بررسی ناهیانسانگردی منغناطیسی در میکروسیم‌های کبالت یاپیه

احمد امیرآبادی‌زاده۱، مهندرضا رسلوی۲، رضا مردانی۲، رضا سرحدی۲

۱- آزمایشگاه تحقیقاتی منغناطیس و ابرسانایی، گروه فیزیک، دانشگاه بیرجند، بیرجند
۲- دانشکده مهندسی مکانیش اشتر شیراز

چکیده: در این پژوهش، ناهیانسانگردی منغناطیسی سیم کبالت یاپیه $\text{CoFe}_{28}\text{B}_{12}\text{Si}_5$ مورد بررسی قرار گرفته است. برای این منغناطیس سنج ارتباطی برداری (VVM) استفاده گردید که می‌تواند از منغناطیس عامل محور سیم از سوی X و Y اعمال سیم را در راستای X کاهش و بررسی منغناطیسی در راستای Y افزایش را نشان دهد. نتایج بدست آمده که منغناطیس منغناطیسی سیم می‌تواند به سیم‌های منغناطیسی غیر محور جهت سیم، توضح داده شد.

واژه‌های کلیدی: ناهیانسانگردی منغناطیسی، ساختار سیم، سیم کبالت یاپیه، منغناطیس سنج ارتباطی (VVM)

مقدمه

پیک از جایگزین جدیدی فیزیک حالت جامد، ناهیانسانگردی در مواد بلورین است. در مواد ناهیانسانگرد یک خاصیت فیزیکی به راستای بلورگاری ماده بلورین وابسته می‌شود [1]. ناهیانسانگردی در خواص اپتیکی (مثل ضریب شکست)، خواص الکتریکی (مثل جریان جریان

Downloaded from ijcm.ir at 13:11 +0430 on Tuesday May 21st 2019
بیانکرتو و همکاران به‌صورت نظری نشان دادند که تا میزان اعمال شده ۵۰ اورسندی در راستای مواد با محور سیم، کل بخش محوری در راستای میزان اعمال شده به‌شکل اشیاع می‌رسد. همچنین آن‌ها برای بخش‌های اطراف هسته مرکزی میزان‌های مغناطیسی دایره‌ای پیش‌بینی کردند [۱۰].

در این پژوهش با استفاده از تحلیل مسنجی‌های پسماند مغناطیسی که با استفاده از مغناطیس‌سنج نمونه‌های ارتعاشی برداری (VVM) به‌دست آمده است، سعی شده تا رفتار میزان‌های مغناطیسی سیم‌ها یکسانی با استفاده از واژگری ساخت نسل که خواص مغناطیسی دایره‌ای در راستای اعمال شده (مثلاً X) و راستای عمود بر آن (مثلاً Y) ایجاد گردد، قادمی به پرخصی از پرسیها در مورد رفتار غلیط‌های این سیم‌ها یکسان. شماتیکی

شکل ۱ شماتیکی از روش ذوب ریسی در آب برای تولید سیم پی شکل.
بحث و برداشت
نخست از نمونه آلیسز XRD گرفته شد که نتایج در شکل 2 آورده شد. جدول ملاحظه‌ها نشان می‌دهد به‌طور کلی برای نمونه‌های دامنی مغناطیسی بکر از این طرف و یک نمونه، پایین‌ترین سطح دامنی مغناطیسی دامنی به دنبال نمونه‌های خاصی از روش‌های مختلف برای تعیین دامنی که یکی از این روش‌ها استفاده از منحنی گرادیان دمایی مغناطیسی بر حسب دما می‌باشد. (منحنی M-T) است. منحنی M-T گرادیان دمایی مغناطیسی بر حسب دما در شکل 3 نشان داده شده است. اندوزه‌گیری‌ها در میدان 1000ządسته که در راستای محور سیم اعمال شده انجام گرفته است. به توجه به این منحنی دامنی کوری نمونه در حدود 350°C (235K) برآورد شد.

