Crystal Growth of Binary Semiconductors CdTe, CdSe, PbTe, PbSe, and Determination of their Structural and Electrical Parameters.

Tajabor, N. and Arabshahi, H.
Ferdowsi University of Mashad

Key Words: Crystal Growth, Vapour Transport, Lattice Constant, Energy Gap.

Abstract: Single crystals of binary semiconductors CdTe, CdSe, PbTe and PbSe were grown by sublimation and condensation techniques using argon as the carrier gas. Powder X-ray diffractometry as well as Laue method were employed for the structural analysis. By using Hall technique, the density and polarity of charge carriers were determined in single crystals. PbTe and PbSe crystals were grown as p-type with charge density of about 1.1x10^{18} cm^{-3} whereas CdTe and CdSe were grown as intrinsic. Thermo - electric technique was also utilised to determine the energy gap of single and polycrystals of CdTe and CdSe.
رشد تک بلور نیمرساناهای دوتایی PbSe ، PbTe ، CdSe ، CdTe و تعیین پارامترهای ساختاری و الکتریکی آنها

ناصر تجری - هادی عرشاشی
دانشگاه فردوسی مشهد

چکیده: در این پژوهش، آبیا نمونه‌های تک بلور ترکیب‌های دوتایی PbSe ، PbTe ، CdSe ، CdTe از فاز بخار ماده با استفاده از پیوند آلیانس آنها در لوله‌باز و با استفاده از گاز حامل آوریل رشد داده شدند. آنگاه نوع شبکه برای تک بلور و X-سنجش نکته خاصیت برای این تک بلور انتخاب شدند.

سپس با استفاده از اثرات چگالی حامل‌های بار و نوع آنها در نمونه تک بلور و بسیاری از اثرات چگالی حامل‌های بار و نوع آنها در N می‌کند که چگالی حامل PbSe و PbTe به صورت نوع P رشد می‌کند که چگالی حامل PbSe و PbTe در آنها حدود 10¹⁸ cm⁻³ است. در حالی که به طور داتی Rشد می‌ایستند. با استفاده از روش الکتریکی - گرمایی، شکاف انرژی ترکیب‌های اخیر اندازه‌گیری و این نتیجه به دست آمده که شکاف انرژی در نمونه داده آنها نزدیکترند.

واژه‌های کلیدی: رشد بلور، تراز بخار، ثابت شبکه، شبکه آنتزی، پرتو الکتریکی، ضریب انتزیت

مقدمه

در ترکیب‌های دوتایی نیمرساناهای آنها دو از نظرات کارا که شکاف انرژی ترکیب‌های CdSe و CdTe از خانواده ترکیب‌های انرژی آنها به مرتبه Vطی 1 و Vطی 1 با توجه لژور E تغییرات بهره بخشینه بر حسب شکاف انرژی برای باتری خورشیدی نشان می‌دهد که
رشته تک بلور نیمرساناهای دوتایی

شکاف انرژی بیهنه در گستره ۱ تا ۲۵eV تا ۳۵eV در میان آنها قرار دارد. این رو انتظار می‌رود با بهره‌برداری با الکترود CuInP، یا با در و میکانیک ساخته شود. مودول که کار با میکانیک زنده، مقیاس‌های آنها در این گستره قرار دارد. بهره‌برداری در و میکانیک ساخته شد از CdTe به میزان ۱۲ درصد می‌رسد. علاوه بر این نت تک بلور CdTe به با کار می‌رود. همچنین آنها در ساخت آشکار ساز اپتونی دیوید سیمان اهمیت دارد. چرا که در گستره ۱۰μm به عنوان آشکار ساز فورسی خارج می‌کنند. از نیمرساناهای P–CdTe(Cl) به و در P–CdTe به با چگالی حفره P نیمرساناهای ساز فوتوئیک آرایه استفاده می‌شود [۳۱].

