Study of Physico - Chemical Characteristic of Ore Bearing Fluids in Fluorite of Kamar - Mehdı

Sadeghi, M.

University of Birgand, Depart of Mining, Birgand, Iran

Key Words : Fluid inclusions, Fluorite, Hydrothermal, Geochemical analysis

Abstract : Homogenization temperature of fluorite fluid inclusion indicate that mineralization has mostly take place within the temperature ranging 70 to 150°C. The last ice melting temperature ranges from 0 to 2.2°C and shows that salinity varies from 0 to 3.69 wt% equivalent NaCl. Chemical analysis performed on the liquid phases of fluid inclusion show that mineralizing fluids were rich in Ca and K. The above results along with data obtained by SEM equipped with EDAX spectrophotometry reveals that metal deposit of this mine were probably transported by chloride complexes. Temperature decrease and boiling accuracy were probably the cause of decomposition of chloride complex at the depositional sites.
مطالعه ویژگی‌های فیزیکی - شیمیایی سیالات کانه ساز در کانی فلوریت معدن کمر مهدهی

محمود صادقی
دانشکده فنی مهندسی برقند - گروه معدن

چکیده: مطالعه گیمایش (1) انجام شده روي سیالات درگیر (2) در کانی فلوریت، حاکی از آن است که دامنه درجه بدم افتادگی دمای تشکیل کانه های همراه از 70 تا 150 درجه سانتیگراد در تغییر است. مطالعه سرمایش (3) انجام شده بر روی سیالات درگیر نشان می دهد که دامنه ذوب نهایی یک سیالات میانگین بدم افتاده از 2 تا 6 درجه سانتیگراد تغییر می کند. چنین دمایی، شرایط صفر تا 3 درصد معادل NaCl را برای محلول‌های کانه‌ای مشخص سازد.

تجزیه های زنگوش شیمیایی انجام شده روزفاز مایع خارج شده از سیالات درگیر نشان می دهد که این محلول‌ها از عنصر K و Si غنی اند. روش‌های مختلف بررسی ویژگی‌های الکترونی (EDAX) و تصویربرداری میکروسکوپ الکترونی (SEM) مجهز به سیستم ایداکس (EDAX) روزفاژی نوزاد سیالات درگیر معدن کمر مهدهی می تواند حاکی از این باشد که فلزات نهشته بدن در این معدن احتمالاً توسط کمپلکس‌های کلریدی حمل شدها. تا حدی همکنون کاهش دمای و رخداد پدیده جوشش باعتناییدا و متلاشی شدن کمپلکس‌های مذکور گردیده و کانعزاپی

واژه های کلیدی: سیالات درگیر، کانی فلوریت، هیدروترمال، تجزیه زنگوش شیمیایی

1 - Heating
2 - Fluidinclusion
3 - Freezing
4 - Last ice melting Temperate
مقدمه
معدن فلوریت کم‌همه‌ی در ۵۶۰ طول شرقی و ۳۲۰ عرض شمالی به فاصله‌ی تقریبی ۱۰۰ کیلومتری جنوب غرب شهرستان طبس، در راجعی لوت مراکزی ایران و در بلوک طبس واقع شده است [۱]. راه ارتباطی به معدن، از طریق جاده اسکله‌های زیست به طبس توسط راه فرعی سمت جاده که بین کلمرد و رباط خان قرار دارد، پس از گذر از معادن زغال سنگی و مرزی به معدن فلوریت کم‌همه‌ی است (شکل ۱). یکی از اصلی مورد بهره برداری فلوریت است که به صورت رگه‌ای و عدسی در داخل تشکیلات شتری (تریاس) قرار گرفته و گاهی همراه با گالن دیده می‌شود [۲].