برای بررسی خواص مغناطیسی این نمونه از یک قطعه سیم بکر شکل کیفیت سکه به طول 50 mm بکر به قطر 125 μm که به روش ذوب رادیو Co₈₈.₃₁Fe₄₄.₃₁B₁₂₅Si₁₅ در آب ساخته شده استفاده شد. منحنی مغناطیسی بر حسب حدم در روابط مختلف (ν-Co, 0.1 ν-Co, 0.5 ν-Co, 1.5 ν-Co, 2.5 ν-Co, 4 ν-Co, 5 ν-Co, 10) گرفته شد. شکل 4 نشان‌دهنده شده است. Co₈₈.₃₁Fe₄₄.₃₁B₁₂₅Si₁₅ در راستای محور X فارادر و دستگاه مقدار مغناطیسی X در راستای Y و Co₈₈.₃₁Fe₄₄.₃₁B₁₂₅Si₁₅ در راستای Y و Co₈₈.₃₁Fe₄₄.₃₁B₁₂₅Si₁₅ در راستای Y نشان می‌دهد. گرافیک و دستگاه می‌کند. جدول نشان می‌دهد شکل 5 نشان دهنده نمود. برای روش‌های 75 و 90 درجه، مغناطیسی به مقدار اشباع نمی‌رسد. به همین دلیل در بعضی از منحنی‌ها اطلاعات وابسته به این خشک آورده شده است.

در طول این فرآیند یک فوران سریع از فلز ذوب دیده تزریقی، از داخل یک سوزار کوارتزی به قطر 80 تا 200 میلی متر به داخل یک لایه سرد کندنه مایع، که در این یک گردیزی از مرکز روی سطح داخلی یک استوانه دوار به قطر 400 تا 600 میلی متر قرار گرفته ایجاد شده. اهمیت سرد شدن سیسمه‌ها بعد از آماده با این روش در حدود 10°C است. با این روش می‌توان سیسمه‌ها با قطر بین 80 تا 160 میکرون ساخت. [11]

برای بررسی خواص مغناطیسی این نمونه از یک قطعه سیم بکر شکل کیفیت سکه به طول 50 mm بکر به قطر 125 μm که به روش ذوب رادیو Co₈₈.₃₁Fe₄₄.₃₁B₁₂₅Si₁₅ در آب ساخته شده استفاده شد. منحنی مغناطیسی بر حسب حدم در روابط مختلف (ν-Co, 0.1 ν-Co, 0.5 ν-Co, 1.5 ν-Co, 2.5 ν-Co, 4 ν-Co, 5 ν-Co, 10) گرفته شد. شکل 4 نشان‌دهنده شده است. Co₈₈.₃₁Fe₄₄.₃₁B₁₂₅Si₁₅ در راستای محور X فارادر و دستگاه مقدار مغناطیسی X در راستای Y و Co₈₈.₃₁Fe₄₄.₃₁B₁₂₅Si₁₅ در راستای Y و Co₈₈.₃₁Fe₄₄.₃₁B₁₂₅Si₁₅ در راستای Y نشان می‌دهد. گرافیک و دستگاه می‌کند. جدول نشان می‌دهد شکل 5 نشان دهنده نمود. برای روش‌های 75 و 90 درجه، مغناطیسی به مقدار اشباع نمی‌رسد. به همین دلیل در بعضی از منحنی‌ها اطلاعات وابسته به این خشک آورده شده است.

شکل 2 اگوی پرایر پیکس سیم بکر شکل کیفیت سکه باید به این خشک آورده شده است.
شکل ۲ منحنی سیم به شکل کبلت پایهی

\[Co_{68.15}Fe_{13.5}B_{12.5}Si_{15} \]

در دو راستا.

