ويژگی‌های آنالیسیم و شرایط تشکیل آن در سنگهای آتش‌شناختی ایران

پژوهش زاده

چکیده: در بعضی از سنگهای آتش‌شناختی کراتاسه و اولوسن ایران، مانند اطراف سبلان، باخره، کوه‌های بزگوش سراب، طلفان، علی‌آباد، شمال شهر بابک، درشت بلوه‌های آنالیسیم سدیک دیده می‌شوند که از نظر اندازه (بیشتر متوسط ۳۲–۳۴ سانتی‌متر) و فراوانی (۲۰۰ تا ۳۰۰ درصد حجم سنگ) جهت کامل‌آمیزی استاندارد دارند. درشت بلوه‌های سدیک دیده مشکل‌هایی ندارند و ظاهر لوسیت مانند داشته و رنگ آنها سفید، حاکمتی، خوشه و گاهی کلی است. بعضی اوقات چندین درشت بلوه از آن به هم پوشیده و به صورت قطره یکهای در می‌آیند. در مقاطع میکرووسکوپی، تمام درشت بلوه‌ها در آرا حاشیه‌های نازک به رنگ سفید و به نوبه‌ای به رنگ سبز و سبزی آمیزی مقاطعی، از نوع سدیک (الیست با نفلین) اندازه چشم بالا دارند، ولی با نقص درونی آنها مشاهده می‌شود که این فلزات قابل تکادین در فلک‌سپاس پاتسیک دارد. این آنالیسیم‌ها می‌توانند مورد مصرف روکش‌های مخصوص لوسیت‌های استفاده می‌شوند.

بر اساس داده‌های مربوط به X و تجزیه شیمیایی ثابت شده است که معمولاً از نوع آنالیسیم سدیم دارند. این کانی در سنگهای آتش‌شناختی بکری شکل می‌گیرد و غالباً غیر اشاعه‌ای سیلیس و سرامیک یا اکستراست. با توجه به اندازه بلوه‌ها، آنها را اولیه دانسته و بر اساس فراوانی آنها، باید آنها را اولیه فراوان باشد و شرایط دیگری که شرایط بلوه‌های شدن آنها را ممکن ادامه داشته است.

