بررسی ناهمسانگرده‌ی منغناطیسی در میکروسیم‌های کبالت پایه

احمد امیرآبادی‌زادهٔ ۲، مهندس رسانه‌ی ۱، رضا مردانی ۳، رضا سرحدی ۴

۱- آزمایشگاه تحقیقاتی مغناطیسی و ابررسانایی، گروه فیزیک، دانشگاه جنوب‌شرقی، بیرجند
۲- دانشکده مهندسی الکترونیک و اشتر شیراز

چکیده: در این پژوهش، ناهمسانگرده‌ی منغناطیسی سیم کبالت پایه‌ی
به روش VVSM اندازه‌گیری گردیده است. برای این
متریال، مولفه‌های منغناطیسی با ویژگی‌های مختلف به محور سیم اعمال شد و مغناطیس، همزمان در دو راستای X و Y
اندازه‌گیری گردید. نتایج بیانشده، می‌تواند به ساختاری منغناطیسی غیر معمول جویی‌های سیم، توضیح داده شد.

واژه‌های کلیدی: ناهمسانگرده‌ی منغناطیسی، ساختار میانی، سیم،

مقدمه

پیکر از جالبترین جنبه‌ی فیزیک حال‌جامد، ناهمسانگرده‌ی
در مواد بلورین است. در مواد ناهمسانگرده به صورت فیزیکی
به راستای بلورگرهای ماده بلورین وابسته می‌شود [۱].

رهب و صرف منغناطیسی مواد بلورین جهت لحاظ شناختی فیزیکی
بدیهدی و به کاربردهی اهمیت می‌باشد [۲]. در این میان

ناهمسانگرده‌ی منغناطیسی در مواد ناهمسانگرده، ساختاری
منفی‌ی از قابل ناهمسانگرده‌ی ریش، ناهمسانگرده‌ی
منفی‌یی می‌باشد و ناهمسانگرده‌ی بلوری دارد. وجود این
نواصمانگرده‌یها باعث می‌شود که مواد بلورین دارای محور
آسان و محور سخت منغناطیسی شوند که در راستای آسان، نماینده
در میانی‌های کوچک‌تری به شباه می‌رسد و در راستای سخت،

استخراج نمی‌شود.

namiRadizadeh@birjand.ac.ir

نویسنده مسئول، تلفن: ۰۵۱۲۱۷۴۲۳۰ پست الکترونیکی: aamirabadizade@birjand.ac.ir

Downloaded from ijcm.ir at 5:45 +0430 on Tuesday May 28th 2019
Johns Matheny

Chempur Feinchemlkalien

Co (99.8%) Fe (99.98%) B (99.5%) Si (99.9%)
بحث و برداشت
نخست از نمونه آنانیز XRD گرفته شد که نتایج در شکل 2 آورده شده است. چنانکه ملاحظه می‌شود، هیچ قطعه‌ای منبی بر پلی‌وتنن نمونه در این طرف وجود ندارد.

کیک یک پارامتری به‌شمار می‌آید که مدلانسیس دامی

گروه آنهشت. روش‌های مختلف باید تعبیه دمای گروه یک نمونه فرومغناطیسی وجود داشته که یکی از این روش‌ها استفاده از منحنی گردیان دمایی مغناطیس بر حسب دما (منحنی M-T) است. منحنی M-T به همراه منحنی (dM/dH-T) گردیان دمایی مغناطیسی بر حسب دما (دما در شکل 3 نشان داده شده است. اندازه گیری از میدان ۱۰۰۰ وارسط که در راستای مجهر سیم اعمال شده، انجام شد. با توجه به این منحنی دمای کوری نمونه در حدود ۳۵۰°C (۳۲۳K) برابر شد.