حدود ۱۰۰×۱۰۰ (در K دارند) به عنوان آشکار ساز برتوهای است. نیمرساناهای IV-VI با استفاده و در ترکیبات همچنین این تکنیک‌ها برای ساخت لیزرهای فورسی خارج کار بر دارد. برای رشد تک بلورهای ترکیبات P–Te و PbSe TD–VI و IV–VI روش‌های گوناگون رشد از مذاب (به و I–II–VI روش‌های جدید، برخی از جملات زیر نیستند. این نیمسازان به عنوان مواد آشکار ساز فوتوئیک برای طول موجهای ۱ تا ۴μm آب‌های بالایی برخوردارند.

برای رشد تک بلورهای ترکیبات P–Te و PbSe TD–VI و IV–VI روش‌های گوناگون رشد از مذاب (به و I–II–VI روش‌های جدید، برخی از جملات زیر نیستند. این نیمسازان به عنوان مواد آشکار ساز فوتوئیک برای طول موجهای ۱ تا ۴μm آب‌های بالایی برخوردارند. همچنین این تکنیک‌ها برای ساخت لیزرهای فورسی خارج کار بر دارد. برای رشد تک بلورهای ترکیبات P–Te و PbSe TD–VI و IV–VI روش‌های گوناگون رشد از مذاب (به و I–II–VI روش‌های جدید، برخی از جملات زیر نیستند. این نیمسازان به عنوان مواد آشکار ساز فوتوئیک برای طول موجهای ۱ تا ۴μm آب‌های بالایی برخوردارند. همچنین این تکنیک‌ها برای ساخت لیزرهای فورسی خارج کار بر دارد. برای رشد تک بلورهای ترکیبات P–Te و PbSe TD–VI و IV–VI روش‌های گوناگون رشد از مذاب (به و I–II–VI روش‌های جدید، برخی از جملات زیر نیستند. این نیمسازان به عنوان مواد آشکار ساز فوتوئیک برای طول موجهای ۱ T
جدول ۱ خواص ترمودینامیکی برخی از ترکیب‌های II-IV

<table>
<thead>
<tr>
<th>عنصر</th>
<th>نقطه ذوب °C</th>
<th>نقطه ترکیب</th>
<th>نقطه ذوب °C</th>
<th>عنصر</th>
<th>نقطه ذوب °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>411</td>
<td>CdTe</td>
<td>1092-1095</td>
<td>Mp</td>
<td>0.23</td>
</tr>
<tr>
<td>Te</td>
<td>450</td>
<td>CdSe</td>
<td>1339-1344</td>
<td>Mp(?)</td>
<td>hex-hex</td>
</tr>
<tr>
<td>Se</td>
<td>417</td>
<td>CdS</td>
<td>1420-1475</td>
<td>RT, Mp</td>
<td>hex-hex</td>
</tr>
<tr>
<td>Zn</td>
<td>410</td>
<td>ZnTe</td>
<td>1295-1305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>119</td>
<td>ZnSe</td>
<td>1515-1545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>119</td>
<td>ZnS</td>
<td>1718-1800</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MP = Melting Point
RT = Room Temperature

پژوهشگران بی نقص این ترکیب عملاً ناممکن باشد. از مشکلات دیگری که از این ترکیب‌ها می‌توان به فشار بخار بالای آنها در نقطه ذوب بالا بودن نقطه ذوب ترکیب نسبت به عنصر سازنده ترکیب و در برخی موارد تغییر داده دانسته‌اند. استخباراتی به مکعبی اشکال کرده‌اند. این ویژگی‌ها در جدول ۱ گرد آوری شده‌اند.

رشد ترکیب‌های دوتایی PbSe و PbTe، CdSe، CdTe
برای رشد تک بلور این ترکیب‌ها از روش تبخیر در لوله با استفاده شد. ابتدا مقداری ماده بسیلور و زن کرده در یک قاب سیلیکا می‌گذاریم. یافته را در یک لوله کوارتز به قطر ۵۰ یا ۲ سانتی‌متر و با دو یا سه اینه از قرار داده آنگاه لوله را در یک کوره الکتریکی به منطقه‌ای، پوشش به طول تقریبی ۲۵۰ سانتی‌متر، جای می‌دهیم. با عبور جریان الکتریکی اجاهه داده می‌شود دو منطقه منطقه‌ای که در کوره گرم شود و سرتاسر کوره به شیب دما در دل خواهد برسد. یافته در منطقه‌ای از کوره قرار می‌گیرد که دماي آن زیر دماي ذوب ماده بسیلور باشد. از یک انتهای لوله کوارتز، گاز نادری گازها آگور یا هیلیوم به داخل لوله فرستاده می‌شود تا مولکول‌های ماده ساختار شده را با خود حمل و در نقاط سردتر
جدول ۲: پارامترهای لازم‌ترین برای رشد ترکیب‌های دوتایی و مشخصات ظاهری آن. بلوپلاک‌ها