از آن‌ها که در آنالیسیم کاتی آباداری است، نمی‌توان به طراحی غیر آب نسبتاً بالا و سطح‌های پوشان گرامی بود. بر اساس کارهای آزمایشگاهی هامیلتون ور [1] و کوپنباگن [2] می‌توان شرایط تشکیل درشت بلوه‌های آنالیسیم در سنگهای آتش‌شناختی ایران را ارائه نشان داد. در میان میزان غیر اشاعه‌ای سیلیس و سرامیک یا اکستراست، آنالیسیم به وجد آبیده و در صورتی که در مایع مذاب غنی از پاتسیم و دمای بالاتر، پس‌دیک‌لوست تشکیل می‌شود.
آنالسیم چیست؟
آنالسیم یا آنالسیت، سیلیکات آبی‌آ(reason) سدیم دار به فرمول NaAlSi₃O₈·nH₂O است، و اصولاً در صورتی که اولیه باشد آن را یک فلدسپات نیودی به حساب می‌آورد، زیرا در سنگ‌ها نقش فلدسپات‌های مانند نئوتینی و لوسیت را بازی می‌کند. آنالسیم ممکن است اولیه و یا ثانویه باشد.
آنالسیم‌های را اولیه می‌گویند که مستقیماً از ماکما به وجود آمده باشند. این قبیل آنالسیم‌ها در زیرزمین‌های که در ایران دیده ایم خود بر دو نوع است: الف- بلورهای شکل دار (زوزنجه) به قطر ۵۰ تا ۸۰ سانتی‌متر، به رنگ سفید، خاکستری، نخودی یا گلی است، و شاهد زیادی به لوست دارد، به طوری که یخلاً به آنها لوست گفته می‌شود. این همان نمونه‌هایی است که بحث این مقاله را تشکیل می‌دهد (شکل ۱).
ب- بلورهای کوچک‌تر گالی و میلی‌متری و یا گاهی مانند بعضی از نفوذی‌های شمال غرب کرمان (قلعه حسنعلی) به صورت بلورهای بی‌سیار کوچک، میکرو‌سکوپی همسانگر، به رنگ‌های مختلف یا گلی در متن سنگ‌دی به می‌شوند.
آنالسیم‌های ثانویه، همان انواعی هستند که در دژ و شکاف بسیاری از سنگ‌های آتش‌نشان قابل مشاهده می‌باشند. این‌ها به صورت انبوه‌های انفرادی و موجود دارند و این‌ها در این مقاله را محسوب می‌شوند. و مورد بحث این مقاله نیست.
آنالسیم‌های مورد مطالعه از نظر ظاهری به شکل ذوزنقه‌سنده، خاکستری، سبز روشن، نخودی، و گاهی گلی هستند. بلورهای کوچک آن در گدازه‌ها در حذف میلی‌متر و کوچک‌تر و اصولاً گردن. گاهی چند بلور آن به هم پوشیده و ظاهری انبوه‌های تشکیل می‌دهند که با گدازه‌های منحل‌شده به هم می‌پوشند. مسئله اخیر با توجه به چگالی کم آنالسیم ممکن است نشان‌گر از صعود بلورها به سطح ابدایی از مدتی باشد. برای اثبات آنکه درشت بلورهای مورد بحث از نوع آنالسیم‌های سه راه حل وجود دارد که ما از هر سه‌ی آنها پاره گرفته‌ایم.
1. مطالعه مقاطع میکروسکوپی که در آن ماکل مخصوص لوستس اصلی دیده نمی‌شود.
2. بررسی‌های پراش سنجی برتون X و مقایسه آن با اعداد استاندارد (جدول 1).
3. تحلیل شیمیایی نمونه‌ها و مقایسه آن با تحلیل‌های شیمیایی استاندارد [3].

شکل 1 درشت بلورهای آنالسیم در نفوذ‌های طالقان، مقياس طبیعی است. به اینکلوزیون‌های موجود در بلورها توجه شود.
جدول ۱ مقایسه پارامتر ها و فواصل شبکهای بلور آنالسیم برگ‌گوش با استاندارد [۴،۵]

| (hkl) | I/I₀ | d و Å | d و Å *
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱۱</td>
<td>۸۰</td>
<td>۵۲۶</td>
<td>۵۲۶</td>
</tr>
<tr>
<td>۲۲۰</td>
<td>۶۰</td>
<td>۴۸۶</td>
<td>۴۸۶</td>
</tr>
<tr>
<td>۲۲۱</td>
<td>۲۰</td>
<td>۴۷۵</td>
<td>۴۷۵</td>
</tr>
<tr>
<td>۶۰۰</td>
<td>۱۰۰</td>
<td>۲۴۶</td>
<td>۲۴۶</td>
</tr>
<tr>
<td>۳۲۲</td>
<td>۵۰</td>
<td>۲۹۲</td>
<td>۲۹۲</td>
</tr>
<tr>
<td>۳۳۱</td>
<td>۵۰</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
</tr>
<tr>
<td>۵۲۱</td>
<td>۵۰</td>
<td>۲۵۰</td>
<td>۲۵۰</td>
</tr>
<tr>
<td>۶۲۰</td>
<td>۵۰</td>
<td>۲۳۵</td>
<td>۲۳۵</td>
</tr>
<tr>
<td>۵۳۲</td>
<td>۵۰</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
</tr>
<tr>
<td>۶۰۱</td>
<td>۵۰</td>
<td>۲۱۷</td>
<td>۲۱۷</td>
</tr>
<tr>
<td>۷۲۲</td>
<td>۵۰</td>
<td>۲۰۰</td>
<td>۲۰۰</td>
</tr>
<tr>
<td>۷۶۵</td>
<td>۵۰</td>
<td>۱۸۶</td>
<td>۱۸۶</td>
</tr>
<tr>
<td>۸۲۱</td>
<td>۵۰</td>
<td>۱۷۱</td>
<td>۱۷۱</td>
</tr>
<tr>
<td>۸۴۱</td>
<td>۵۰</td>
<td>۱۶۸</td>
<td>۱۶۸</td>
</tr>
<tr>
<td>۸۵۱</td>
<td>۵۰</td>
<td>۱۶۵</td>
<td>۱۶۵</td>
</tr>
</tbody>
</table>

