تیمین فرمول و ساختار یک زئولیت طبیعی
حسن فرشیان
دانشکده علوم دانشگاه اصفهان

چکیده: زئولیت‌ها آلومینو سیلیکات‌های آبادار و بلورین فلزات قلیایی و قلیایی خاکی هستند که در ساختمان آنها حفره‌ها و کانالهایی وجود دارند که بوسیله مولکول‌های آب و کاتیون‌ها اشغال شده‌اند. خاصیت جایه‌بندی یونی و آب‌گیری برگسته‌پذیری که از پاتورتین و پرگهای زئولیت حاصل می‌باشد بهترین است. تا این گروه از کاتیون‌ها در زئولیت‌های مختلف علمی کاربرد فراگیری یافته و پرورش‌ها گسترده‌ای روز آنها انجام گیرد. پیای تیمین نوع کاربرد و بررسی خواص آنها اولین گام، تیمین ساختار و فرمول شیمیایی زئولیت است. در این کار پرگهای یکی زئولیت طبیعی (ناتورالیت) با استفاده از روشهای شیمیایی و پرایسنجی پترو آن تجزیه و تحلیل می‌گردد. فرمول مورد بررسی قرار گرفته و فرمول شیمیایی و ساختار آن تهیه شد.

مقدمه

انواع گوناگون زئولیت‌ها به صورت طبیعی و در نقاط مختلف جهان یافت می‌شوند و بعضی از گونه‌های طبیعی آن را نیز میتوان به صورت مصنوعی تهیه کرد. زئولیت‌های طبیعی در مقایسه با نوع مصنوعی آن به این دلیل حاکی از توانایی در سیستم‌های از مواد خواص جالب‌تری دارند و نیز با بررسی نوع طبیعی دستاپی به نوع مصنوعی امکان‌پذیر می‌شود. زئولیت‌های طبیعی دارای گستردگی فراوانی بوده و در محیط‌های مختلف زمین‌شناسی یافت می‌شوند. 110 گونه بیش از چهار نوع مختلف از این کاتیون‌ها شناسایی شده‌اند و فرمول عمومی شیمیایی آنها به صورت زیر است:
(Na, K)\textsubscript{x} (Mg, Ca, Sr, Ba)\textsubscript{y} Al\textsubscript{x+y} Si\textsubscript{n-(x+y)}, mH\textsubscript{2}O

ساختار اولیه زئولیت‌ها (PBU) به صورت چهار وجهی (TO\textsubscript{4}) است که در آن T اتم Si یا آلومینیوم را به پیوست. چهار وجهی تشکیل دهنده ساختار اولیه از گروه‌ها به نحوی به یکدیگر منصل می‌شوند که هر تکه یک میو (PBU) با اکسیون دو چهار وجهی به اشکال Si درآید و ساختارهای ثانویه (SBU) را به وجود می‌آورند. چنین‌جنس واحدهای اتم‌های مرکزی با‌اشتند فرمول عمومی حاصل می‌شود. آن‌ها در زئولیت‌ها بعضی از اتم‌های Si به‌وسیله Al جایگزین می‌گردد و فرمول عمومی زیر را دارند.

\[
Al\textsubscript{m}Si\textsubscript{n-m}O\textsubscript{m+n}
\]

با حضور کاتیون‌هایی نظیر Ba, Mg, Li, Ca, K, Na بار مثبتی در جیران می‌شود.

زاولیت‌ها را بر اساس ساختار ثانویه آنها به ۸ گروه مطابق جدول ۱ تقسیم می‌کنند [۱ و ۲]. سیاری از ویژگی‌های زئولیت‌ها از جمله چگالی کم، پایداری ساختار بلورین هنگام آب‌گیری، خاصیت جابجایی بی‌پره، خاصیت جذب گازها، خواص کاتالیزوری و دارا بودن آب تبلور زیاد با توجه به ساختار خاص آن قابل توجه است.