| ترکیب | وزن ماده | قطروله | سرعت جریان غاز بخار | زمان رشد | باعث میلی‌متری | مشخصات تک بلوپلاک
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CdTe</td>
<td>950</td>
<td>1/5</td>
<td>140 ml/min</td>
<td>120</td>
<td>22</td>
<td>ابعاد میلی‌متری</td>
</tr>
<tr>
<td>CdSe</td>
<td>1050</td>
<td>1/6</td>
<td>140 ml/min</td>
<td>24</td>
<td>8</td>
<td>سوزنی - صحغاصی</td>
</tr>
<tr>
<td>PbTe</td>
<td>890</td>
<td>3</td>
<td>150 ml/min</td>
<td>10</td>
<td>10</td>
<td>مثلثی شکل، ناواتانی، هرین شکل - هشتوچی</td>
</tr>
<tr>
<td>PbSe</td>
<td>1000</td>
<td>2</td>
<td>60 ml/min</td>
<td>20</td>
<td>20</td>
<td>سوزنی - مکانی</td>
</tr>
</tbody>
</table>

لوله برشاند. سرعت جریان غاز بخار و وزن لازم برای تصفیه ماده بسیلور اولیه، زمان رشد است. به سرعت تصفیه ماده بستگی دارد که این نیز به روش آزمایش و هدایت تعیین می‌شود. هسته‌های اولیه برای رشد تک بلوپلاک در حداکثر ۱۰۰۰ درجه کمتر از دمای قادح تشکیل می‌شوند. شکل خارجی تک بلوپلاک رشد یافته بستگی به نوع ترکیب دارد که آنها را همراه با بلوپلاک‌های تجربه شده در رشد ترکیب‌های بالا در جدول ۲ فهرست کرده‌ایم.

تغییر پارامترهای ساختاری ترکیب‌های PbSe و PbTe، CdSe، CdTe

برای تشخیص ساختار بلوری و اندازه‌گیری پارامترهای ساختاری این ترکیب‌ها برای ترکیب‌های برای ترکیب‌ها در ترکیب‌ها در ترکیب‌های برای T

\[
\text{برای} \theta = \alpha, \text{و معلوم بودن طول موج پرتو } X \text{به کار بردند}
\]

مقدار د برای هر دسته صفحه پراش کننده محاسبه کرد. سپس با استفاده از مقدار d
جدول ۳ پارامترهای ساختاری تک بلورهای رشد یافته

<table>
<thead>
<tr>
<th>گزارش شده</th>
<th>محاسبه شده</th>
<th>نوع شیبکای</th>
<th>نوع ساختار</th>
<th>ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = ۳۸۸۰</td>
<td>a = ۳۸۸</td>
<td>مکعبی</td>
<td>مکعبی</td>
<td>CdTe</td>
</tr>
<tr>
<td>a = ۴۳۰۰</td>
<td>a = ۴۳۰۰</td>
<td>ششگوشی</td>
<td>ورتسایت</td>
<td>CdSe</td>
</tr>
<tr>
<td>c = ۷/۰۱</td>
<td>c = ۷/۰۱</td>
<td>مکعبی</td>
<td>مکعبی</td>
<td>PbTe</td>
</tr>
<tr>
<td>a = ۳۸۴۴</td>
<td>a = ۳۸۴۴</td>
<td>Fcc</td>
<td>Fcc</td>
<td>PbSe</td>
</tr>
</tbody>
</table>