*= A.S.T.M No 7:340

\[a₀ = 137.72 \text{Å} \]
\[a₀ = 137.72 \text{Å} \]

Rad. Coke = ۱۷۸ \text{Å}
شکل ۲ مناطقی که بلورهای آناناسیم در ایران و در ارتباط با سنگهای آنتیوریتی دیده شده‌اند.
درشت بلورها
بلورهای میکروسکوپی

شکل ۳ مقطع یک بلور آناناسیم هر ۱ سانتی‌متری طالقان و وجوک انکلوژیون - پلاز - یوکلاز (A ß= ۴۴) به صورت هم مرکز در درون آن شکل از روی مقطع ترسیم شده است.
منطقه که در آنها تاکنون درشت بلورهای آنانلیم دیده شده‌اند:

1- در کوه‌های طالقان (منطقه جوستان) البرز مرکزی، در درون سنگ‌هایی که استالدار آنها را بازآتیخته‌اند است و از نظر سنج‌های بیشتری به اثرات پایانی تعلق دارند.

2- در شمال آذربایجان شرقی، رشته کوه‌های صلوات (حوالی دشت مغان)، آنانلیم‌ها در سنگ‌های پلی‌موالیت (Blairmore) که نوعی نفتین آنانلیمی است که در کنار گزارش شده‌اند.

3- در کوه‌های بزگوش (حوالی سراب آذربایجان)، به سن اولین میانی، که آنانلیم‌ها در درون بازتیخته، مادرآتیفت فلزات‌های مشتاقات، دیده شده‌اند.

4- در باختر میانی، ناحیه عجمی، درشت بلورهای با قطر 1 تا 2 سانتیمتر. آنانلیم در سنگ‌های تراکی آندزیت جاکوفشته و متعلق به آخرین فرآیندهای آنتشهانی انسون فوئانی هستند.

5- در جنوب غربی (بين نامين و زيد)، که آنانلیم‌های بلورین با ابعاد 2 تا 3 سانتیمتر در درون دلی شووشنیای انسون فوئانی دیده شده‌اند.

6- مطالعه تفصیلی همین ناحیه توسط مرگولی و همکاران در قله خرگوشی و حوالی کاروانسرا قدمبی شده است. برای بازی با یک هیله و آسان‌رها و شووشنیی گزارش کردند که به این جایی که زخم از هم جدا شده‌اند. این را در نیک بلورها در حفظ 2 سانتیمتر (بطور متوسط) قطر دارند.

7- در ناحیه اهر، درشت بلورهای آنانلیم به سن نورزی (بطور مشکوک) گزارش شده است.

8- در شمال شهر بابک، درشت بلورهای آنانلیم در ابعاد 1 تا 5 سانتیمتر به سن انسون فوئانی در درون سنگ‌های تراکی‌های این منطقه دیده شده‌اند.

