Computer Analysis of XRF and XRD Data

Baradaran Dilmaghani, S. - Balazadeh Bahar, H. - Partoi, N.

University of Tabriz, Tabriz - IRAN

Abstract: Modern X-ray systems used in research are equipped with computers. To modernize the available systems which are not attached to such computers and in order to have a rapid access to the data extracted from the system, furnishing such systems seems necessary. In this paper a research conducted at the university of Tabriz to arrive at the above mentioned aims and to have an access to the results obtained from the X-ray systems, the process of computer analysis of XRF and XRD data are presented.
تحليل کامپیوتری داده‌های پراش سنگی و طیف سنگی پرتو X

سعید برادران دیلمقانی
گروه فیزیک - دانشگاه تبریز

حسین بالازاده بهار - ناصر پرتوی
دانشکده فنی - دانشگاه تبریز

چکیده: دستگاه‌های پرتو X امروزی که در تحقیقات و مطالعات پژوهشی بکار می‌رود، مجهز به کامپیوتر هستند. برای مدرن‌سازی کردن دستگاه‌های موجود که مجهز به چندین کامپیوتر های نیستند و نیز جهت سرعت به داده‌های بدست آمده از دستگاه و قابل دسترس بودن آنها، لزوم تجهیز چندین دستگاه‌هایی ضروری به نظر می‌رسد. این مقاله چکیده‌ای از یک طرح تحقیقاتی است، که در دانشگاه تبریز به اجرا درآمده است. در اینجا برای یک بیل نهایی به وسیله‌ی یاد شده و دستیابی به نتایج بدست آمده از دستگاه پرتو ایکس، فراهم کردن تحلیل کامپیوتری داده‌های ارائه شده است.

واژه‌های کلیدی: داده‌های خام، بسامد قله‌ها، پراش خم.

مقدمه
دستگاه پرتو ایکس، شدت و زاویه‌ها را به صورت رقمی نشان می‌دهد. با ساخت و نصب یک مدار واسط الکترونیکی اعداد را در گرفته و به حافظه کامپیوتر انتقال داده می‌شود. این اعداد به نام "داده‌های خام" لقب‌یافتند. در فایل ذخیره‌شده می‌شود. نمایش یک سری "داده‌های خام" در شکل 1 آمده است. این شکل نشان می‌دهد که چنین علامتی به صورت تکراری از سه
بسامد ظاهر شده است:

1- بسامد بالا یا نونه که روی زمینه (1) و بیابان قرار گرفته است.
2- بسامد میانی: که شامل اطلاعات (قَلَهها) هستند.
3- بسامد پایین با زمینه.

بَدیهی است که از مورد بالا فقط مورد 2 در کاربردها حائز اهمیت است که، یعنی بسامدی که ما آن‌ها اصطلاحاً "بسامد قله‌ها" نام داده‌ایم، برای دستیابی به "بسامد قله‌ها" نخست باید بسامد بالا یا نونه را حذف کنیم.

پس از شناسایی قله و جداسازی زمینه، به ذخیره محل قله‌ها در فاصله اقدام می‌شود.

در نهایت موقعیت قله‌ها با گذشته که در حافظه کامپیوتر است، مقایسه و به نوع عناصر یا ترکیب موجود در جسم مورد آزمایش پی برده می‌شود.

1- انگرال گیری از سیگنال داده‌های خام

برای بدست آوردن یک منحنی هموار، می‌توان از سیگنال داده‌های خام به روشی...
(مانند روش دوزنده) انتگرال گیری کردن و از روز آن نقاط، که ظاهراً نقاط تیزی بنظر می‌رسند، به منحنی هموار رسیده. در شکل 2 نمودار شدت بر حسب درجه استفادة از این روش را نشان می‌دهد.

شکل 2

برازش خم (1)

