The Effect of Microstructure in Magnetic Properties of Barium Ferrite

Zaker, A. M

Iran University of Science and Technology, Department of Physics, Tehran, Iran

Key Words: Sintering, Microstructure, Barium Ferrite.

Abstract: To study the effect of microstructures, long-time grinding and nonmagnetic phase on magnetic properties of barium ferrite, isotropic samples of barium ferrite magnets, \(\text{Ba}_{1.6}\text{Fe}_2\text{O}_3 \), were prepared by ceramics and co-precipitation methods. Magnetic measurements indicate a higher demagnetization of the samples prepared by chemical method due to lack of remanent stress and crystallographic imperfections in this case. Also, the intermediate nonmagnetic phases is less in samples prepared by chemical method. The optimum sintering temperature for maximum store of magnetic energy is 925-950\(^\circ\)C for chemical and 950-1000\(^\circ\)C for ceramic methods.
بررسی نقش ریزساختار در رفتار مغناطیسی آهن رباها دائمی فریت باریمی

عبدالمهدی ذاکر
دانشکده فیزیک - دانشگاه علم و صنعت ایران

چکیده: به منظور بررسی نقش ریزساختار، تشخیص داده شد که اعداد از آسیاب کردن‌های طولانی و تشکیل فازهای نامغناطیسی در خواص مغناطیسی فریت باریم همسانگردند. نمونه‌هایی از آن به دو روش هم‌رسوبی شیمیایی و سرامیکی تهیه شده و خواص مغناطیسی آنها با هم مقایسه شدند.

نتایج این پژوهش نشان می‌دهد که نیروی و امکانات مغناطیسی نمونه‌ها تحت شده به روش شیمیایی نسبت به نمونه‌های سرامیکی، به دلیل نبودن تنش‌های باقیمانده، و تفاوت بلویرپ‌های عملیات طولانی آسیاب کردن بزرگتر است.

همچنین فازهای مبانی نامغناطیسی در نمونه‌های شیمیایی در مقایسه با نمونه‌های سرامیکی بسیار کمتر است. بهترین گستره‌های درای کلوخه شدن نمونه‌های شیمیایی 950°C - 925°C و نمونه‌های سرامیکی 1000°C - 950°C است.

واژه‌های کلیدی: ریزساختار، فاز مغناطیسی، نتایج بلویری، هم‌رسوبی شیمیایی

مقدمه

کاربرد گسترده قطعات مغناطیسی در صنایع الکترونیک، وسائل پزشکی، و غیره موجب شده است تا پژوهش‌های بسیاری در مورد خواص فیزیکی، ترمودینامیکی، ساختاری، و خواص مغناطیسی مواد انجام شود. [1] فریت‌ها که از جمله ترکیب‌های جامد اکسیدی
بررسی نقش ریزساختار در رفتار مغناطیسی آهن ریاهای دائمی فریت باریم

به شمار می‌آیند، دسته مهمی از مواد مغناطیسی را تشکیل می‌دهند. این مواد مقدار
زیادی آهن سه ثرفيتی (Fe⁺³) دارند و از لحاظ ساختاری به سه دسته می‌گردد: اسپینل،
نارسنگی (کارنت)، و شست‌گوشه (هگرکونال) تقسیم می‌شوند. بیک از فریت های
مهم که به فراوانی در ساخت مغناطیس‌های دائمی به کار می‌روند، فریت باریم شست‌گوشه
است. ارزان مواد اولیه، مقاومت و رزیدوکسیکالیک بالا، و خواص مغناطیسی
خوب این فریت که ناشی از انرژی ناهمسانگردی‌های زیاد است، سبب شده‌اند تا
پژوهش‌های گسترده‌ای روی فریت باریم انجام گیرد [2-4]

عوامل جنی‌ی بر خواص مغناطیسی فریته‌ها اثر می‌گذارد که مهم‌ترین آنها عبارت‌اند
از ریز ساختار (اندازه‌ی دانه‌ها)، تنش‌های ناشی از آسیب‌های کردن‌های طولانی، تشکیل
فاز‌های فعالانه‌ی بلوری‌ها و دمای کلی‌خیه شدن، که بررسی نقش آنها در خواص مغناطیسی
فریت باریم هدف این پژوهش است.

