تهیه و بررسی ساختار بلوری X با استفاده از پرداز صنعتی پرتو

ایرج نورهیشت
دانشگاه علم دانشگاه اصفهان

چکیده
چکیده: از آنچه که ترکیبات فلورور مدلی برای سیلیکات‌ها هستند، و در سال‌های اخیر تعداد زیادی از ترکیبات فلورور با ساختار لاگک باینیت تهیه و مورد آزمایش قرار گرفته اند، انتظار می‌رود که سیلیکات‌های نیز با ساختار لاگک باینیت وجود داشته باشد. در این پژوهش سعی شده است تا ترکیبات سیلیکاتی با ساختار لاگک باینیت تهیه و مورد بررسی‌های پرتو نگاری با پرتو ایکس قرار گیرند. در این پژوهش و Me⁴⁺ = Ti, Zr, Ce, Pb و Me⁺ = Ba ترکیبات (Ba₂TiSiO₆)₆+Me⁴⁺(SiO₄)₄+ با عناصر تهیه و بررسی شدند و نتایج زیر بدست آمدند:

<table>
<thead>
<tr>
<th>سیستم</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaO-TiO₂-SiO₂</td>
</tr>
<tr>
<td>BaO-CeO₂-SiO₂</td>
</tr>
<tr>
<td>BaO-ZrO₂-SiO₂</td>
</tr>
<tr>
<td>BaO-PbO-SiO₂</td>
</tr>
<tr>
<td>SrO-ZrO₂-SiO₂</td>
</tr>
<tr>
<td>SrO-TiO₂-SiO₂</td>
</tr>
</tbody>
</table>

مقدمه
ای. زیمن و جی. زیمن در سال 1377/1376 باید تعیین ساختارکننده لاگک باینیت

زیمن و جی. زیمن در سال 1377/1376 باید تعیین ساختارکننده لاگک باینیت یاد کنند.
نکات گفتاری

روش کار

برای تهیه این ترکیبات از دو روش استفاده شده است، یکی ذوب در کوره‌ای و دیگری واکنش در حالی جامد. آزمایشات مقداری دیگری نیز از طریق گرمایه و شار انجماد گرفت که به نتیجه مطلوب نرسید.
ذوب در کوره نفیس
در این روش مقدار هم ارز مولکولی BaCO_3 و Me^{4+}O_4 و SiO_2 را به نسبت $2:2:3$ به خوبی مخلوط و در یک لوله کوارتزی همراه با نتکه ای فلز ورودیم در کوره الیافی در دمای حدود 2000 درجه سانتیگراد ذوب کردیم.

از آنجا که عمل ذوب به سرعت انجام می‌گرفت، بخشی از ماده به صورت توده‌ای شیشه‌ای شکل در آمدند و مقدار کمی از مواد ذوب نشده‌اند از آنجا که به آسانی نمی‌شه آنها را جدا کرد. ترکیب شیشه‌ای را در یک هواون آگاتی به صورت پودر در آورده‌ایم و سپس در یک بوته پلاستیک ریخته‌ایم در کوره لوله ای قرار دادیم. برای رشد بلورهای تشکیل شده، و احتمالاً به دست آوردن پدلاک بلور، نمونه را تا دماهای 1300، 1200 و 1500 درجه سانتیگراد بیاورد، به ترتیب به مدت 36، 48 و 72 ساعت گرما دادیم.

واکنش در جالت یاد
در این روش نیز مقدار هم ارز مولکولی BaCO_3 و Me^{4+}O_4 و SiO_2 را به نسبت $2:2:3$ به خوبی مخلوط کردیم و سپس در یک بوته پلاستیک ریخته‌ایم در کوره لوله ای تا 1000 درجه سانتیگراد گرما دادیم. نمونه مورد نظر به مدت 36 ساعت در این دما نگهداری شده و سپس با پودر کردن آن در یک هواون آگاتی دوباره در همان دماه و کوره 1200 درجه سانتیگراد به مدت 24 ساعت گرما داده شد. این عمل، نیکه پودر کردن و در کوره گذاشتن، جنگلی فلک تکرار شد و در هر دماهی کوره، را 400 درجه سانتیگراد افزایش دادیم.

در هدفی که از دو روش بالا مستلزم به تهیه نتکه بلور تبدیل نشده، با نمونه‌ای نمونه‌ها فقط به صورت پودر مورد مطالعه پرتو نگاری با پرتو ایکس قرار گرفتند.

