Study of Physico - Chemical Characteristic of Ore Bearing Fluids in Fluorite of Kamar - Mehdi

Sadeghi, M.

University of Birgand, Depart of Mining, Birgand, Iran

Key Wrods: Fluid inclusions, Fluorite, Hydrothermal, Geochemical analysis

Abstract: Homogenization temperature of fluorite fluid inclusion indicate that mineralization has mostly take place within the temperature ranging 70 to 150°C. The last ice melting temperature ranges from 0 to -2.2°C and shows that salinity varies from 0 to 3.69 wt% equivalent NaCl. Chemical analysis performed on the liquid phases of fluid inclusion show that mineralizing fluids were rich in Ca and K. The above results along with data obtained by SEM equipped with EDAX spectrophotometry reveals that metal deposit of this mine were probably transported by chloride complexes. Temperature decrease and boiling accuracy were probably the cause of decomposition of chloride complex at the depositional sites.
مطالعه ویژگی‌های فیزیکی-شیمیایی سیالات کانه‌ساز در کانی فلوریت معدن کمر مهندی

محمود صادقی
دانشکده فنی مهندسی پیچاند - گروه معدن

چکیده: مطالعه گروماشی (1) انجام شده روی سیالات درگیر (2) در کانی فلوریت، حاکی از آن است که دامنه‌ی درجه بسامت‌گذاری (حداقلی مایع تکیه کاله‌ای همراه) از 70 تا 150 درجه سانتی‌گراد در تغییر است. مطالعه سرمایش (3) انجام شده بر روی سیالات درگیر نشان می‌دهد که اخیراً دو مایع نهایی به (4) سیالات نیانگین دمای افتاده از 70 تا 200 درجه سانتی‌گراد تغییر می‌کند. چنین دمایی، شوری صفر تا 3 درصد معدال NaCl را برای محلول‌های کانه‌زای مشخص می‌سازد.

تجزیه‌های روش‌شیمیایی انجام شده روی فاز مایع خارج شده از سیالات درگیر نشان می‌دهد که این محلول‌ها از عنصر Ca و K غنی اند. ترکیب فوق به همراه اطلاعات به دست آمده از تک‌ورسی‌های میکروسکوپ الکترونی (EDAX) و مجهز به سیستم ایداکس (SEM) روز فاز‌ها نوزاد سیالات درگیر معدن کمر مهندی می‌تواند حاکی از این باشد که فلزات نهشت شده در این معنی احتمالاً توسط کمپلکس‌های کلریدی حمل شده‌اند. عواملی اهمیت کاهش دما و رخداد پدیده جوشش باعث ناپایداری و متلاشی شدن کمپلکس‌های مذکور گردیده و کانه‌زایی به وقوع پیوسته آمده.

واژه‌های کلیدی: سیالات درگیر، کانی فلوریت، هیدروترمال، تجزیه‌های روش‌شیمیایی

1 - Heating
2 - Fluid inclusion
3 - Freezing
4 - Last ice melting Temperature
مقدمه
معدن فلوریت کمر مهده در ۵۶ درجه شرقی و ۴۳ درجه عرض شمالی به فاصله تقریبی ۱۰۰ کیلومتری جنوب غرب شهرستان طبس، در ناحیه لوت مرکزی ایران و در بلوک طبس واقع شده است. راه ارتباطی به معدن از طریق جاده اسکاندریه بر طبق توسط راه فرعی سمت راست جاده که بین کلمرد و رباط خان قرار دارد، پس از گذر از معادن زغال سنگی مزرعی به معدن فلوریت کمر مهده است. (شکل ۱). کانی اصلی مورد بهره برداری فلوریت است که به صورت رگه‌ای و عدسی در داخل تشکیلات شتري (ترباس) قرار گرفته و گاهی همراه با گالن دیده می‌شود.