9- در شمال بخش‌های اردشیر (ناحیة قله علی) به سن دوران چهارم، نفتین‌هایی به سن جند هزارالله دیده شده که در آنها بلورهای میکروسکوپی گلی و سنگ‌های آنانلیم‌های قابل تشخیص اندازه‌گیری کننده که در کوه‌های این منطقه قرار گرفته که کوه‌های آنتشهانی که در آنها بلورهای سنگ‌هایی با ترکیب حد واسط دیده شده‌اند.
با توضیحات بالا، ملاحظه می‌شود که کانی آنالسیم در زناره‌ای مختلف آنتیشمالی ایران، با سن متفاوت و ترکب سنگی ماده متفاوت، دیده می‌شود و جنگل‌هه بعداً اشاره خواهد شد. بلوری شدن این درشت بلورها بیش از سایر عوامل به شرایط محیط بلوری شدن واکنش است.

ویژگی‌های میکروسکوپی

در اکثر موارد، به خصوص نمونه‌های آذری‌پایان، بلورهای آنالسیم با لاپیه نازک کاملاً سفید رنگی پوشیده می‌شود. رنگ آمیزی نمونه نشان‌دهنده از ترکیبات سدیک‌پذیر است. می‌دهد که ممکن است از نوع آلیت با نفلین باشد. ویژگی‌های بلورهای آنتیشمال است. هیچ‌گاه بلورهای شفاف آنالسیم پیدا نشده است. در بعضی از مقاطع میکروسکوپی، بلورهای کوچک و گرد آنالسیم به مقدار زیاد و بلورهای پیروکسن از نوع سالیت را فراگرفته‌اند. این مسئله ممکن است مربوط به وزن حجمی کم بلورهای آنتیسیم باشد. که در حین صعود، بلورهای پیروکسن را به صورت کف فراگرفته باشند.

بلورهای آنتیسیم فاقد کلیروار و ماکوی مخصوص لوسیت و در نور قطیب‌های همسان‌گرددن. در درون بلورهای آنتیسیم غالباً آلکلوژن‌هایی از بلورهای پلاژیوکلاز و بیوتیت و گاهی کانی‌های کدر و پیروکسن و حتی آپاتیت نیز دیده شده‌اند. در نمونه‌های شمال شهر بابک و بروجرد و طاق‌بان پلاژیوکلاز‌ها ترکیب آندزین داشته و با پلاژیوکلاز‌های متن سنگی یکی هستند. به علاوه، می‌توان درون بلورهای پلاژیوکلاز را به صورت نوارهای هم مرکز در درون درشت بلورهای آنتیسیم ملاحظه کرد (شکل 3) (مانند نمونه‌های طاق‌بان و شمال شهر بابک). بروس (12) در ناحیه مون دور فرانسه، وجود آنتیسیم را در درون ارداشته و آنتیسیم را در درون ارداشته (که نوعی تراکی آندزین‌ها که توسط دار است) گزارش کرده و بنابر نوشته او این درشت بلورهای آنتیسیم با جای بلورهای پیروکسن به صورت هم مزین حکم و توضیح آنکه در درشت بلورهای آنتیسیم شمال شهر بابک بیوتیت‌های در حال شکل‌گیری یافت می‌شود.
از بحث بالا این نتیجه می‌رسد که انگلزیون‌های موجود در بلورهای آنالسیم بستگی به ترتیب محیط مذاب دارد که می‌تواند در شرایطی پلاژیوکلاز و در شرایطی پیرکس و یا پیتون باشد. وجود بلورهای هم مقری می‌تواند نشانه‌ای از هم رشدی این قبیل انگلزیون‌ها با بلورهای آنالسیم و یا تبلور دیررس درشت بلورهای آنالسیم نسبت به انگلزیون‌های موجود در درون آن باشد.

ترکیب شیمیایی درشت بلورهای آنالسیم ایران

تجارت شیمیایی ۷ نمونه از آنالسیم‌های مختلف ایران و بزرگ‌های زیبر را به‌دست‌می‌دهند:

(جدول شماره ۲)

۱- مقایسه ترکیب آنالسیم‌های ایران با انواع استاندارد [۳] نشان می‌دهد که این ترکیبات کم و بیش شیبی هستند.