جدول ۱: تقسیم بنی‌زئولیت‌ها بر اساس ساختار ثانویه

<table>
<thead>
<tr>
<th>شماره گروه</th>
<th>علامت گروه</th>
<th>واحدهای تشکیل دهنده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>S4R</td>
<td>چهار وجهه‌ای منفرد</td>
</tr>
<tr>
<td>۲</td>
<td>S6R</td>
<td>شش وجهه‌ای منفرد</td>
</tr>
<tr>
<td>۳</td>
<td>S8R</td>
<td>هشت وجهه‌ای منفرد</td>
</tr>
<tr>
<td>۴</td>
<td>D4R</td>
<td>چهاروجهه‌ای دوگانه</td>
</tr>
<tr>
<td>۵</td>
<td>D6R</td>
<td>شش وجهه‌ای دوگانه</td>
</tr>
<tr>
<td>۶</td>
<td>Complex 4-1</td>
<td>حلقه چهاروجهه‌ای بی‌پره</td>
</tr>
<tr>
<td>۷</td>
<td>Complex 5-1</td>
<td>حلقه پنج وجهه بی‌پره</td>
</tr>
<tr>
<td>۸</td>
<td>Complex 4-4-1</td>
<td>دو حلقه چهاروجهه‌ای بی‌پره</td>
</tr>
</tbody>
</table>

روش کار

الف) خلاصه سازی نمونه

نخست نمونه‌زئولیت طبیعی مورد آزمایش با هاوان جینی به صورت پودر در آورده می‌شود...
بودرهای الک شده با مشخصات (BSS) مورد استفاده قرار گرفت. به علت طبیعی بودن نمونه، وجود ناخالصی‌هایی در آن پیش بینی می‌شود. برای جداسازی ناخالصی‌های محلول در آب، نمونه بوده در شده به مدت 24 ساعت در یک دستگاه تقطیر با آب مقطر گردیده است. سپس نمونه دوباره در دمای 0.02 درجه سانتی‌گراد شده‌است. سپس نمونه به م.NEW می‌رسد. سپس نمونه در کوره‌ای در دمای (NaCl) قرار گرفت تا میزان آب موجود در آن در طول آزمایش به مقدار ثابت باقی بماند.

(ب) تجزیه شیمیایی نمونه

انحلال نمونه بوسیله ذوب قلیایی و با استفاده از کربنات سدیم و پراکسید سدیم در بوته پلاستیکی انجام گرفت. سپس نمونه ذوب شده پس از حل کردن آن در محلول آب و اسید از صافی عبور داده شد. سپس روى صافی را به ترتیب SiO₄ و Fe³⁺ اسید فلوئورید بی‌بی‌سی از صافی گذشت و تعداد SiO₄، Fe³⁺ و Ti⁴⁺ بررسی شد. سپس تنش آلومینیوم از روش گرانی سنجی و Ti⁴⁺ به روش جذب انجام سنجش داده شد. برای اندازه‌گیری میزان کاتیون‌های موجود در ZnO و Fe⁴⁺ بر روی جذب انجام اندازه‌گیری شد. سپس بر روی Mg⁷⁺، Ca⁷⁺، K⁷⁺ و Na⁷⁺ مقدار تعبیر شد. برای تعیین میزان آب، نخست وزن معینی از نمونه به مدت 10 ساعت در دمای 800 درجه سانتی‌گراد در کوره الکتریکی گرمداشته شد و توزین تا رسیدن به وزن ثابت ادامه یافت. کاهش وزن مقدار مواد فراورده، که در زنی‌های آبی‌برابر به حساب می‌آید، به دست می‌آید.

(ج) پرای سنجی پرتو ۶ و تجزیه‌گرمایی نمونه

پرای سنجی پرتو ۶ و تجزیه‌گرمایی نمونه برای سنجش پرتوی که به عنوان ابزار در تعیین ساختار بلورین مواد شناخته شده است در
تاریخ

مقایسه نتایج تجزیه شیمیایی نمونه با نمونه‌های کوناگونی که از مکان‌های مختلف برداشت شده بود نشان می‌دهد شیمیایی نمونه مورد آزمایش را با زوئلیت طبیعی ناتروولیت تأیید می‌نماید. (جدول ۲). فرمول ساختار ایده آل ناتروولیت بر اساس ۸۰ اکسیون به صورت زیر است:

\[
Na_{16}Al_{17}Si_{44}O_{80} \cdot 18H_2O
\]

بر اساس تجزیه شیمیایی، فرمول باعث پیش‌بینی نمونه مورد آزمایش چنین است:

\[
Na_{10.89}K_{0.7}Ca_{1.29}Al_{12.6}Si_{33.27}O_{80} \cdot 17H_2O
\]