برازش خم، روشنی است که در آن می‌توان از جنگ نقاط موجود در یک صفحه خطی با منحنی بهترین شرایط (کمترین فاصله‌ها نسبت به نقاط یا روي بعضاً از نقاط) گذراندن پیش از پرداختن به موضوع، بهتر است در این مورد توضیحاتی داده شود. مسئله اساسی در برایش خم را می‌توان چنین توصیف کرد. فرض کنید که در یک رشته از اندازه‌گیری‌هایی که روزی کم‌ترین یکی از نقاط از هر یک از اختیار داریم اکنون می‌خواهیم یک ارتباط تابعی مانند \(f(x, y) \) بین \(x \) و \(y \) چنان برقرار کنیم که برای مناسب‌سازی با مقادیر اندازه‌گیری شده \((x_i, y_i)\) داشته باشیم، به طوری که بتوان با استفاده از \(x \) مقادیر مناسبی برای \(y \) اندازه‌گیری شده به دست آورد.
3- حذف تقریبی سیگنال زمینه از سیگنال نرم شده
پس از حذف بسامد بالا، که در عمل برای انجام آن از الگوریتم (الگوریتم و نرم کردن)
استفاده می‌کنیم، به بررسی و حذف سیگنال زمینه می‌پردازیم:
در شکل 3 چنان‌که نموده اصلی آن در شکل 4 رسم شده است، دو علامت ملاحظه
می‌شود، یکی سیگنال خط بر، نرم شده سیگنال خام، و دیگری سیگنال نقطه چینی، که
نتیجه انجام کریک مکزیکی سیگنال خام به دفعات زیاد است. این توجه به این شکل، با
افزایش دفعات انجام کریک دامنه قله‌های سریع (قله‌های با بسامد بالا) بیش از قله‌های
کوچک (نرم) کاسته می‌شود. بهینه
\[\Delta y_p > \Delta y_i \quad \text{با} \quad \Delta y_p >> \Delta y_i \]
و این عمل موجب می‌شود که منحنی خط بر دور منحنی نقطه چین تنیده می‌شود.
بر اساس قابل شناسایی اندازه‌گیری، زیرا این نقطه تبدیل گیری اکثر
علامت‌های تفاوتی در منحنی خط بر و خط چین هستند. اینکه در بازهای
(نقطه که منحنی خط بر زیر منحنی نقطه چین است) همیشه ها دیده
\[E, F, C, D, A, \ldots \]
می‌شود که به دست می‌آید. به راحتی از تفاوتی منحنی زمینه تقریبی (خط نقطه) از منحنی خط بر
(علامت‌های دامنه که نفوذی آن حذف شده‌اند) برآورده نسبتاً مناسب‌اند از سیگنال اصلی
دلخواه ظاهر می‌شود که برای هر پردازش قابل استفاده است.
برای بالا پدیده نصف عمل، پیشنهاد می‌شود نقطه
\[M_1, \ldots, M_{10} \]
را به جای وصل
کردن همه آنها به هم، سه تا سه تا با یکدیگر به هم وصل و با منحنی‌های درجه 2 یا
در جهت بالاتر برای برخی شوند تا سیگنال زمینه مناسب‌تری بدست آید.
در پایان می‌توان با چند بار انجام کریک نقطه چین سیگنال زمینه، شکستگی های
احتمالی منحنی زمینه را از بین برد.

3- قله‌های به روش نصف عرض در نصف ارتفاع از علامت صاف شده
معمولاً برای شناسایی موقعیت قله پرتو X از شکل 5 استفاده می‌شود که در آن قله‌های
صاف شده و منحنی مشاهده می‌شوند. با محاسبه ارتفاع h نیم به‌هوا می‌توان محاسبه
\[A+B \]
کرده و سپس با تابع نقطه A و B و محاسبه
\[\frac{1}{x} \text{ تعیین شده در پرتو منحنی که در}
شکل با

\[X_m \text{ نشان داده شده، محاسبه می‌شود.} \]
پس از شناسایی موضع قله‌ها و ذخیره‌ها در فایل، باید برنامه‌ای نوشته شود تا قله‌ها از قابل خوانده و با مراجعه به جدول‌ها و بررسی نوع عنصر و ترکیبات موجود در نمونه مورد آزمایش تعمیم شوند.

5-1 طرف سنجی برتو ایکس
برای تعیین عنصر به روش طرف سنجی، نخست نوع بلور مورد استفاده برای برنامه‌ای مشخص را انتخاب می‌کنیم (به عنوان یک ورودی) و سپس برنامه با مراجعه به جدول مربوط به یک گروهی ساده محاسبه را انجام می‌دهد.

الگوریتم عنصر بالایی به این صورت است که نخست قله‌های ذخیره‌های شده در فاصله را به ترتیب نظریه‌ای از نظر شدت (Intensity) مرتب می‌کنند. سپس اولین زاویه را خوانده و با ستون مربوط به این زاویه در صورت یافتن یک عناصر خوانده و با میزان معادلی مقدار می‌دهند. در صورتی که عنصر یافت شود، عناصر بالایی به عنوان یکی از عنصر موجود در نمونه اعلام می‌شود.
برای تعیین نوع ترکیبات موجود در ماده مورد آزمایش ماده را به روش زیر پراش سنجی می کنیم: نخست قله ها را به ترتیب شدت از زیرگر به کوچک مرتب کرد و سپس با استاندارد اولین قله از میان کارتهای ASTM که وارد کامپیوتر می‌دارید، جستجو می‌کنیم. آن کارتهایی که دارای این قله‌ها هستند با جدید می‌کنیم، و به همین ترتیب در جستجوی قله‌ها بیشتر بر می‌آیند. اگر بین قله‌های فاصل میان قله استاندارد شدند، با تقریب اولی می‌توان، ترکیب را اعلام کرد. اگر باقی قله‌هایی از میان سایر اعلام شده را از فاصل قله‌ها حذف و در فاصل می‌کنیم.

برای باقیمانده قله‌ها همین روش را تکرار می‌کنیم تا بالاخره هیچ قله‌ای باقی نمانند.

اگر قله‌ای بین کارته مورد نظر باشد، ولی بین قله‌های باقیمانده بیافتد نشود، به فاصل ذخیره مراجعه خواهد شد، و در صورت یافتن قله در فاصل ذخیره ترکیب مورد نظر اعلام خواهد شد.

در این روش سرعت جستجو و یافتن ترکیبات بهتر و سریعتر خواهد بود. اگر بخواهیم کمی دقت‌تر شویم، هنگام جستجوی قله‌ها کارت بین قله‌های فاصل، اگر هشت مورد از قله‌ها بیافتد، ترکیب مورد نظر اعلام می‌شود. روش فوق برای تعداد کارت‌های کم (حداکثر در حضور هزار کارت) که افزایش سرعت پردازش و نتیجه‌گیری سریع مورد نظر است به کار برده می‌شود. در غیر اینصورت روش «هانوی والت» به عنوان الگوریتم اصلی برای شناسایی ترکیبات مورد استفاده قرار می‌گیرد.