روش تهیه نمونه و آزمایش

فریت باریم را به روش‌های گوناگونی تهیه می‌کنند [5-8]. برای بررسی نقش ریز ساختار
در خواص مغناطیسی فریت باریم، نمونه‌هایی از آن به دو روش هرموسوسی سرمایی و
سرامیکی ساخته و خواص مغناطیسی آنها مقایسه شدند. در روش هرموسوسی سرمایی،
از کلرید آهن FeCl₃ و کلرید باریم BaCl₂ بذاراد به نسبت وزنی Fe/Ba=1/2 استفاده
شد. مواد اولیه را درون یک بشر حاوی مقداری آب متققر ریخته و آنها را مخلوط کردیم.
سپس با ریختن این مخلوط در یک محلول تالیبی (PH>13) بالاقیلی زلی آذری رنگ
به دست آمد. برای بررسی راوادن بونهای OH
که موجب تخریب ساختار فریت باریم می
شود، از این قاناد را با آب متققر یافتیم. پس از خشک کردن محصول،
فاده برای شکل (Amorphous) ماده‌ی بي شکل
(DTA) فاز بلوری شکل گرفت. بررسی‌های پریش سنگی پرتو X (XRD) و آنالیز گرماي
نموده‌ها، تشکیل فاز بلوری را در آن ناحیه دمایی تأیید می‌کنند (شکل 1). بوادر تهیه

115
پودر شیمیایی گلخه شده در $850^\circ C$

پودر شیمیایی گلخه شده در $700^\circ C$

پودر شیمیایی گلخه شده در $500^\circ C$

پودر شیمیایی گلخه شده در $300^\circ C$

پودر شیمیایی خام

شکل 1. شکل گیری ساختار بلوری فریت باریم تهیه شده به روش همراهی شیمیایی.

شده، در گوره الکتریکی و در حضور اکسیژن به مدت یک ساعت در دمای $950^\circ C$ تکلس شده، و سپس با آسیب درباره آن، شکل دمو نمونه‌ها در قالب‌های مخصوص انجام گرفت. و سرانجام در چند دمای مختلف ($1000-900^\circ C$) آنها را به صورت کلخه در آوردیم.
جدول 1 دمای کلیک شدن و نیروی و امغناطیسی نمونه‌ها

<table>
<thead>
<tr>
<th>نموده‌های تهیه شده به روش همرسوبی شیمیایی</th>
<th>دمای کلیک شدن (°C)</th>
<th>(Oe)Hc</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیتروس و امغناطیسی</td>
<td>900</td>
<td>925</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>(Oe)Hc</td>
</tr>
<tr>
<td>نیتروس و امغناطیسی استراکس</td>
<td>1210</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>1320</td>
<td>2570</td>
</tr>
<tr>
<td></td>
<td>2420</td>
<td>(Oe)Hc</td>
</tr>
</tbody>
</table>

در روش سرامیکی، مواد الکتریکی و α-Fe₂O₃ و BaCa₃ مورد استفاده قرار گرفته‌اند. برای یک‌پاره‌ای‌ای که اندازه ذرات صورت پورده، نخست مواد اولیه را به صورت خشک آسیاب کرده و سپس با افزودن مقداری یلده ساخته شده و آسیاب کرده و در کوره همراه با نمونه‌های 2 تغییرات اندازه‌میلاین دانه‌ها در نمونه‌های تهیه شده به روش شیمیایی بر حسب دمای کلیک شدن.

![Diagram](chart.png)
شکل ۳ تغییرات اندازه میانگین دانه‌ها در نمونه‌های سرامیکی بر حسب دمای کلوخه شدن.

دمیدن اکسیژن به مدت ۹۰ دقیقه، در دمای ۱۲۰۰°C تکلیس کردیم. ماده‌ب به دست آمده را دوباره آسیاب کرده و سپس بودر حاصل را در قالب‌های مخصوص شکل دادیم. این محصول سرانجام در جریان دمایی ۱۰۰۰°C ۹۰۰ بهبهان نگهداری شد.

