<tr>
<td>تاماروگایت</td>
<td>NaAl(SO$_4$)$_2$・6(H$_2$O)</td>
<td>۱</td>
<td>سفید، زرد</td>
</tr>
<tr>
<td>کیرسیرت</td>
<td>MgSO$_4$・H$_2$O</td>
<td>۱</td>
<td>سفید</td>
</tr>
<tr>
<td>بلوتیت</td>
<td>Na$_2$Mg(SO$_4$)$_2$・4H$_2$O</td>
<td>۱-۲</td>
<td>بلونگ، زرد تا نارنجی</td>
</tr>
<tr>
<td>چاکستری</td>
<td>CaSO$_4$・2H$_2$O</td>
<td>۱</td>
<td>پورپر، زرد تا نارنجی</td>
</tr>
<tr>
<td>بلوتیت</td>
<td>NaCl</td>
<td>۱</td>
<td>زرد تا نارنجی</td>
</tr>
<tr>
<td>ماسپریت</td>
<td>Fe$_2$O$_3$H</td>
<td>۱</td>
<td>زرد با حالت ۲ و ۳</td>
</tr>
<tr>
<td>هماتیت</td>
<td>FeOOH</td>
<td>۱</td>
<td>۲ و ۳</td>
</tr>
</tbody>
</table>

شکل ۵ تصاویر نمونه‌های دستی کانی‌های سولفاتی از منطقه فروفچی. (الف) مسکن‌های دنباله‌های شیمیایی کانی‌های سولفاتی در محیط کار

شکل ۶ نمونه‌هایی از کانی‌های سولفاتی در محیط کار

در نزدیکی به دریا با یک مکانی با پارس نسبتاً بالاتر نیز دیده شده- اند. در منطقه‌های فروفچی کانی‌های زرد و سبز را داشت. شده به منظور تشخیص فاز کانی‌های به روش XRD

LogK$= 0.641562$

واکنش ۱

ایرانی محصول شده-

فریکوپیپاتی

NaAl(SO$_4$)$_2$・6H$_2$O $→$ Na$^+$ + Al$^{3+}$ + 2SO$_4$ + 6H$_2$O

امکانات ۱

LogK$= 0.641562$

فریکوپیپاتی

فرمول عموی این گروه است. $AFe^{3+}4(SO_4)^6・20H_2O$ موضعیت شیمیایی A می‌تواند با هریک از عناصر الومینیوم، کلسیم، مس، روی، آهن، فلزی، کلر، سدیم، کلسیم و مگnez بر شوید. که در این صورت نام عضو گروه تغییر خواهد کرد [۲].
فريبوپیپات در زمان انحلال، موجب آزاد شدن بیانه هیدروژن در محلول خواهد شد. این کاتیون با تئور مستقیم از محلول تشکیل می‌شود که نتیجه تکامل می‌باشد. شرایط اسیدی، فلزات بالای آهن فربن، حضور بیانه سولفات، تناسب الکترکسی، بالا دمای مناسب، محتوای محلول شدن این کاتیون با تغییر تغییرات از PH تغییر می‌کند. در غلظت بالای آهن، فربن رشد این کاتیون به صورت تغییرات شرایط اسیدی می‌باشد.

کاتیون‌های این گروه به طور کلی در همی‌سیستم‌های زهاب اسیدی در تمام معادن سولفاتی که مقادیری پیریت داشته باشند یا هزینه‌های سطحی برای آهن موجود باشد، تشکیل خواهند یافت. این کاتیون در شرایط PH اسیدی، اسیدیه كمتر از 5 تا اسیدیهای منفی، پایدار هستند. مهم‌ترین عامل تشکیل این کاتیون همین شیمی است [12]. وجود آهن فربن و مس، عاملی که در فعایل بیانه بیان سولفات و خاصیت اسیدی پایین شرایط مناسب برای تشکیل این کاتیون هست. [12] این گروه XRD واپسی‌هایی 9.6، 14.6، 18 و 25 دارای فله است (شکل 6. پ). این کاتیون شامل اکسیدهای آب و سولفات است (جدول 4). کاتیون
جدول ۴ ترکیب اصلی ساندن‌های اصلی کاتیو فیروکوبایپتیون فرآوری‌چی

<table>
<thead>
<tr>
<th>اکسید</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>۳۰-۳۱٪</td>
</tr>
<tr>
<td>H₂O</td>
<td>۲۸-۳۲٪</td>
</tr>
<tr>
<td>SO₃</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۷ کاتیوی پایداری فیروکوبایپتی، ملانتریت، روم‌کلاژ و زاروسیت – هیدرولیزیون به همراه گوتیت [۱۶]

به بررسی‌پایداری کاتیوی ساندن‌های MgSO₄ و Fe₂O₃ وابسته است [۱۲]. در شکل ۸ تغییرات درصد جرمی MgSO₄ و Fe₂O₃ در فاکتور دما در مقایسه تغییرات درصد جرمی Fe₂O₃ و MgSO₄ در دمای حدود ۱۰۰°C و ۸۰۰°C نشان می‌دهد. بر اساس این شکل، شرایط مناسب برای تشکیل کسپریت در نقطه E است. نقطه E در دمای حدود ۱۰۰°C است. مردانیت MgSO₄ در نقطه D تبدیل به ۴۰٪ پایدار است. مردانیت MgSO₄ در نقطه D تبدیل به ۴۰٪ پایدار است.

