بررسی ناهسانگردنی مغناطیسی در میکروسیم‌های کبالت پایه

امحمد امیرآبادیزاده ۱، محمدرضا رسولی ۲، رضا مردانی ۳، رضا سرحدی ۴

۱- آزمایشگاه تحقیقاتی مغناطیسی و اپراتوراتی، گروه فیزیک، دانشگاه بیرجند، بیرجند
۲- دانشکده منطقه‌ای طیف‌سنجی اثر شیار

چکیده: در این پژوهش، ناهسانگردنی مغناطیسی سیم کبالت‌پایه

مقدمه

میکروسیم‌های ناهسانگردنی (VVS) در مواد بلوری است. در مواد ناهسانگردنی یک خاصیت فیزیکی به راستای بلورگرایی ماده بلورین و باشته می‌شود. [1] ناهسانگردنی در خواص ایننیکی (مثل ضریب شکست)، خواص الکتریکی (مثل چگالی جریان حرارتی از اپراتوراتیه دمای (ال)) و خواص مغناطیسی مواد بلورین چه از لحاظ شناخت فیزیکی و دفعیات و چه کاربردی اهمیت می‌یابد [2]. در این میان ناهسانگردنی مغناطیسی در مواد ناهسانگردنی، خاستگاه‌های مختلفی از قبیل ناهسانگردنی، شکل، ناهسانگردنی مغناطیسی و ناهسانگردنی بلوری دارد. وجود این ناهسانگردنیها باعث می‌شود که مواد بلورین دارای مجور آسان و مجور سخت مغناطیس شوند که در راستای آسان، نمونه در میانی‌های‌کوچکتری به اشتباه می‌رسد و در راستای سخت، اشتباه در میانی‌های‌بزرگ‌تری روی دارد [3].

واژه‌های کلیدی: ناهسانگردنی مغناطیسی، ساختار میزبان، سیم، بیشک، کبالت، پایه، مغناطیسی سنج ارتعاشی برداری (VVS)

انتشار می‌رود که برای موادی که نظم بلورین دارند (مواد بی‌شکل) ناهسانگردنی بلوری وجود نداشته باشد، ولی میکروسیم‌های بی‌شکل کبالت‌پایه، ناهسانگردنی شدیدی از خود نشان می‌دهند [7]. در حقیقت رفتار مغناطیسی غیر عادی این مواد مانند عدم تقارن در منحنی‌های مغناطیسی‌ماداس غول آسیا [8] به ناهسانگردنی مغناطیسی این مواد ربط داده می‌شود. خاستگاه این رفتار غیر معمول سوالی است که هنوز به طور کامل پاکت داده نشده است. ساختار میزبانی مغناطیسی در میکروسیم‌های بی‌شکل کبالت‌پایه از سوی نتایج از پژوهش‌های مورد بررسی گرفته است. فریجتو و همکاران نشان دادند که در شرایط باریک‌های مناسب، هسته‌ی سیم دارای جهت مغناطیس محوری و پوسته‌ی اطراف آن دارای شرایط مغناطیسی دایره‌ای‌یا پیرامون خوانده‌بود [9].

[۹۴] تاریخ نویسنده: ۱۲۱۵/۱۱/۴۳، نسخه نهایی: ۱۲۱۵/۱۲/۴۳

aamirabadizade@birjand.ac.ir

نویسنده مسئول، تلفن: ۰۵۶۲۲۲۲۰۲۷۴۵، پست الکترونیکی: aamirabadizade@birjand.ac.ir
دهم. بر اساس اطلاعات ما، برای اولین بار است که برای VVS می‌داند اعمال شده ۵۰ اورست در رستاک می‌تواند با محور می‌شود. بنابراین در این مقاله، به بررسی ناهمسانگردی مغناطیسی میکروشیمی‌های بی‌شکل مناسب‌تر برخی از شکل‌های استفاده شده است.