۲- آنالسیم‌های ایران آب نسبتاً زیادی در ترکیب خود دارند که این مسئله با توجه به ترکیب شیمیایی استاندارد، امری طبیعی بنا بر نظر می‌رسد.

۳- مقدار سدیم آنالسیم‌های ایران زیاد و حتی در بعضی موارد بیش از حد استاندارد است (نمونه شماره ۲).

۴- در چهار نمونه‌ای اول جانشین‌هایی از پتاسیم در درون آنالسیم صورت گرفته است. چنانکه خواصی دیده این مسئله دارای می‌باشد محیط تشکیل و فرآوری بسیار طبیعی است.

۵- مقایسه این ترکیبات با ترکیب شیمیایی لوستو، پدلوستو و در اقدام می‌شود و آب موجود در نمونه‌های آنالسیم نماهایی را نشان می‌دهد.

۶- وجود ترکیبات غیر عاملی مانند آهن و مسیم در ترکیب شیمیایی آنالسیم با انگلزیون‌های که در شکل (۱) دیده‌ایم در ارتباط است که بعضی، از نوع اسید‌های کنار و بین‌بخش و کم‌کم این ایده که همکاری با تغیر عامل و بیان‌کردن CaO به‌طور کلی استند و به‌طور چندان حاد استاندارد در نمونه‌های ۱ و ۲ ممکن است به انگلزیون پلاژیوکلازی‌ها در آنالسیم در ارتباط باشد که در مقاطع تازه‌ی کابل و روتان (شکل ۲) و بدون روتان (۶) در آنالسیم‌های منطقه شمال آذربایجان خواری، حالات ناب‌بالامری برادرود و تبدیل آن به آنالسیم را
خاطر نشان کردند.

1- در نمونه‌های گوناگون به Ab-Or سطح شایع نمودار گوناگونی [7] تمام نمونه‌ها در زیر خط اشکال قرار می‌گیرند و به ترتیب شیمیایی آنانیم مورد آزمایش این پژوهشگران که در شرایط آزمایشگاهی وجود آمده نزدیکترند.

جدول شماره ۲ تجزیه شیمیایی بعضی از درشت بلوهای آنانیم ایران

<table>
<thead>
<tr>
<th></th>
<th>۷</th>
<th>۶</th>
<th>۵</th>
<th>۴</th>
<th>۳</th>
<th>۲</th>
<th>۱</th>
<th>اکسیدها</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۷۶۲</td>
<td>۴۶</td>
<td>۱۸</td>
<td>۱۵</td>
<td>۵۲</td>
<td>۵۷</td>
<td>۵۷</td>
<td>SiO۲</td>
</tr>
<tr>
<td></td>
<td>۲۷</td>
<td>۳۷</td>
<td>۲۲</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۱۹</td>
<td>۲۶</td>
<td>Al۲O۳</td>
</tr>
<tr>
<td></td>
<td>۱۵</td>
<td>۱۹</td>
<td>۵۷</td>
<td>۱۷</td>
<td>۲۶</td>
<td>۲۲</td>
<td>۱۸</td>
<td>Fe۳O۴</td>
</tr>
<tr>
<td></td>
<td>۲۸</td>
<td>۱۹</td>
<td>۲۲</td>
<td>۱۹</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۶</td>
<td>FeO</td>
</tr>
<tr>
<td></td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۲</td>
<td>۱۹</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۶</td>
<td>MgO</td>
</tr>
<tr>
<td></td>
<td>۱۹</td>
<td>۲۰</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۶</td>
<td>CaO</td>
</tr>
<tr>
<td></td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۲</td>
<td>۱۹</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۶</td>
<td>Na۲O</td>
</tr>
<tr>
<td></td>
<td>۱۹</td>
<td>۲۰</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۶</td>
<td>K۲O</td>
</tr>
<tr>
<td></td>
<td>۱۹</td>
<td>۲۰</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۶</td>
<td>TiO۲</td>
</tr>
<tr>
<td></td>
<td>۱۹</td>
<td>۲۰</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۶</td>
<td>MnO</td>
</tr>
<tr>
<td></td>
<td>۱۹</td>
<td>۲۰</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۶</td>
<td>H۲O</td>
</tr>
<tr>
<td>جمع</td>
<td>۱۰۰</td>
<td>۹۹</td>
<td>۹۸</td>
<td>۹۸</td>
<td>۹۸</td>
<td>۹۸</td>
<td>۹۸</td>
<td></td>
</tr>
</tbody>
</table>