شکل ۴ منحنی پسماند مغناطیسی در زواياي مختلف برای سپيد کابلت پایهی

\[Co_{68.15}Fe_{13.5}B_{12.5}Si_{15} \]
کیالت پایه، دارای دو ساختار میدان مغناطیسی محوری و پرائمون هستند [8-10]. بنابراین با افزایش زاویه، میدان اعمال شده از راستا محور آسان دور و به محور آسان پرائمون تبدیل می‌شود که این موضوع کاوش مؤلفه مغناطیس در راستای X و افزایش میزان در بافت Y می‌شود. در این میزان به خوبی نیو تپریوز بلوری و بی‌شکل بودن، ناهسانتگری مغناطیسی بلوری وجود ندارد و ساختار میدان‌های مغناطیسی، حاصل ناهسانتگری شکلی و ناهسانتگری مغناطیسی است. این ناهسانتگری مغناطیسی ناشی از گرداین دمای بالای بین هسته و پوسته سیم بوده که طی سرد سازی ناگهانی سیم در آن ذخیره شده است [12]

برای مقایسه یک پارامتر های مغناطیسی مربوط به سیم، گونه کیالت پایه، در جدول 1 لیست شده‌اند. با توجه به نتایج نشان داده شده در جدول 1، مشاهده می‌شود که افزایش زاویه اعمال میدان یک کاهش و یا عکس مؤلفه مغناطیس اشباع در راستای X و راستای Y نتیجه مغناطیس مؤلفه اشباع (M_s) در راستای X کاهش و یا عکس مؤلفه مغناطیس اشباع در راستای Y می‌یابد. این رفتار در شکل ۵ بهتر نشان داده شده است. یا طرفی میدان وادارنگی، تغییرات کمی را در زاویه مختلف نشان می‌دهد که در زاویه ۲۵ درجه کمترین مقدار را دارد. تغییرات میدان وادارنگی بر حسب زاویه در شکل ۶ ارائه شده است.

برای تفسیر نتایج فوق می‌توان گفت که سیم‌های بی‌شکل ۱. Co_{0.15}Fe_{4.3}B_{1.2}Si_{1.5}

<table>
<thead>
<tr>
<th>M_s (θ)</th>
<th>H_s (Oe)</th>
<th>M_s (θ)</th>
<th>H_s (Oe)</th>
<th>M_s (θ)</th>
<th>H_s (Oe)</th>
<th>M_s (θ)</th>
<th>H_s (Oe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.4</td>
<td>44.4</td>
<td>52.8</td>
<td>52.8</td>
<td>78.4</td>
<td>78.4</td>
<td>91.0</td>
<td>91.0</td>
</tr>
<tr>
<td>49.5</td>
<td>49.5</td>
<td>52.9</td>
<td>52.9</td>
<td>82.6</td>
<td>82.6</td>
<td>95.6</td>
<td>95.6</td>
</tr>
<tr>
<td>86.4</td>
<td>86.4</td>
<td>57.9</td>
<td>57.9</td>
<td>88.9</td>
<td>88.9</td>
<td>91.0</td>
<td>91.0</td>
</tr>
<tr>
<td>56.4</td>
<td>56.4</td>
<td>47.4</td>
<td>47.4</td>
<td>88.9</td>
<td>88.9</td>
<td>91.0</td>
<td>91.0</td>
</tr>
</tbody>
</table>

شکل ۵: منحنی‌های مغناطیسی اشباع بر حسب زاویه در دو راستا Co_{0.15}Fe_{4.3}B_{1.2}Si_{1.5} و برای سیم به شکل کیالت پایه، X و Y می‌باشد.
\[M(\theta) = M(0) \cos \theta \]

\[|M| = |M_x|^2 + |M_y|^2 \]

\[H_0(Oe) \]

\[\text{h(HA, cm/G)} \]

\[\text{کمیتی هسته‌ای} \]

\[(\text{EAM, CM/G}) \]

\[\text{کمیتی هسته‌ای} \]
مراجع