برای بررسی خواص مغناطیسی این نمونه از یک قطعه سیم به شکل کالیب به طول ۵۰یم به قطر ۱۲۵μm به دست آمده شد. به دست آمده در میدان Co غرم FeSi B35Si15 (۰۰۶) را در راستای محور X قرار دارد و دستگاه مقدار مغناطیس را سیم در راستای محور Y و X اندازه گیری می‌شود. نتایج در شکل ۴ نشان داده شده است. در این همیشه ۸۵ و ۹۰ درجه، مغناطیسی به مقدار اضافه نمی‌رسد. به همین دلیل از منحنی‌ها اطلاعات ولتاژ به این بخش آورده نشده است.

در طول این فرآیند یک فوران سریع از فلز ذوب شده تزریقی، از داخل یک سوراخ کوارتزی به قطر ۲۰۰ میلی‌متر به داخل یک لایه سرد کننده مایع، یک در اثر یک نیروی گریز از مرکز روی سطح داخلی یک استوانه دوره به قطر ۴۰۰ میلی‌متر قرار گرفته ایجاد خواهد شد. این سرده شدت سیم‌های به دست آمده با این روش در حدود ۱۵۰ است. با این روش می‌توان سیم‌هایی با قطر بین ۶۰ تا ۱۶۰ میکرون ساخت [11].

برای بررسی خواص مغناطیسی این نمونه از یک قطعه سیم به شکل کالیب به طول ۵۰یم به قطر ۱۲۵μm به دست آمده Sh به دست آمده در میدان Co غرم FeSi B35Si15 (۰۰۶) را در راستای محور X قرار دارد و دستگاه مقدار مغناطیس را سیم در راستای محور Y و X اندازه گیری می‌شود. نتایج در شکل ۴ نشان داده شده است. در این همیشه ۸۵ و ۹۰ درجه، مغناطیسی به مقدار اضافه نمی‌رسد. به همین دلیل از منحنی‌ها اطلاعات ولتاژ به این بخش آورده نشده است.

میدان در روابط مختلف Co غرم FeSi B35Si15 به دست آمده در میدان Co غرم FeSi B35Si15 (۰۰۶) را در راستای محور X قرار دارد و دستگاه مقدار مغناطیس را سیم در راستای محور Y و X اندازه گیری می‌شود. نتایج در شکل ۴ نشان داده شده است. در این همیشه ۸۵ و ۹۰ درجه، مغناطیسی به مقدار اضافه نمی‌رسد. به همین دلیل از منحنی‌ها اطلاعات ولتاژ به این بخش آورده نشده است.

شکل ۲ انگوی پریس برای پیوست سیم به شکل کالیب پایه یک
شکل ۲ منحنی سیم به شکل یکه پایه در $\frac{dT}{dH}$ تغییر می‌یابد.

\[\text{Co}_{0.15} \text{Fe}_{4.15} \text{B}_{12.5} \text{Si}_{15} \]

شکل ۴ منحنی پسماند مغناطیسی در زوایای مختلف برای سیم به شکل یکه پایه در ساعت ۰ راستا.

\[\text{Co}_{0.85} \text{Fe}_{15} \text{B}_{15} \text{Si}_{15} \]
کیالت پایه، دارای دو ساختار میدان‌های مغناطیسی محوری و پیرامونی هستند [7,8]. بنابراین با افزایش زاویه، میدان عامل شده از راستای محور آسان دور و به محور آسان پیرامونی ترددیک می‌شود که این موجب کاهش مؤلفه M فاکتورز افزایش و افزایش مؤلفه مغناطیس در راستای X و افزایش می‌شود. در این میزان به دلیل نبود نظم بلوری و بی‌شک Y بودن، ناهسانگرددی مغناطیسی بلوری وجود ندارد و ساختار میدانی مغناطیسی، حاصل ناهسانگرددی شکلی و ناهسانگرددی مغناطیسی است. این ناهسانگرددی مغناطیسی ناشی از گرادیان دمای بالای بین هسته و پوسته سیم بوده که طی سرده واقعاتی سیم در آن ذکر گردیده است [11].