حاصل و روش‌های تحلیلی تعیین ساختار [۷] نوع شبکه برای و انداژه تابث شبکه یافتین‌‌می‌کنیم. یک نمونه از قله‌های پراشی ثبت شده در دستگاه پراش نگاشت برای نمونه های بسیاری و تک بلور در شکل ۱ آشندگی وجود دارد. ثابت شده است. ثابت شده برای شاخه‌های میل‌های دردست صفحه پراش نگاشت مشخص شده است. ساختار بلوئور، ثابت شده و نوع شبکه برای برای هر یک از ترکیب‌هایی بالا در جدول ۲ فهرست‌های شده‌اند. در ستون آخر جدول، درصد دسته‌بندی مقدار گزارش شده در بایانگان پراش پودر (Powder Diffraction file) مشاهده می‌شود. از آنجاکه درصد خطا برای همه نمونه‌ها مثبت است، می‌توان نتیجه گرفت که دستگاه پراش سنج هنگام ثبت قله‌های پراش کامل‌اً کالیبره شده است.

انداژه گیری چگالی حامل‌ها و تشخیص نوع نیم‌سناها با استفاده از اثر هال
برای تشخیص نوع نیم‌سنا (p، n) و از بین چگالی حامل‌ها درنمونه‌های بسیاری و تک بلور PbTe، CdSe، CdTe و PbSe و اثر هال به کار گرفته شد.

1-Bulk
شکل ۱: ألف- قله های پراشی نمونه های بسیار خریداری شده
ب- قله های پراشی نمونه های بک بلور رشد یافته
صفحات مستطیل شکل با ضخامت یک میلی متر در می آوریم و از بین تک بلورها نمونه‌هایی از صحنه‌ای شکل را انتخاب می‌کنیم. با عبور جریان طویلی از نمونه در حضور میدان مغناطیسی یکنواخت و ثابت، ولتاژ الکتریکی هال در عرض نمونه اندازه‌گیری می‌شود. با توجه به جهت انتحابی برای جریان طولی و راستای میدان مغناطیسی می‌توان بیشینی کرده که نیروی لورنتس وارد بر حامله‌ای بار باشد در کدام امتداد از عرض نمونه بانده. اگر علامت ولتاژ الکتریکی هال در راستای نیروی لورنتس مثبت باشد حامله‌ای بار حفره است، و در غیر این صورت حامله‌ای بار الکترون خواهد بود.

برای اندازه‌گیری ولتاژ الکتریکی هال در همه نمونه‌های سیلیکون و تک بلور از میدان مغناطیسی

\[B = 400 \, \text{mT} \]

ثابت نامنه اِن

\[U_H = \frac{l}{ne} \cdot \frac{B\cdot l}{d} \]

(1)

\[P = \frac{1}{10^{18} \, \text{cm}^{-3}} \]

\[\text{PbTe} \]

\[\text{MgIn} \]

\[\text{CdSe} \]

\[\text{CdTe} \]

\[\Omega \]

(4)

\[10^9 \text{ (اهم)} \]

\[\text{زیادی از مرتبتی } \]

\[\text{محدودیت کم جریان‌های بار} \]

\[\text{در این نمونه ها هستند. جریان‌های طولی از این نمونه‌ها حداکثر می‌کرده‌اند و ولتاژ الکتریکی هال در حد خطا آزمایش بود. به‌همین جهت تشریح نوع نیمرسانا با تخمین} \]
شکل ۲ نمودارهای ولتاژ هال به صورت تابعی از جریان طولی در میزان مغناطیسی ثابت PbTe (الف) و PbTe (ب) برای نمونه یک بلور (B=۴۰۰ mT)
چگالی حامل‌ها در این نیمرسان‌ها با استفاده از روش هال میسر نشد. در عین حال، اگر در یک نمونه نیمرسان تراکم هر دو نوع حامل یکسان باشد (یعنی نیمرسان‌ها ذاتی باشند) ولتاژ هال تنها به خاطر اختلاف در تحرک الکترون و حفره به وجود می‌آید که مقدار آن بسیار ناچیز است. بنابراین، می‌توان تا پیش گرفت که نمونه‌های صورت آزمایش از نوع نیمرسان‌های ذاتی هستند.