به منظور دستیابی به شرایط فیزیکی - شیمیایی محوله‌های کانه ساز در حین رسوب‌گذاری، مطالعه سیالات درگیر در کانی فلوریت انجام شد. بررسی‌های انجام گرفته در جنگل بهبود شامل مطالعه میکروسکوپی نوری، رژیم و تیم، زئوسیمیاپی فاز مایع و میکروسکوپ الکترونی (SEM) روی فاز نوزاد سیالات درگیر می‌باشد. در جریان رشد یا نواری کانه‌ای در محیط آبی‌ای به دلیل بی نظمی مایع در منطقه سرعت پیوند بی‌ساخت و بلوئرین رنگ می‌دهد، به‌طور کلی کانه‌ای از محول در بلوئری کاملاً به دام می‌افتد. برحسب اینکه این بی نظمی‌ها و نیز بی‌باز افتادگی در چه مرحله‌ای از رشد بلوئر رنگ دهد، سیال به دام افتاده به چند گروه تقسیم می‌شود.

نمونه‌برداری و آماده‌سازی
همه مطالعات برای بررسی سیالات درگیر در کانی فلوریت صورت گرفته است. نمونه‌برداری در معدن از تمامی رگه‌های انجام شده که در سطح رخندوم و با عمل حفاری به طریق تونل در آن جا صورت گرفته است. اینکه تمامی از سطح تا حفره و نیز از دیواره تا مرکز رگه صورت پذیرفت است. مطالعه سیالات درگیر، بر روی مقاطع نازک دو بر صیقل (۱) انجام شده که برای آماده سازی جنین مقاطعی در روشن مورد استفاده قرار گرفت.

1 - Double Polished thin Section
شکل ۱ موقتیت معدن فلوریت کمرمهدی و راه‌های ارتباط آن.

مطالعه سیالات درگیر
الف - مطالعه میکروسکوپی

یافته‌های انجام گرفته بر روی نمونه‌های فلوریت معدن کمر مهدی، می‌توان سیالات درگیر را به لحاظ پارازتیبی [۱۴] به سه گروه اولیه، ثانویه و ثانویه کاذب تقسیم بندی کرد.

از نظر فنازه‌ای ترتیبی می‌توان سیالات درگیر را به پنج گروه تقسیم کرد (شکل ۲).

گروه ۱: سیالات درگیر تک فازی مایع
گروه ۲: سیالات درگیر تک فازی بخار
گروه ۳: سیالات درگیر دو فاز مایع + بخار
گروه ۴: سیالات درگیر دو فازی بخار و واکنش کوچک مایع
گروه ۵: سیالات میانگین سه فازی بخار + مایع + فاز نوزاد

از بین گروه های بالا گروه ۵ از بیشترین فروآنتیئ و گروه های ۴ و ۲ از کمترین فراوانی برخوردارند. درجه برشدنی غالباً بین ۹۷ تا ۹۲ درصد اندامه گیری شده است [۵].

اندازه سیالات درگیر از حدود ۳ میکرون تا ۱۰۰ میکرون در تغییرند.
شکل ۲ انواع متفاوت سیالات در گروه هفتمی. 


ب - مطالعه زئوئترومتری و زئو شیمیایی

دمای همسان شدن سیالات در گروه در هر یک از معادن ۱ و ۲ که به فاصله ده کیلومتری از یکدیگر قرار دارند، از رگ های مختلف روی نمودار توزیع فراوانی نشان داده شده.
شکل ۳ نمودار دو تایی مقایسه‌ای دماهای یکنواخت شدگی سیالات درگیر.

است. در معدن شماره یک دماهای همسان شدن بین ۸۰ تا ۱۵۰ درجه سانتی‌گراد است و دماهای ۱۲۵ درجه سانتی‌گراد از بیشترین فراوانی بروخوردار است. در معدن شماره دو۲۰۰ درجه سانتی‌گراد ۳۵درصد دماهای یکنواخت شدگی ۱۵۰ و حداقی ۷۰درجه سانتی‌گراد است و نمودار توزیع فراوانی دماهای ۱۱۵ درجه را به عنوان فراوانترین دما نشان می‌دهد (شکل ۴). تلفیق داده‌های حاصل از مطالعه سرمایش نیز در هر دو معدن صورت گرفت. در معدن شماره یک هر حداکثر دماهای ذوب نهایی یخ ۳۰ درجه سانتی‌گراد و حداقی ۷۰ درجه سانتی‌گراد است که دماهای از ۲۰۰ درجه سانتی‌گراد از بیشترین فراوانی بروخوردار است. در معدن شماره دو، دماهای ذوب نهایی از حداکثر ۳۰ درجه سانتی‌گراد در تغییر است که بیشترین فراوانی مربوط به دماهای ۱۱۵ درجه است (شکل ۴). همچنین با مطالعه سیالات درگیر، تغییرات دما به نسبت ارتقاع محاسبه شد.
جدول 1: تجزیه شیمیایی فاز مايع خارج شده از سیالات درگیر (بر حسب میلی گرم در لیتر).