با توجه به امكان جابه جایی بعضی از کاتیون‌ها در طول فرازه‌های مختلف زمین شناسی نزدیکی این دو فرمول جلب توجه است. نیوگیر درصد کاتیون‌ها طبیعی آب موجود در زوئلیت‌ها تأثیر خواهد گذاشت. که با توجه به ناحیه بودن جابه جایی کاتیون‌های میزان آب نمونه به فرمول ایده آل بسیار نزدیک است. برای اندازه‌گیری کامل، پرسیده پرتو X نمونه با Sایر نمونه‌ها مقایسه شده (جدول ۳). این نمونه در موقعیت‌های \(\Delta = 182 \) و \(\Delta = 266 \) در ار داک بر اساسقله مشاهده و سرشت‌های سایر نمونه‌های ناتروولیت است که با توجه به اینکه تحلیل شیمیایی هر نمونه با نمونه‌های دیگر کمی تفاوت دارد. و طبیعی این تغییرات در ابعاد ریز می‌گردد. میتوان نتایج تحلیل شیمیایی و تعلق فرمول بدست آمده به ناتروولیت را تأیید کرد.
جدول 3 تجزیه شیمیایی نمونه‌های ناترون‌الیت
متعلق به نقاط مختلف و مقایسه آن با نمونه مورد آزمایش

<table>
<thead>
<tr>
<th>Component</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>46.44</td>
<td>47.06</td>
<td>46.51</td>
<td>47.40</td>
<td>46.29</td>
<td>47.1</td>
<td>47.16</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
<td>0.27</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.03</td>
</tr>
<tr>
<td>MnO</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>0.0</td>
</tr>
<tr>
<td>CaO</td>
<td>0.13</td>
<td>0.27</td>
<td>0.01</td>
<td>0.05</td>
<td>no</td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>16.05</td>
<td>15.36</td>
<td>16.41</td>
<td>16.25</td>
<td>16.22</td>
<td>15.9</td>
<td>17</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.06</td>
<td>-</td>
<td>0.03</td>
<td>0.11</td>
<td>0.02</td>
<td>-</td>
<td>0.01</td>
</tr>
<tr>
<td>Li₂O</td>
<td>10.71</td>
<td>0.76</td>
<td>10.68</td>
<td>9.52</td>
<td>9.58</td>
<td>9.35</td>
<td>9.42</td>
</tr>
<tr>
<td>Total</td>
<td>100.23</td>
<td>99.38</td>
<td>100.48</td>
<td>100.61</td>
<td>99.96</td>
<td>101.40</td>
<td>99.97</td>
</tr>
</tbody>
</table>

no = not observed
d = not determined

بررسی‌های انجام شده نشان می‌دهد که بی‌آب شدن ناترون‌الیت در یک مراحله بین ۳۴۵ تا ۳۵۰ C در ۱۱ درصد تغییر می‌کند. نتیجه تحلیل گرمایی (TG و DTG، DSC) این نمونه که در (شکل ۱) آمده است نشان دهنده وجود تنها یک منحنی کاهش وزن در ۳۴۵ C بوده و میزان آب از دست داده نیز ۱۰ درصد است. منحنی كما شکل ۱ نشان می‌دهد که از ۳۴۵ C به بعد الکتریکی در دست دادن آب پدیدار شده است.

![شکل 1: منحنی‌های تحلیل گرمایی (TG و DTG، DSC)](image-url)
جدول 3 داده‌های پرتو ناترون‌لیت