1. و ۲- آنانیم‌های درشت بلوه، جمع آوری شده از گدازه‌های نگرینی شمال شهر بابلک [10].
2. و ۳- آنانیم‌های درشت بلوه، جمع آوری شده از گدازه‌های موزه‌آرت و بازیت کوه یزگوش [4].
5. و ۶- آنانیم‌های درشت بلوه، جمع آوری شده از گدازه‌های بلوروریت کوه‌های صلحات - شمال آذربایجان خاوری [۲].
ویژگی‌های شیمیایی سنگ‌های آنالسیمی‌دار ایران

از نظر رؤوس شیمیایی، سنگ‌های آنالسیمی دار ایران دارای ویژگی‌های زیر هستند:

۱- تمام سنگ‌های آنالسیمی دار به استثنای یک نمونه (متعلق به خاکی کوه زاک و یکنده ۴) با یک میانه که به مرحله کوارتز در نمونه دارد از نوع غیر اشباع از سیلیس اند و در نورم نظری ظاهر می‌باشند.

۲- آب نسبتاً زیادی در ترکیب دارند که این از دیدار را به وفور آنالسیمی‌های موجود در آن ارتباط داده‌ایم.

۳- تمام سنگ‌های آنالسیمی دار در قلمرو قلیایی قرار می‌گیرند (شکل ۴). به علاوه تمام آنها به جز یک نمونه مشکوک (شماره ۳) جزء سنگ‌های میگروکاسپین محسوب می‌شوند.

۴- کلیه نمونه‌ها در نمودار پتاسیم بر حسب سیلیس، سرشار از پتاسیم هستند و تمام آنها به سری شووشونیت، آبسروکیت و یا بازالت پتاسیک تعلق دارند (شکل ۵).

۵- محاسبه ضرایب انجماد (S.I) نمونه‌ها براساس فرمول کوون [۱۳] نشان داده است که کلیه سنگ‌های آنالسیمی دار ایران مرحله انجماد می‌باشند و از نظر انجماد جزء انواع میانی اند (جدول شماره ۴). بنابراین شیادگی که نمونه‌ها هرگاه عدل می‌گردد میزان متر از ۰.۳۵ باشد نمونه‌ها انجماد یافته هستند. در کل همگی سنگ‌های آنالسیمی دار، اعداد کمتر از ۰.۳۵ را نشان می‌دهند و گاهی انجماد مرحله بسیار پیشرفته‌ای دارند (نمونه‌های ۱ و ۴ می‌باشند) و پس از این انواع از انجماد یافته‌اند.

(نمونه‌های ۳ و ۴)، ولی اکثر انجماد متوسط را پنجمین سرگذشت و به همین دلیل ما آنها را از سنگ‌های میانی می‌دانیم.
جدول شماره 3: تجزیه شیمیایی نمونه‌های از سلکه‌های آنالایزم‌های ایران

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>آسیبدها</td>
<td></td>
</tr>
<tr>
<td>SiO²</td>
<td>50</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>105</td>
<td>110</td>
<td>115</td>
<td>120</td>
<td>125</td>
<td>130</td>
<td>135</td>
<td>140</td>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>105</td>
<td>110</td>
<td>115</td>
<td>120</td>
<td>125</td>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₄</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td></td>
</tr>
<tr>
<td>S.</td>
<td></td>
</tr>
</tbody>
</table>