<table>
<thead>
<tr>
<th>رنگ</th>
<th>افتتاح</th>
<th>نرخ</th>
<th>فرمول</th>
<th>بنام</th>
<th>پیستم</th>
<th>کلیسم</th>
<th>سرب</th>
<th>آهن</th>
<th>سبزه</th>
<th>بیدم</th>
<th>سبزه</th>
<th>سبزه</th>
<th>سبزه</th>
</tr>
</thead>
<tbody>
<tr>
<td>سبز</td>
<td>1475</td>
<td>1</td>
<td>سبز</td>
<td>2</td>
<td>0.97</td>
<td>13.71</td>
<td>1.56</td>
<td>2.95</td>
<td>1.36</td>
<td>2.42</td>
<td>1.30</td>
<td>2.42</td>
<td>1.29</td>
</tr>
<tr>
<td>سبز</td>
<td>1474</td>
<td>1</td>
<td>سبز</td>
<td>2</td>
<td>0.97</td>
<td>13.71</td>
<td>1.56</td>
<td>2.95</td>
<td>1.36</td>
<td>2.42</td>
<td>1.30</td>
<td>2.42</td>
<td>1.29</td>
</tr>
<tr>
<td>سبز</td>
<td>1480</td>
<td>3</td>
<td>سبز</td>
<td>2</td>
<td>0.97</td>
<td>13.71</td>
<td>1.56</td>
<td>2.95</td>
<td>1.36</td>
<td>2.42</td>
<td>1.30</td>
<td>2.42</td>
<td>1.29</td>
</tr>
<tr>
<td>سبز</td>
<td>1417</td>
<td>1</td>
<td>سبز</td>
<td>2</td>
<td>0.97</td>
<td>13.71</td>
<td>1.56</td>
<td>2.95</td>
<td>1.36</td>
<td>2.42</td>
<td>1.30</td>
<td>2.42</td>
<td>1.29</td>
</tr>
<tr>
<td>سبز</td>
<td>1420</td>
<td>1</td>
<td>سبز</td>
<td>2</td>
<td>0.97</td>
<td>13.71</td>
<td>1.56</td>
<td>2.95</td>
<td>1.36</td>
<td>2.42</td>
<td>1.30</td>
<td>2.42</td>
<td>1.29</td>
</tr>
<tr>
<td>سبز</td>
<td>1420</td>
<td>1</td>
<td>سبز</td>
<td>2</td>
<td>0.97</td>
<td>13.71</td>
<td>1.56</td>
<td>2.95</td>
<td>1.36</td>
<td>2.42</td>
<td>1.30</td>
<td>2.42</td>
<td>1.29</td>
</tr>
<tr>
<td>سبز</td>
<td>1420</td>
<td>1</td>
<td>سبز</td>
<td>2</td>
<td>0.97</td>
<td>13.71</td>
<td>1.56</td>
<td>2.95</td>
<td>1.36</td>
<td>2.42</td>
<td>1.30</td>
<td>2.42</td>
<td>1.29</td>
</tr>
<tr>
<td>سبز</td>
<td>1420</td>
<td>1</td>
<td>سبز</td>
<td>2</td>
<td>0.97</td>
<td>13.71</td>
<td>1.56</td>
<td>2.95</td>
<td>1.36</td>
<td>2.42</td>
<td>1.30</td>
<td>2.42</td>
<td>1.29</td>
</tr>
<tr>
<td>سبز</td>
<td>1420</td>
<td>1</td>
<td>سبز</td>
<td>2</td>
<td>0.97</td>
<td>13.71</td>
<td>1.56</td>
<td>2.95</td>
<td>1.36</td>
<td>2.42</td>
<td>1.30</td>
<td>2.42</td>
<td>1.29</td>
</tr>
<tr>
<td>سبز</td>
<td>1420</td>
<td>1</td>
<td>سبز</td>
<td>2</td>
<td>0.97</td>
<td>13.71</td>
<td>1.56</td>
<td>2.95</td>
<td>1.36</td>
<td>2.42</td>
<td>1.30</td>
<td>2.42</td>
<td>1.29</td>
</tr>
</tbody>
</table>
که روندی نژولی دارد (شکل 5).