در این پژوهش به استفاده از تحلیل منحنی‌های پسماند مغناطیسی که با استفاده از مغناطیس‌سنج نمونه ارتقای برداری (VVS) بعد از آمده است سعی به شکل رفتار می‌شود. با استفاده از این مغناطیس‌سنج که قادر است میزان مغناطیس را در یک رستاک خاص اعمال کند و به‌طور همخوانی مولفه‌های مغناطش را در رستاک اعمال شده (مثلا X) و رستاک عمود بر آن (مثلا Y) از آن‌ها گرفته شد. قادیریم به بخشی از پرسش‌ها در مورد رفتار غیر عادی این سیم بی‌شکل پاسخ

شکل ۱: شماتیکی از روش ذوب ریسی در آب برای تولید سیم بی‌شکل.
بحث و برداشت
نخست از نمونه آنالیز XRD گرفته شد که نتایج در شکل ۲ اورده شدند. چنان‌که ملاحظه می‌شود، هیچ قطعه‌ای بر پلوری بودن نمونه در این طرف وجود ندارد. یکی از پارامترهای به‌همراه مواد فرومغناطیسی دمای کوری آنهاست. روشهای مختلف برای تعیین دمای کوری یک نمونه فرومغناطیسی وجود داشت که یکی از این روش‌ها استفاده از منحنی گرافی‌های دما بر حسب دما (متن‌گذاری (dM/dH-T) است. منحنی-T به همراه منحنی گرافی‌های دما بر حسب دما در شکل ۳ نشان داده شده است. اندامگیری‌ها در دمای ۰۰۵ در استفاده شد. منحنی مغناطیسی بر حسب دمای کوری نمونه در حداکثر ۲۵۰ درجه سانتی‌گراد (K) برآورد شد.

برای بررسی خواص مغناطیسی این نمونه از یک قطعه سیم بی‌شک کلته جای به طول ۵ mm با اختلاف به قطر ۱۲۵ μm که به روش ذوب ریسی Co۸۱۶Fe۳۹۸B۱۲۳Si۱۱ در آب ساخته شده استفاده شد. منحنی مغناطیسی بر حسب θ میدان در زاویه مختلف (۰، ۶۱، ۱۵، ۱۵۰، ۲۱۵، ۴۵، ۶۵ و ۹۰ درجه) در هر دو راستای X و Y اندازه‌گیری شده و نتایج در شکل ۴ نشان داده شده‌اند (سیم در راستای محور X قرار دارد و دستگاه مغناطیس را در راستای Y و اندازه‌گیری می‌کند). چنان‌که ملاحظه می‌شود در راستای Y و ۹۰ درنجه، منحنی‌های مغناطیسی به مقدار اصلاح نمی‌رسد. به همین دلیل در بعضی از منحنی‌ها اطلاعاتی وابسته به این خش آورده نشده است.

در طول این فرآیند یک فوران سریع از قلنده ذوب شده تشکیل، از داخل یک سوخاری که به قطر ۱۸۰ تا ۲۰۰ میلی متر به داخل یک لایه سرد کننده مایع، که در اثر یک نیروی گیرباز از مرکز روی سطح داخلی یک استوانه‌ی دوای به قطر ۴۰۰ تا ۶۰۰ میلی متر قرار گرفته اجرا خواهد شد. اینگونه سردر شدن سیم‌های به‌درست آمده با این روش در حدود ۱۶۰ است. با این روش می‌توان سیم‌هایی با قطر بین ۸۰ تا ۱۲۵ میکرون ساخت [۱۱].

برای بررسی خواص مغناطیسی این نمونه از یک قطعه سیم بی‌شک کلته جای به طول ۵ mm با اختلاف به قطر ۱۲۵ μm که به روش ذوب ریسی Co۸۱۶Fe۳۹۸B۱۲۳Si۱۱ در آب ساخته شده استفاده شد. منحنی مغناطیسی بر حسب دمای کوری نمونه در حداکثر ۲۵۰ درجه سانتی‌گراد (K) برآورد شد.