شرح نمونه‌ها:
1. تراکم آنالایزم‌های صخره‌ای در نقاط مختلف آبیاری‌های طبیعی/اختصار بیانه
2. تحقیق نظری آنالایزم‌های صخره‌ای در نقاط مختلف/اختصار بیانه
3. بررسی اثر آنالایزم‌های صخره‌ای در صورتی که جورابی از دست داده/اختصار بیانه
4. بررسی طبیعت آنالایزم‌های صخره‌ای در صورتی که جورابی از دست داده
5. بررسی طبیعت آنالایزم‌های صخره‌ای در صورتی که جورابی از دست داده

توضیحات به وسیله خرکی: {6}
شکل 4 پراکندگی سنگ‌های آنالسیم دار در نمودار آلکان به حساب سیلیس

شکل 5 کلیه سنگ‌های در نمودار پکسیلو و تاب‌های [14] که اساسا در قلمر و آساروکیت، شوشونیت و بالاکیت قرار می‌گیرند.
شرايط تشکيل آنانسیم
براساس مطالعه صحرايي، زهرهاي اقريقي گروه هايي می توان شرايط تشکيل درشت بلورهای آنانسیم را به صورت زير خلاصه نمود:
1- آنانسیم کاني آبداري است لذا در شرايط فشار آب به وجود مي آید.
2- آنانسیم طبق شکل (4) کاني غير اشاع از سيليس است و تنها در مگماي غير اشاع از سيليس و قالي بلورين مي شود.
3- آنانسیم تنها در شرايط آنششانی به وجود مي آيد. يعني بلورها پس از تشکيل بايد سريعاً محیط انجماد را ترک كنند، در غیر اينصورت مانند بعضي از آنانسیم های كوه یزدگوش، يا كوه های صلوت (آذربايجان خاورى) به مجموعه اسفروليتي مركب از پلاژيوكلاز هاى اسید، سرب، پيرويت و بعضى از كاني‌های ارزيلی تبدیل می شود. اين موضوع ممکن است به دو طریق صورت گیرد، يا از فوران‌هاي آنششانی يا از کنده‌اندی که به گذراي‌هاي راه‌اندازى آنانسیم که به بخش های فوکانی می‌گما صعود كرده باشد.
4- با توجه به تركيب شيميايي سيار متنوع (مقايسه ضریب های انجماد و درصد سيليس و مقدار K2O نمونه‌ها، ملاحظه مي كنیم كه بلوری شدن آنانسیم به محیط شيميايي بستگي ندارد بلکه شرايط فيزيي از ويزگي‌های بلوری شدن آنانسیم است.
5- وجود مقدار زیاد پتاسى در تركيب شيميايي بعضى از سنگها و فقدان آن در تركيب آنانسیم از يکطرف و ناشي از سيليس از طرف دیگر، اصولاً بايد بلوری شدن لوسيت را انتظار داشت. ولی هيهگه بلوهرهای لوسيت (به جز در شمال شهر بابکه) تشکيل نشده است. بنابراین باید توجه گرفت در محیطی که آنانسیم به وجود می آيد (فحار بخار آب بالا و دماي متوسط) با شرايط تشکيل لوسيت تطبیق نمي كند (فحار بخار ناجي و لي دما بسیار بالا). بنابراین، همانطور كه در [1] نشان دادند كاني لوسيت تنها به صورت مجاوري در تركيب سنگ و وجود دارد. براساس مطالعات مراديان [10]، در شمال شهر بابکه، پنج فوران مختلف آنششانی در طي اصول و وجود داشته است كه در اثر فوران‌های لوسيت و در بعضي آنانسیم بلوری شده‌اند، و اين دو هيهگه به هم در يک گذراي ديده نميشوند.
شکل ۱ بخش غیر اشاع سیستم سیلیس - نفلین - کالسیو فیلیت و محل نمونه‌های آناناسیم ایران در آن با دایره‌های سیاه توجه نشان داده شده است.