فاز مایع خارج شده از سیالات در گیر جهت تشخیص کیفی (qualitative analysis) و نیز کمی (semi-quantitative) تجزیه شد. در این روش طیف سنج نشر شعلهای و طیف سنج جذب اتمی مورد استفاده قرار گرفت (جدول 1).

شکل 5 نمودار تغییرات دماهای متوسط یک کوتاهی شدگی سیالات در گیر نسبت به ارتفاع.
نتیجه‌گیری

مطالعات زیوتومومتری، زنده شیمیایی و شناسایی فاز‌های نوزاد سیالات درگیر کانی فلوریت که با گالن (کانسک) هم‌رژیم است، نشان می‌دهد که سیالات درگیر به دام افتاده در کانی فلوریت از دامنهٔ چندان و سبب دمای یک‌واحش شدگی برخوردار نیستند، که این تغییرات دما در معدن کمر مهندی از 70 درجه سانتی‌گراد تغییر می‌کند، همچنین دمای‌ذوب نهایی فاز مایع سیالات درگیر کانی فلوریت از حدود 170 درجه سانتی‌گراد در تغییر است. با توجه به دمای بالا، شوری 90 درصد معادل NaCl برای کانه زایی فلوریت در این معدن پیشنهاد می‌گردد [5].

مطالعات زنده‌شیمیایی فاز مایع سیالات درگیر و مطالعه میکروسکوپ الکترونی EDAX انجام شده بر روی فاز‌های نوزاد، مشخص می‌سازند که محلول‌های فوق عمده‌انگی از K و Ca می‌باشد، به طوریکه به خاطر اشباع بودن فاز مایع سیالات درگیر از این زونها، فاز‌های نوزاد تشکیل شده غالبی‌اً از این دو عنصر تشکیل یافته‌اند (شکل 6).

مطالعات میکروسکوپی سیالات درگیر و زیوتومومتری آنهایشنمی دهم که بکی از بدی‌های مهم که هنگام تقویم محلول‌های کانادار به درون ساخته‌ای می‌زبان کمر مهندی باعث عدم پایداری آنها شده، بدی‌های جوشش می‌باشد، وجود فاز‌های بخار در بعضی از سیالات درگیر و ترکیب‌گری بخاری دیگر از آنها در هنگام عمل گرمایش قبل از یک‌واحش شدن، دلایل بر رخ دادن بدی‌های جوشش دارد. همچنین کاهش دما و فشار از عوامل اصلی کانه زایی در این معدن بوده است [5].

نمونه‌بررسی شده برای نسبت درجه یک‌واحش شدگی به ارتفاع، نشان از کاهش دما در ارتفاعات بالاتر دارد. این مطلب می‌تواند حاکی از این باشد که کاهش دما از عوامل اصلی کانه زایی بوده است، و نهایتاً مطالعات نشان می‌دهد که هوری‌اند در هر در معدن حالت یک‌واحشی داشته که نمایشگر عدم اختلاف محلول‌های گوناگون در هنگام کانه‌برداری است. و سرانجام، کانه‌برداری در محدوده کانه‌برداری گرمایی در درده‌ای یک‌واحشی سبب گردد.
مراجع

1 - درویش زاده - ع، (1370) زمین شناسی ایران - انتشارات نشر دانش - تهران

2 - گزارش عملیات اکتشافی فلورین منطقه طبس، (1372)، شرکت تولید و فرآوری مواد معدنی ایران

3 - Roedder,E. (1984) Fluid inclusions, Rev. in. min Vol.12, mineralogical Society of Amer