دمای کلوخه شدن و نیروی وامغناطیسی به دست آمده برای نمونه‌ها در جدول ۱ آورده شده‌اند. انددازه‌دانه‌های نمونه‌ها با توجه به عکس‌هایی مورد بررسی قرارگرفتند که با میکروسکوپ الکترونی از سطح مقطع شکست هر نمونه گرفته شده برند. نتایج به دست آمده برای میانگین اندازه‌دانه‌ها در شکل‌های ۱ و ۳ نشان داده شده‌اند. برای انددازه‌گیری بهره‌های مغناطیسی نمونه‌ها از دستگاه حلقه‌بسته مغناطیسی (DC Magnetic Hystersic Loop) موجود در پژوهشگاه مواد و انرژی استفاده شد.
بحث و برداشت
تغیرات نیروی وامغناطیسی، Hc، بر حسب دما کلولخه شدن نمونه های تهیه شده، به دو روش هم سویی شیمیایی و سرامیکی در شکل ۳ رسم شده‌اند. از این منحنی‌ها، چنین بر می‌آید که Hc در نمونه‌های شیمیایی با افزایش دما کلولخه شدن در دمای آرام ۹۰۰–۱۱۰۰°C (۹۰۵°C) کاهش می‌یابد. روند کاهش Hc در آغاز آرام است، ولی از دما ۱۱۰۰°C به بالا، شدت بیشتری می‌یابد، به گونه‌ای که در دمای ۱۱۰۰°C پی گیری‌با به یک چهارم مقدار خود در دمای ۹۰۰°C می‌رسد.

کاهش نیروی وامغناطیسی با رشد دانه‌ها ارتباط دارد. روند رشد دانه‌ها در شکل ۴ نیروی وامغناطیسی نمونه‌های شیمیایی و سرامیکی بر حسب دما کلولخه شدن.
نمودهای شیمیایی در گستره دمایی ۹۵۰ تا ۱۰۰۰ °C یکدیگر كننده و کننده است، ولی از دمای ۹۵۰ تا بالای سرعت رشد دانه‌ها به صورت چشمگیری افزایش می‌یابد (شکل ۲). در نمونه های سرماییکی ملاحظه می‌شود که نیروی اپنگاتیسی، Hc از دمای ۹۰۰ تا ۱۰۰۰ °C افزایش آرامی دارد ولی پس از گذشت از دمای گلوله شدن دمای حذف دارد. افزایش اولیه Hc تا دمای حدود ۱۰۰۰ °C و سپس دوباره کاهش می‌یابد (شکل ۲). افزایش اولیه Hc تا دمای حدود ۱۰۰۰ °C می‌توان تأثیر از بین بردنشها و کم شدن مراکز دارای تفاوت بلوری دانست که در اثر آسیب کردن پودر نمونه ها به وجود می‌آید [۹] کاهش بعدی Hc در بالاتر از دمای ۱۰۰۰ °C به رشد دانه مربوط می‌شود.
مقایسه نتایج اندازه گیری‌های مغناطیسی نمونه‌ها نشان می‌دهد که در گستره دمایی 950 تا 900 مقدار نیروی و امگناطیسی نمونه‌های شیمیایی بیش از نمونه‌های سرامیکی است. این این است که در آن گستره دمایی، ذرات نمونه‌های شیمیایی بسیار برای ریزتر از ذرات نمونه‌های سرامیکی هستند (شکل‌های 2 و 3). مقدار کاهش H_c در نمونه‌های شیمیایی در گستره دمایی 950 تا 900°C بیش از میزان کاهش نمونه‌های سرامیکی در گستره دمایی 1000 تا 1100°C است. این امر با میزان توانایی مقایسه میانگین اندازه ذرات در دمایهای مناسب توجه کرد. با توجه به شکل‌های 2 و 3 دیده می‌شود که میانگین اندازه ذرات نمونه‌های شیمیایی در دمای 1800°C و نمونه سرامیکی در دمای 1000°C برای است با درنمونه سرامیکی 1100°C است. در دمای 1100°C اندازه ذرات نمونه‌های شیمیایی به درنمونه سرامیکی و نمونه سرامیکی به نمونه سرامیکی و نمونه سرامیکی به درنمونه سرامیکی و نمونه سرامیکی به درنمونه سرامیکی به درنمونه سرامیکی و نمونه سرامیکی به درنمونه سرامیکی به درنмон
تشکر و قدردانی

به دنبالی از جناب آقای دکتر مضطرزاده ریاست محترم پژوهشگاه مواد و انرژی به
خاطر موافقت با انجام اندازه گیری‌های مغناطیسی در پژوهشگاه، و نیز از آقای دکتر
به‌ورود به خاطر همکاری‌هاشان در این زمینه و اراده پشتیبانی‌های ارزش‌های در مسائل تجربی
قدیمی و سیاسی‌گزاری می‌شود.

مراجع

 Publ. Bv.