آزمایشات پراش سنجه به روش گی نیر (Guinier) و با دوربین جاگودزینسکی (Jagodzinski) $\text{CuK}_\alpha (\lambda=0.1893\text{Å})$ با پرتو $\text{BaO-TiO}_2-\text{SiO}_2$ سیستم روش دوب: فیلم تهیه شده از نمونه دارای پازتابهای بسیار زیاد غیر قابل شناسایی بود. پس از
۲۴ ساعت گرما دادن در دمای حدود ۱۳۰۰ درجه سانتی‌گراد، فازی شیبی به فرستوئیت به دست آمد که فیلم تهیه شده از آن حاوی بازتابهایی از روتیل و کوارتز Ba₆Ti(Si₁₋ₓGeₓ)O₁₃ نیز بود. در ۱۴۰۰ درجه سانتی‌گراد علاوه بر فاز فرستوئیت مقداری شیبی نیز به دست آمد. با افزایش زمان گرم‌گذاری، رنگ نمونه فهنه ای تیره شد که با افزایش زمان ۷۴ ساعت نمونه به صورت روتیل به اضافه بر رویت همراه با تریدیمیت در آمد.

روش واکنش در حالات جامد: در ۱۴۰۰ درجه سانتی‌گراد فازی شیبی فرستوئیت به دست آمد که با افزایش زمان شیبی به روتیل و در ۱۴۰۰ درجه سانتی‌گراد فاز کامل فرستوئیت بدون بازتابهای اضافه تشکیل شد.

سیستم BaO-CeO₂-SiO₂

روش دوب: نمونه تهیه شده در آغاز هیچ شباهتی به لانگک باشیت نداشت. ولی پس از ۷۴ ساعت گرما دادن در اثری ۱۳۰۰ درجه سانتی‌گراد، فازی شیبی به لانگک باشیت تشکیل شد. که فیلم آن حاوی بازتابهای کدر و انسانی بود. با افزایش زمان همیشه تغییر در این فاز درده شد.

روش واکنش در حالات جامد: همه فیلم‌های نمونه های تهیه شده با این روش، همانند نمونه های روش دوب دارای بازتابهای انسانی و لی شفاف بودند. برای شناسایی پیشران فاز، دست به رسم نمودار الگه DTA دادیم. چنانکه شکل زیر نشان می‌دهد، در دمای ۱۲۶۰ و ۱۲۵۰ درجه سانتی‌گراد تبدیل هایی انجام گرفت. این تبدیل مشاهده نشد و فیلم تهیه شده عینا شبیه فیلم‌های نمونه دماها ی در یک گرد بود.

سیستم BaO-ZrO₂-SiO₂

در این سیستم، در دمای ۱۵۰۰ درجه سانتی‌گراد فازی با بازتابهای لانگک باشیت به دست آمد.
نتایج طرح وار از

این می‌ست که وسیله نوری خاتمه‌ی (۱۹۶۰) مورد بررسی قرار گرفته است.[۷]

SrO-TiO۲-SiO۲

از آنجا که باریم دارای باورگردنی قطر بونی در ردیف عناصر قلیایی خاکی است، با استرونزیم، که پس از باریم از نظر قطر بونی قرار دارد، نیز آزمایشاتی به روش واکنش در حالت جامد انجام گرفت. فیلم های تهیه شده در طول آزمایش حاوی بازتاب‌های فراوانی و غیرقابل توجهی بودند و تا در دماهای بین ۱۱۵ تا ۱۴۵ درجه سانتی‌گراد فاز تیتانات به دست آمد که در میکروسکوپ بیلورن می‌شود. با افزایش دما، هیچ‌گونه تغییری در فاز تشكل شده ایجاد نشد.

SrO-ZrO۲-SiO۲ و BaO-PbO۲-SiO۲

آزمایشات مقدماتی در مورد ترکیبات (SiO۲)

۲ و (Ba, Pb, Sr)۲(SiO۲)

۲ و (SiO۲)

۲ نشان دادند که فیلم‌های تهیه شده در طول آزمایشات شیب به فیلم لنگرگاه باینی‌تند و لین در تمام نمونه‌ها بازتاب‌های اضافی، انتخابی، پخشیده‌ای آنجانه زیاد بودند که امکان هیچ‌گونه شناسایی فاز‌های بدست آمده و محاسبه آنها وجود نداشت.
نتیجه‌گیری

ازمایشات انجام شده نشان دادند که در سیستم \(\text{BaO-TiO}_2\text{SiO}_3 \) در شرایط موجود فرستوئید همراه با کمی کوارتز، و روتنیل و در سیستم \(\text{SrO-TiO}_2\text{SiO}_3 \) و \(\text{BaO-CeO}_2\text{SiO}_3 \) و \(\text{BaO-PbO}_2\text{SiO}_3 \) استرینوکس تشکیل می‌شود. در سیستم های \(\text{SrO-ZrO}_2\text{SiO}_3 \) و \(\text{BaO-ZrO}_2\text{SiO}_3 \) فاژهای با ساختار شیبی به انگک با پایینت به دست می‌آید که تناها در فاژی با ساختار لانگک با پایینت با پارامتر بلورنگاری \(a = 10.259 \AA \) خوردنی ساختار فاژهای شیبی به انگک با پایینت به احتمال زیاد از آنجا ناشی می‌شود که قطر یونی سرم و سرب برای تشکیل \(\text{Me}^+ \) با عدد هماهنگی شش بیاپر بزرگ است.

مراجع