اندازه‌گیری شکاف انرژی در نمونه‌های بسلور و تک بلور به روش CdSe و CdTe الکتریکی گرمایی با توجه به نتایج حاصل در بخش گذشته، چون مشخص شد نمونه‌های تک بلور و بسلور ترکیب‌های دوتایی CdSe و CdTe و نیمرسان‌های ذاتی بودند، چگالی حامل ذاتی در چنین بسلور‌ها و تک بلورهای برای است با [8]

\[n_i = C_1^{3/2} e^{E_g/2 k T} \]

که در آن \(C_1 \) مقدار ثابت، \(E_g \) شکاف انرژی و \(k \) ثابت بولتزمن دمای بر حسب کلوین، \(T \) دمای ثابت بولدزمن در آن \(C_1 \) ثابت است. از طرفی چون چگالی حاملها مستقیماً متناسب با رسانایی نیمرسان‌است خواهیم داشت \((\sigma = n e V)\)

\[\sigma = \sigma_0 e^{-E_g/2 k T} \]

که در آن \(\sigma_0 \) ثابتی از تابعی از \(T^{3/2} \) و ابعاد نمونه است. اندازه‌گیری شکاف انرژی در نیمرسان‌ها به دمای ثابت بولدزمن و است و معمولاً با یک یا دو نمونه برای شکاف انرژی در مقدار پرازی \(1 \) شده در صفر مطلق است.

1 - extrapolate
جدول ۴ اندازه‌گیری شکاف انرژی در نمونه‌های بسیلور و تک بلوار ترکیبات CdSe و CdTe

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>اندازه‌گیری شکاف انرژی eV</th>
<th>میانگین شکاف انرژی eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>تک بلوار</td>
<td>۱۴۵۸</td>
<td>۱۴۵۸</td>
</tr>
<tr>
<td>تک بلوار</td>
<td>۱۴۶۵</td>
<td>۱۴۵۶</td>
</tr>
<tr>
<td>بسیلور</td>
<td>۱۴۸۰</td>
<td>۱۴۸۰</td>
</tr>
</tbody>
</table>

در تعیین اندازه‌گیری شکاف انرژی به روش الکترونیکی - گرمایی در نزدیکی به کار برده شد.

الف - از اثر جمله ۳۵ در مقابل جمله ۳۴ در رابطه ۳۲، حاصل می‌باشد که نظر کردم و (ب) با فرض آنکه تغییرات اندازه‌گیری شکاف انرژی با دما کره‌ای است (ضریب β)، حدود ۱۰۰ در ۱ است. شکاف انرژی را ثابت در نظر گرفته و یک رسانه برای نمونه‌های ساختاری مورد استفاده قرار داده است. شکاف انرژی را بر حسب

\[\ln \frac{T}{K} \]

بر حسب دما و رسم نمودار \(\ln \frac{T}{K} \) می‌توانیم مقادیر شکاف انرژی اندازه‌گیری شده برای نمونه‌های بسیلور و تک بلوار این ترکیبات در مقایسه با مقادیر گزارش شده [۱ و ۲] در جدول ۴ فهرست شده است.

نتیجه

هدف از انجام این پژوهش مطالعه رشد و تعیین پارامترهای ساختاری و الکترونیکی ترکیبات نیمرسانهای PbSe و PbTe، CdSe، CdTe در این ترکیبات ممکن بوده و پارامترهای تعیین شده با مشخصات نمونه‌های گزارش شده همخوانی دارند. در ادامه این پژوهش می‌توان مطالعات در پارامترهای سه-تایی متکرکرد و با تغییر درصد وزنی \(x \) پارامترهای ساختاری Hg\(_{1-x}\)Cd\(_x\)Te و Pb\(_{1-x}\)Cd\(_x\)Te و الکترونیکی نیمرسانه‌های حاصل را مشخص کرد.

7 - آذراف، لشونبد و، بلوشناسی با برتون، ترجمه ناصر تجریز، ۱۳۷۴، دانشگاه فردوسی مشهد، ۲۰۰-۲۷۹

8 - یانگ، ادوارد، مبانی قطعات نیترسانان، ترجمه ناصر تجریز، ۱۳۷۰، مرکز نشر دانشگاهی.