 البلدیت

فراوان‌کن‌کنی ریزهدی مولکول Na₂Mg(SO₄)₂.۲H₂O-۲H₂O، این کاتیوی شناخته‌شده با مقدار بالای بلودیت کوارتز نا عید حاضر است. بلودیت به چهار طریق می‌تواند تشکیل گردید: ۱) با رسوب مستقیم از محلول دارای اجزای ساندن‌های این کاتیو (واکنش ۲-الف)، ۲) با فرآیند آردن پایین کاتیو کنی (واکنش ۱۳-الف)، ۳) فراوان‌کن‌کنی (واکنش ۱۳-ب)، ۴) تبلور دوباره کاتیو دکه‌هدیت با فرمول شیمیایی Na₃SO₄·۱۰H₂O.

واکنش ۲-الف

Na₃Mg(SO₄)₂·۴H₂O → Na₂SO₄·۷H₂O + Na₂Mg(SO₄)₂·۴H₂O + Mg²⁺ + 10H₂O

گیبرد به کاتیو کسپریت قبلی می‌شود [۱۶].

بحث و بررسی

شرایط عمومی تشکیل کاتیوی نانوهوی ساندن‌های Fe₂O₃

کاتیوی نانوهوی ساندن‌های Fe₂O₃ در مقایسه CuCN-۱۰، Fe₂O₃ نمودار پراکندگی میدان (۱) این کاتیو به تقسیمی مشترک می‌شود. مقدار اکسید Fe₂O₃ در موارد می‌باشد. مقدار بالای مولکول Fe₂O₃ در ناحیه Fe₂O₃ نمودار Fe₂O₃ از این دو مولکول Fe₂O₃. گیبرد به کاتیو نانوهوی ساندن‌های Na₂Mg(SO₄)₂·۴H₂O

با توجه به عدم حضور کاتیوی Fe₂O₃، نتایج اکسید Fe₂O₃ با شکل XRD محتمل ترین فرآیند برای شکل گیبرد کاتیو بلودیت در منطقه‌های فرآوری‌چی حالت اول است که ناشی از رسوب نانوهوی کاتیو، باید از محلول با اجزای ساندن‌های این کاتیو است. کاتیو نانوهوی Fe₂O₃-۲H₂O است. سیستم MgSO₄·۱۰H₂O.
شکل 8 نمودار سانسیون با دما، pH و مقدار ذرات مخصوص از الکلی‌های مختلف است. میانگین رطوبت سنسیون در آزمون‌های مربوط به آب 98.2% است. میانگین رطوبت سنسیون در آزمون‌های مربوط به آب 98.2% است.

برای نتایج هنری، میانگین تغییر سنسیون در آزمون‌های مختلف باعث می‌شود که مقدار ذرات الکلی به دست آید.

در نتیجه، میانگین محاسبه شده برای این کالزیوم‌های مختلف است. میانگین محاسبه شده برای این کالزیوم‌های مختلف است.

با توجه به نتایج حاصل، میانگین محاسبه شده برای این کالزیوم‌های مختلف است. میانگین محاسبه شده برای این کالزیوم‌های مختلف است.

یک سانسیون تماشایی که در سانسیون با دما، pH و مقدار ذرات مخصوص از الکلی‌های مختلف است. میانگین رطوبت سنسیون در آزمون‌های مربوط به آب 98.2% است. میانگین رطوبت سنسیون در آزمون‌های مربوط به آب 98.2% است.

برای نتایج هنری، میانگین تغییر سنسیون در آزمون‌های مختلف باعث می‌شود که مقدار ذرات الکلی به دست آید.

در نتیجه، میانگین محاسبه شده برای این کالزیوم‌های مختلف است. میانگین محاسبه شده برای این کالزیوم‌های مختلف است.

یک سانسیون تماشایی که در سانسیون با دما، pH و مقدار ذرات مخصوص از الکلی‌های مختلف است. میانگین رطوبت سنسیون در آزمون‌های مربوط به آب 98.2% است. میانگین رطوبت سنسیون در آزمون‌های مربوط به آب 98.2% است.

برای نتایج هنری، میانگین تغییر سنسیون در آزمون‌های مختلف باعث می‌شود که مقدار ذرات الکلی به دست آید.

در نتیجه، میانگین محاسبه شده برای این کالزیوم‌های مختلف است. میانگین محاسبه شده برای این کالزیوم‌های مختلف است.

یک سانسیون تماشایی که در سانسیون با دما، pH و مقدار ذرات مخصوص از الکلی‌های مختلف است. میانگین رطوبت سنسیون در آزمون‌های مربوط به آب 98.2% است. میانگین رطوبت سنسیون در آزمون‌های مربوط به آب 98.2% است.

برای نتایج هنری، میانگین تغییر سنسیون در آزمون‌های مختلف باعث می‌شود که مقدار ذرات الکلی به دست آید.

در نتیجه، میانگین محاسبه شده برای این کالزیوم‌های مختلف است. میانگین محاسبه شده برای این کالزیوم‌های مختلف است.