به منظور دستیابی به شرایط فیزیکی - شیمیایی محلول‌های کانه‌ساز در حین رسوب‌گذاری مطالعه سیالات درگیر در کانی فلوریت انجام شد. بررسی‌های انجام گرفته در چندین بخش شمول مطالعه میکروسکوپی نوری، زنده ترمومتری، زنده شیمیایی فاز (SEM) روي فاز نوزاد سیالات درگیر می‌باشد. در جریان رشد یا تولید کانی‌ها در محیط آبگین به دلیل به تظمیه هایی که در سطوح بلورین رخ می‌دهد، به خصوص کوچکی از محلول در بلورهای جامد به دام می‌افتد. برحسب اینکه این پی نظری‌ها و نیز بدام افتادگی در چه مرحله‌ای از رشد بلور رخ دهد، سیال به دام افتاده به جنگ‌گروه تقسیم می‌شود [۳].

نمونه برداری و آماده‌سازی
همه‌ی مطالعات برای بررسی سیالات درگیر در کانی فلوریت صورت گرفته است. نمونه‌های برداری در معدن از تمامی رگه‌های انجام شده که در سطح رخ‌نمون و با عمل حفاری به طریق تونل در آن جای صورت گرفته است. اینکار تمامی از سطح تا حمق و نیز از دیواره‌های تا مرکز رگه صورت پذیرفته است. مطالعه سیالات درگیر، بر روی مقاطع نازک در بر Mount rezin و Mount rezin صیقل (۱) انجام شده که براي آماده سازی جنین مقاطعی دو روشن مورد استفاده قرار گرفت.

1 - Double Polished thin Section
شکل ۱ موقعیت معدن فلوریت کمرمهدی و راههای ارتباطی آن.

مطالعه سیالات درگیر
الف - مطالعه میکروسکوپی

با بررسی های انجام گرفته بر روی نمونه های فلوریت معدن کمر مهیدی، می توان سیالات درگیر را به لحاظ پارازیتیکی [۴] به سه گروه اولیه، ثانویه و ثانویه کاذب تقسیم بندی کرد.

از نظر فاقدیات ترکیبی می توان سیالات درگیر را به پنج گروه تقسیم کرد (شکل ۲).

گروه ۱: سیالات درگیر تک فازی مابع
گروه ۲: سیالات درگیر تک فازی بخار
گروه ۳: سیالات درگیر دو فاز مابع + بخار
گروه ۴: سیالات درگیر دو فازی بخار و واکنش کوکومک مابع
گروه ۵: سیالات میانگین سه فازی بخار + مابع + فاز نوزاد

از بین گروه های بالا گروه ۳ از بیشترین فراوانی و گروه های ۲ و ۵ از کمترین فراوانی برخوردارند. درجه پرشنگی غالبی بین ۹۲ تا ۹۷ درصد اندامه گیری شده است [۵].

اندازه سیالات درگیر از حدود ۳ میکرون تا ۱۰۰ میکرون در تغییر دارد.
شکل ۲ انواع مختلف سیالات در گیر در کمر مهندی.

A: گروه ۱، B: گروه ۲

C: گروه ۳، D: بلور نکاتیو سیال درکر، E: گروه ۴، F: گروه ۵

ب - مطالعه زنون مومتری و زنوهای شیمیایی

دمای همبستگی شدن سیالات در گیر در هر یک از معادن ۱ و ۲ که به فاصله ده کیلومتری از یکدیگر قرار دارند، از رگه های مختلف روز نمودار توزیع فراوانی نشان داده شده.
شکل ۳ نمودار دوتاپی مقایسه‌ای دماهای یکنواخت شدگی سیالات دریگر.

است. در معدن شمارة یک دمای همسان شدن بین ۸۰ تا ۱۵۰ درجه سانتی‌گراد است و دمای ۱۲۵ درجه سانتی‌گراد از بیشترین فرآوری برخورد انست. در معدن شمارة ۲ حداکثر دمای یکنواخت شدگی ۱۵۰ و حداقل ۷۰ درجه سانتی‌گراد است و نمودار توزیع فرآوری دمای ۱۱۵ درجه را به عنوان فرآوری دشمن نشان می‌دهد (شکل ۲). تلقوی داده‌های حاصل از مطالعات سرمایش نیز در هر دو معدن صورت گرفت.