شکل ۲ اگوی پریس پرفتو ایکس سیم بی‌شک کلته جای به طول ۵ mm با اختلاف به قطر ۱۲۵ μm که به روش ذوب ریسی Co۸۱۶Fe۳۹۸B۱۲۳Si۱۱
شکل ۳ منحنی سیم بی شکل کالت پایه T و M-T

\[\frac{dT}{dM} \]

\[\text{Co}_{0.15}\text{Fe}_{1.15}\text{B}_{12.5}\text{Si}_{15} \]

در دو راستا.
پیرامون هستند [8-10] بنابراین با افزایش زاویه میدان، اعمال شده از راستای محور آسان دور و به محور آسان پیرامون توزیع می‌شود که این موجب کاهش مؤلفه مغناطیسی در راستای X و افزایش مؤلفه مغناطیسی در راستای Y می‌شود. در این سیم‌ها به‌دلیل نیوترون بلوری و یا شکل Y بودن، ناهساگردرنگ مغناطیسی بلوری وجود ندارد و ساختار میدانی های مغناطیسی حاصل ناهساگردرنگ شکلی و ناهساگردرنگ مغناطیسی ناشی از گرافیای دمای بالای بین هسته و پوسته سیم بوده که طی سرد سازی ناگفته سیم در آن ذهابه شده است [12].

برای مقایسه بهتر پارامترهای مغناطیسی مربوط به سیم بی شکل کیالت پایه، دایر و سختار میدان مغناطیسی محوری و

<table>
<thead>
<tr>
<th>مغناطیس کل (emu g)</th>
<th>M_s (θ) (emu g)</th>
<th>میدان ناهساگردرنگ H_W(Oe)</th>
<th>میدان واداردهنگی H_A(Oe)</th>
<th>مغناطیس اشاع در راستای X (emu g) M_{Sx}</th>
<th>مغناطیس اشاع در راستای Y (emu g) M_{Sy}</th>
<th>θ_a (درجه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.4</td>
<td>57.9</td>
<td>53.8</td>
<td>50.5</td>
<td>75</td>
<td>64.9</td>
<td>0</td>
</tr>
<tr>
<td>59.5</td>
<td>54.5</td>
<td>52.3</td>
<td>50.5</td>
<td>75</td>
<td>66.4</td>
<td>15</td>
</tr>
<tr>
<td>86.6</td>
<td>59.9</td>
<td>57.8</td>
<td>50.5</td>
<td>75</td>
<td>61.8</td>
<td>30</td>
</tr>
<tr>
<td>58.9</td>
<td>54.3</td>
<td>52.9</td>
<td>50.5</td>
<td>75</td>
<td>44.3</td>
<td>45</td>
</tr>
<tr>
<td>58.4</td>
<td>33.4</td>
<td>14.8</td>
<td>10.4</td>
<td>75</td>
<td>31.9</td>
<td>60</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

$Co_{0.15}Fe_{4.85}B_{1.2}Si_{1.6}$

برای سیم بی شکل کیالت پایه

$Co_{0.15}Fe_{4.85}B_{1.2}Si_{1.6}$

شکل 5 منحنی‌های مغناطیسی اشاع بر حسب زاویه در دو راستای X و Y و برای سیم بی شکل کیالت پایه

![Graph](https://via.placeholder.com/150)

جدول 1 پارامترهای مغناطیسی سیم بی شکل کیالت پایه برای مقایسه بهتر پارامترهای مغناطیسی مربوط به سیم بی شکل کیالت پایه، دایر و سختار میدان مغناطیسی محوری و
شکل ۶ منحنی میدان وادارندگی بر حسب زاویه برای سیم بی‌شکل کیبالت پایه‌ای

 آسان قرار می‌گیرد. برای این منظور مقدار مغناطیسی اشباع کل که از رابطه ۲ محاسبه شده و در جدول ۱ آورده شده است.

\[
|M_s| = \sqrt{M_s^2 + M_s^2}
\]

(۲)

چنانکه ملاحظه می‌شود |\(M_s\)| بیشترین مقدار را در زاویه ۴۵ درجه دارد.

در شکل ۸ مغناطیس در راستای \(X\) بر حسب زاویه در میدان \(H\) به اندازه ۱۸۰ درجه نشنال داده شده است. با توجه به شکل مشاهده می‌شود که با چرخش سیم مغناطیسی نیز چرخش و به احتمال زیاد حجم حوزه‌های مرکزی از حوزه‌های پیرامونی بیشتر خواهد بود.