<table>
<thead>
<tr>
<th>(1) d(A)</th>
<th>(2) I/I₀</th>
<th>(3) I/I₀</th>
<th>(4) d(A)</th>
<th>(5) I/I₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.53</td>
<td>74</td>
<td>6.52</td>
<td>62</td>
<td>6.52</td>
</tr>
<tr>
<td>5.88</td>
<td>36</td>
<td>6.12</td>
<td>1</td>
<td>5.88</td>
</tr>
<tr>
<td>4.66</td>
<td>35</td>
<td>5.89</td>
<td>100</td>
<td>4.66</td>
</tr>
<tr>
<td>4.59</td>
<td>30</td>
<td>4.65</td>
<td>26</td>
<td>4.57</td>
</tr>
<tr>
<td>4.39</td>
<td>58</td>
<td>4.57</td>
<td>16</td>
<td>4.37</td>
</tr>
<tr>
<td>4.35</td>
<td>70</td>
<td>4.39</td>
<td>40</td>
<td>4.34</td>
</tr>
<tr>
<td>4.15</td>
<td>42</td>
<td>4.35</td>
<td>47</td>
<td>4.15</td>
</tr>
<tr>
<td>4.11</td>
<td>31</td>
<td>4.15</td>
<td>25</td>
<td>4.09</td>
</tr>
<tr>
<td>3.62</td>
<td>2</td>
<td>4.10</td>
<td>15</td>
<td>3.63</td>
</tr>
<tr>
<td>3.26</td>
<td>12</td>
<td>3.63</td>
<td>1</td>
<td>3.26</td>
</tr>
<tr>
<td>3.19</td>
<td>42</td>
<td>3.26</td>
<td>3.4</td>
<td>3.19</td>
</tr>
<tr>
<td>3.15</td>
<td>52</td>
<td>3.19</td>
<td>34</td>
<td>3.15</td>
</tr>
<tr>
<td>3.09</td>
<td>29</td>
<td>3.15</td>
<td>40</td>
<td>3.08</td>
</tr>
<tr>
<td>2.93</td>
<td>36</td>
<td>3.11</td>
<td>12</td>
<td>2.94</td>
</tr>
<tr>
<td>2.89</td>
<td>9</td>
<td>3.10</td>
<td>14</td>
<td>2.907</td>
</tr>
<tr>
<td>2.86</td>
<td>80</td>
<td>2.94</td>
<td>35</td>
<td>2.86</td>
</tr>
<tr>
<td>2.84</td>
<td>74</td>
<td>2.89</td>
<td>4</td>
<td>2.84</td>
</tr>
<tr>
<td>2.58</td>
<td>43</td>
<td>2.86</td>
<td>65</td>
<td>2.57</td>
</tr>
<tr>
<td>2.57</td>
<td>71</td>
<td>2.84</td>
<td>58</td>
<td>2.44</td>
</tr>
<tr>
<td>2.55</td>
<td>16</td>
<td>2.58</td>
<td>7.9</td>
<td>2.40</td>
</tr>
<tr>
<td>2.44</td>
<td>88</td>
<td>2.57</td>
<td>12.9</td>
<td>2.32</td>
</tr>
<tr>
<td>2.42</td>
<td>10</td>
<td>2.56</td>
<td>0.7</td>
<td>2.29</td>
</tr>
<tr>
<td>2.41</td>
<td>86</td>
<td>2.56</td>
<td>0.7</td>
<td>2.28</td>
</tr>
<tr>
<td>2.33</td>
<td>15</td>
<td>2.55</td>
<td>1.3</td>
<td>2.55</td>
</tr>
<tr>
<td>2.31</td>
<td>37</td>
<td>2.44</td>
<td>16.5</td>
<td>2.23</td>
</tr>
<tr>
<td>2.28</td>
<td>18</td>
<td>2.41</td>
<td>16</td>
<td>2.21</td>
</tr>
<tr>
<td>2.26</td>
<td>36</td>
<td>2.32</td>
<td>6</td>
<td>2.19</td>
</tr>
<tr>
<td>2.23</td>
<td>7</td>
<td>2.28</td>
<td>2.3</td>
<td>2.17</td>
</tr>
<tr>
<td>2.22</td>
<td>7</td>
<td>2.26</td>
<td>5.6</td>
<td>2.05</td>
</tr>
<tr>
<td>2.19</td>
<td>58</td>
<td>2.24</td>
<td>3.2</td>
<td>1.96</td>
</tr>
<tr>
<td>2.17</td>
<td>100</td>
<td>2.19</td>
<td>13.2</td>
<td>1.91</td>
</tr>
<tr>
<td>2.05</td>
<td>11</td>
<td>2.17</td>
<td>11</td>
<td>1.87</td>
</tr>
<tr>
<td>1.99</td>
<td>23</td>
<td>2.061</td>
<td>2.2</td>
<td>1.82</td>
</tr>
<tr>
<td>1.88</td>
<td>21</td>
<td>1.96</td>
<td>3.3</td>
<td>1.805</td>
</tr>
</tbody>
</table>

(1) = λ
(2) = λ
(3) = [F]
(4) = دمود مورد آزمایش
5- Van Reeowijk L.P., 1972, Am. Min. 57.
6- Pechar F., 1985, Zeolites, 5.