در معدن شمارة یک حداکثر دمای ذوب نهایی بین ۲۰ تا ۳۰ درجه سانتی‌گراد و حداقل ۳۰ تا ۴۰ درجه سانتی‌گراد است که دمای ۳۰ درجه سانتی‌گراد از بیشترین فرآوری برخورد است. در معدن شمارة دو، دمای ذوب نهایی از حداکثر ۷۰ تا حداقل ۷۰ درجه سانتی‌گراد در تغییر است که بیشترین فرآوری مربوط به دمای ۳۰ درجه است (شکل ۲). همچنین با مطالعه سیالات دریگر، تغییرات دما به نسبت ارتفاع محاسبه شد.
جدول 1: تجزیه شیمیایی فاز مايع خارج شده از سیالات درگیر (بر حسب میلی گرم در لیتر)

| رنگ | شکل | ارتفاع | شماره | سدیم | کلسیم | پنانسیم | نیترات | اینورتان | مرکور | انتلورتان | سرب | آهن | مس | صودرورسان | السر | گربه | گلیپ | کل | نیترات | آب | نمودار دوتایی مقایسه‌ای دماهای ذوب نهایی نخ سیالات درگیر
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>سبز</td>
<td>1</td>
<td>1785</td>
<td>1</td>
<td>1</td>
<td>124</td>
<td>136</td>
<td>155</td>
<td>172</td>
<td>185</td>
<td>155</td>
<td>136</td>
<td>124</td>
<td>1</td>
<td>30</td>
<td>12</td>
<td>57</td>
<td>1</td>
<td>1</td>
<td>107</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>سبز</td>
<td>1</td>
<td>1246</td>
<td>1</td>
<td>1</td>
<td>124</td>
<td>136</td>
<td>155</td>
<td>172</td>
<td>185</td>
<td>155</td>
<td>136</td>
<td>124</td>
<td>1</td>
<td>30</td>
<td>12</td>
<td>57</td>
<td>1</td>
<td>1</td>
<td>107</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>سبز</td>
<td>1</td>
<td>1280</td>
<td>1</td>
<td>1</td>
<td>124</td>
<td>136</td>
<td>155</td>
<td>172</td>
<td>185</td>
<td>155</td>
<td>136</td>
<td>124</td>
<td>1</td>
<td>30</td>
<td>12</td>
<td>57</td>
<td>1</td>
<td>1</td>
<td>107</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>سفید</td>
<td>1</td>
<td>1217</td>
<td>1</td>
<td>1</td>
<td>124</td>
<td>136</td>
<td>155</td>
<td>172</td>
<td>185</td>
<td>155</td>
<td>136</td>
<td>124</td>
<td>1</td>
<td>30</td>
<td>12</td>
<td>57</td>
<td>1</td>
<td>1</td>
<td>107</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>سفید</td>
<td>1</td>
<td>1260</td>
<td>1</td>
<td>1</td>
<td>124</td>
<td>136</td>
<td>155</td>
<td>172</td>
<td>185</td>
<td>155</td>
<td>136</td>
<td>124</td>
<td>1</td>
<td>30</td>
<td>12</td>
<td>57</td>
<td>1</td>
<td>1</td>
<td>107</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>سفید</td>
<td>1</td>
<td>1280</td>
<td>1</td>
<td>1</td>
<td>124</td>
<td>136</td>
<td>155</td>
<td>172</td>
<td>185</td>
<td>155</td>
<td>136</td>
<td>124</td>
<td>1</td>
<td>30</td>
<td>12</td>
<td>57</td>
<td>1</td>
<td>1</td>
<td>107</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>سفید</td>
<td>1</td>
<td>1260</td>
<td>1</td>
<td>1</td>
<td>124</td>
<td>136</td>
<td>155</td>
<td>172</td>
<td>185</td>
<td>155</td>
<td>136</td>
<td>124</td>
<td>1</td>
<td>30</td>
<td>12</td>
<td>57</td>
<td>1</td>
<td>1</td>
<td>107</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>سفید</td>
<td>1</td>
<td>1280</td>
<td>1</td>
<td>1</td>
<td>124</td>
<td>136</td>
<td>155</td>
<td>172</td>
<td>185</td>
<td>155</td>
<td>136</td>
<td>124</td>
<td>1</td>
<td>30</td>
<td>12</td>
<td>57</td>
<td>1</td>
<td>1</td>
<td>107</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>

ن: کاتیون‌هایی مربوطه توسط سنتیگ، اتدازه گری نشده‌اند.
که روندی نزولی دارد (شکل 5).