\(M_s(\theta) = M_s(\theta=0) \cos \theta\)

(۳)

نتایج در جدول ۱ آورده شده که با توجه به نتایج بین آن محاسبات و نتایج تجربی همکاران خوبی وجود داشته و مقادیر نزدیک به مقادیر \(M_s(\theta)\) در میدان‌های سطحی مشاهده نشده است. در اینجا مقدار \(M_s(\theta)\) از حجم ناحیه مرکزی میدان‌های مغناطیسی (محور استوایی) بیشتر از حجم میدان‌های مغناطیسی پیرامونی است. این نتیجه در آزمایش‌های مربوط به اندازه‌گیری مغناطیسی غول آسا در باریخت \(A_C\) نیز تابید شده است [۱۳].

با توجه به مطالعات گفته شده، انظار دو محویر آسان، یکی در راستای محویر سیم و دیگری در راستای پیرامونی اطراف بوست سیم را داریم. وقتی میدان در راستای محویر سیم می‌شود محویر آسان بخش هسته‌ای سیم در راستای میدان بوده مقدار مغناطیسی اشباع در این راستای پیشینه \(emu/g\) بوده و مغناطیس در راستای عمود بر محویر سیم کم‌ترین \(emu/g\) است [۸۷۵].

برای برشی تغییرات زاویه روي میدان ناهسنادرگدی \(H\) (میدانی که نمونه در زاویه مختلف به عقب می‌رود) \(\frac{dM}{dH}\) محنی برای اولین ناحیه محرکی سیم رسم و قله وابسته به تغییر شبپ محاسبه شده. نتایج آن در شکل ۷ نشان داده شده. چنانکه مشاهده می‌شود با افزایش زاویه مقدار میدانی که در آن سیم به اشباع می‌رسد \(H_F\) افزایش می‌یابد (شکل ۷) و چنانکه اشاره شد، این می‌تواند به مدل دیل گونه میدان‌های اعمال شده از محویر آسان هسته سیم باشد.

سوالی که در اینجا مطرح می‌شود این است که چگام یک آسان در دو محویر اعشار می‌کند؟ فرض کنیم بخش مرکزی حجم بیشتری را اشغال می‌کند. اگر این فرض درست باشد با داشتن دو محویر \(X\) کاهش و مقدار آن در آسان مغناطیسی اشباع در راستای \(Y\) افزایش خواهد یافت زیرا به راستای آسان حوزه‌های پیرامونی تزدیک می‌شود. همچنین انظار داریم مقدار مغناطیسی کل در زاویه \(45\) درجة بیشتر و میدان وادارندگی کم‌ترین \(emu/g\) باشد. راستای میدان بین دو راستای
بررسی ناهسانگردی مغناطیسی در میکروسیم های کیالت پایه

۵۹۳

برداشت

در این پژوهش به بررسی ناهسانگردی مغناطیسی در سیمی بی‌سلولی کیالت پایه بانی بر پایه شکل کیالت پایه است. نتایج نشان می‌دهد به دلیل گرانی سیمی بازی موجود در سیم در مرحله سرد سازی ناگفته، بخش هسته‌ای سیم دارای ناهسانگردی محوری و بخش پوسته‌ای سیم دارای ناهسانگردی پیامد است. نبردی وادارگی و مغناطیسی کل در زاویه ۴۵ درجه به ترتیب کمترین و بیشترین مقدار خود را دارد. می‌توان گفت که حجم میدان‌های مرکزی این سیم بیشتر از حجم میدان‌های پیامد است.

[۲] اخوان م.، مینی ر، بی‌شمارشی و تیتر. نشان دهنده مایل، موسسه انتشارات علمی دانشگاه صنعتی شریف، ۱۳۸۱.
[۴] Nongjai R. Shakeel Khan, Hilal A., Imran Khan, Annapoorni S., Gautam S., Lin H.J.; Chang F.H., Chae K.H., Asokan K., “Modification of magnetic anisotropy induced by swift heavy ion...

[6] تور آرین ف، اثر جانشینی کبالت بر خواص مغناطیسی ترکیب $Nd_{0.8}Fe_{11.2}Cu$، مجله بلورشناسی و کانی شناسی ایران، شماره 3 (۱۳۸۹) ص ۴۷-۷۴.