برای مقایسه بهتر پارامترهای مغناطیسی مرتب می‌تواند Co$_{86.3}$Fe$_{4.3}$B$_{12}$Si$_{13}$ در زوايا مختلف این کیالت پایه است. نتایج در جدول 1 لیست شده‌اند. با توجه به نتایج نشان داده شده در جدول 1، مشاهده می‌شود که افزایش زاویه اعمال میدان X و راستای Y در مغناطیسی شتاب فیزیکی، مؤلفه M به راستای X افزایش که و بر عکس مؤلفه M افزایش در راستای Y کاهش می‌یابد. این موضوع به وجود شده در تولید گرمای شده سیم این کیالت یافته است. این تغییرات میزان وارد شدن گرمای جویی در گرداهای دمای بالای بین هسته و پوسته سیم به چنین نمودارها ناگهانی سیم در آن ذکر گردیده است.
با توجه به مطالعه گفته شده، انظار دو محور آسان، یکی در راستای محور سیم و دیگری در راستای پیرامونی اطراف بوست سیم را دارید. وقتی میدان در راستای محور اصلی افزایش می‌یابد، محور کسری که به مدار هسته‌ای سیم در راستای میدان بوده مقدار مغناطیسی اشتعال در این راستای بینش به‌طور نسبی (66.8 emu/g) بوده و مقدار در راستای عمود بر محور سیم کم‌تره (g emu) است.

برای بررسی تغییرات زاویه روی میدان ناهمسانگردی (Hمیدانی که مونه در زاویه مختلف به اشتعال می‌رسد، H) مانند \\(\frac{dM}{dH} \) در اصل به تغییر شیب محاسبه شد، و نتایج آن در شکل ۷ نشان داده شدند. جناوکه مشاهده می‌شود با افزایش زاویه، مقدار میدانی که در آن سیم به اشتعال می‌رسد (Hب) افزایش می‌یابد (شکل ۷) و جناوکه اشکال شد، می‌تواند به‌دلیل دور شدن میدان اعمال شده از محور آسان هسته سیم باشد.

اسلایی که در اینجا مطرح می‌شود این است که گذشته یکی از این دو ناحیه، هسته‌ی با پوسته‌ی دور آن، حجم پیشتری را اشغال می‌کند. فرض می‌کنیم ناحیه مرکزی حجم پیشتری را اشغال می‌کند. اگر این فرض درست باشد، بررسی اصول درمحور X کاهش و مقدار آن در آسان مغناطیسی اشتعال در راستای Y افزایش خواهد یافت زیرا به راستای آسان حوزه‌های پیرامونی تزدیک می‌شود. همچنین انتظار داریم مقدار مغناطیسی کل در زاویهٔ ۴۵ درجه بیشتر زمانی و میدان وادارنگی کم‌تره مقدار را داشته باشد زیرا راستای میدان بین دو راستای
شکل 7: منحنی میدان ناهسانگردی بر حسب زاویه برای سیم بی‌شکل کیالت پایهی

\[\text{Co}_{65.5}\text{Fe}_{19.5}\text{B}_{12.5}\text{Si}_{15} \]

برای سیم 50 برای سیم بی‌شکل کیالت پایهی

\[\text{Co}_{65.5}\text{Fe}_{43.5}\text{B}_{12.5}\text{Si}_{15} \]

شکل 8: منحنی مغناطیسی بر حسب زاویه در میدان 50 Oe

مراجع

[2] اخوان، م.، عنی زایس، "پیش‌ترین جای‌های ابرسانایی دما"، موسسه انتشارات علمی دانشگاه صنعتی شریف، 1381.

[6] ایرانی‌پور، پژوهشگر، ایران، "تاثیر جابجایی کربنات بر خواص مغناطیسی آنتیکیویی نی‌سی‌آئر ندآی‌سی‌کویی جدید"، جامعه بلورشناسی و کانی شناسی ایران، شماره 3 (1389) ص 85-107.