فاز مایع خارج شده از سیالات در گیر جهت تشخیص کیفی (qualitative analysis) و نیز کمی (semi-quantitative) کاتیون‌ها تجزیه شد. در این روش طیف شست نشر شعله‌ای و طیف سنج جذب اتمی مورد استفاده قرار گرفت (جدول 1).

شکل 5 نمودار تغییرات دماهای متوسط یکنواخت شدگی سیالات در گیر نسبت به ارتفاع.
نتیجه گیری
مطالعات زتوترومتری، زئو شیمیایی و شناسایی فازهای نوزاد سیالات در گیر کانی فلوریت که با گالن (کانسنس) همزاد است، نشان می‌دهد که سیالات در گیر به دام افتاده در کانی فلوریت از دامنه جنگل و سبیع دما به‌کلی نشکنتی شدیگی برخوردار نبودند، دامنه تغییرات دما در مقدار کم می‌باشد از 0 تا 170 درجه سانتی‌گراد تغییر در حدود 1.5 درجه سانتی‌گراد در تغییر است. با توجه به دماهای بالاتر، نشان می‌دهد که فلوریت نشکنتی‌تر از این دما بوده است.
برای کانه زایی فلوریت در این مقدار بیشتر می‌گردد.[5]

مطالعات زئو شیمیایی فاز مابع سیالات در گیر و مطالعه میکروسکوپ الکترونی انجام شده بر روی فازهای نوزاد، مشخص می‌شود که EDAX مجهز به سیستم اندازه‌گیری شیمیایی مولکول‌های فوندال‌گیری و K و Ca مولکول‌هایی فوندال‌گیری از آنها شده و با انجام ایجاد واکنش بودن فاز مابع سیالات در گیر از این دماها، فازهای نوزاد تشکیل شده و در این دما و عنصر تشکیل‌دهنده (فیتاپ) می‌باشد.[6]

مطالعات میکروسکوپی سیالات در گیر و زتوترومتری آنها نشان می‌دهد که یکی از بدی‌های مهم که هنگام شکست مولکول‌های کاندن در به‌روزسیر می‌باشد که همزمان می‌باشد که باعث عدم پایداری آنها شده، بدی‌های جویشی می‌باشد. وجود فازهای بخار در بعضی از سیالات درگیر و ترکیبگری برخی بخار از آنها در هنگام عمل گرمایی قبل از بکارگیری شدن، دلایل بر دخالت بدی‌های جویشی دارد. همچنین کاهش دما و فشار از عوامل اصلی کانه زایی در این مقدار بوده است.[5]

نمونه‌های ترموسیم شده نشان داده شده که به‌طور مستمر یک نشانه شدیگی به ارتفاع، نشان از کاهش دما در ارتفاعات بالا مستمر این مطلب می‌تواند حاکم از این باشد که کاهش دما از عوامل اصلی کانه زایی است. و نهایتاً مطالعات نشان می‌دهد که کاهش دما در مرده حالت یکنواختی داشته که نمایشگر عدم اختلاف محلول‌های گوناگون در هنگام کانه زایی است. و سرانجام، کانسار فوق در محدوده کانسنس‌های گرمایی و در رده اپی ترمال قرار می‌گیرد.
مراجع

1 - درویش زاده - ع، (1370) زمین شناسی ایران - انتشارات نشر دانش - تهران
2 - گزارش عملیات اکتشافی فلورین منطقه طبس، (1372)، شرکت تولید نفت اوری
مواد معدنی ایران

3 - Roedder, E. (1984) Fluid inclusions, Rev. in. min Vol.12, mineralogical Society of Amer