شکل ۷ بخشی از سیستم دوتایی آناناسیم - نفلین که فاقدای مختلف ۲ کیلوبار فشار بخار آب نشان می‌دهد. آناناسیم فقط در محدوده کوچک مستقیماً از منبع مذاب موارد سرشار از سدیم بلوژین می‌شود [۱۶].

NaAlSiO۴
در شرایط که آلانیسم به صورت درشت بلور بلویانه شود، این کانی از تخم‌زیبی با دگرگزاری سایر کانی‌ها حاصل نمی‌شود، بلکه از کانی‌های بلوپوش تاکنونی است. و بلوری شدن آن با پروپتی و فلسپات قلب‌خیز هرمزمان است. مطالعات میکرویک‌سکویی نشان داده است که هر گاه آلانیسم در سنگ وجود داشته باشد، هورنلبنده‌های بازالتی با دیده نمی‌شوند.

یا به شدت تحلیل رفتند. و تنها شبیه از آنها باقی مانده است. به طور کلی در گدازه‌های غیر اشباع از سیلیس و در فشار بخار آب و دماهای بالا هورنلبند تروهای و در دماهای بالای آلانیسم بلوپوش می‌شود [17].

7- استاد: از برآوری آلانیسم، هیا منطقه طاق‌ها دگر ریخته زیر را پیشنهاد می‌کند:

اولویت + آلیت + پیروکس + آلانیسم

ولی این مسئله نمی‌تواند در مورد تمام آلانیسم‌های ایران صادق باشد، زیرا اولارا در بعضی از سنگ‌های آلانیسم دار مقدار MgO بسیار ناجی است. بنابراین اولارا شرایط بلوپری شدن کانی اولویت و یا پیروکس فراهم نیست، ثانیاً مقدار آلانیسم در سنگ آتشان زیاد است که با شرایط تشکیل آلانیسم به طوری دگر ریخته را نمی‌دهد.

8- قابل توجه‌تر از اینکه آلانیسم نه سن دخالت دارد، نه ترکیب شیمیایی، تنها شرایط فیزیکی محیط است که آلانیسم می‌تواند بلوپری شود. این شرایط احتمالاً در آشیانه‌های ماگمایی ثانوی (در نهایت راه‌های به سطح زمین) می‌توانند فراهم شود. در این حالت آلانیسم‌ها از ماگمایی میانی بلوپری می‌شوند، نه مادی‌های اولیه.

9- براساس شکل (۷)، در سیستم دوتایی آلیت، تلفین در فشار بخار آب ۶ کیلوسال، تنها در شرایط E تا TR آلانیسم از نوع اولیه است بعنوان مستقیماً از مایع مذاب بلوپری می‌شود. براساس این شکل، با ایجاد درشت بلورهای آلقانیسم در فشار آب بالا (مثل 6 کیلوسال در شکل) و دماهای در حدود ۶۴۰ تا ۶۶۰ درجه و وجود آرد. این شرایط تنها در آشیانه‌های ماگمایی ثانوی فراهم است که در بالا به آن اشاره شد. به کمک این شکل می‌توان همزیستی آلانیسم + آلیت + آلانیسم + تلفین را به‌خوبی توضیح داد.

10- تایلور و مک‌کنزی [17] مخلوطی از شه ترکیب تلفین، کالیفلیت و کوارتز را (با نسبت تقریبی به ترکیب [25%] و 30 درصد که محل نمایش آن در نمودار سیلیس تلفین -
کالیفورنیا در شکل ۲ با علامت دایره تتوالی مشخص است)تا ۸۶۰ درجه سانتی‌گراد و
کیلوبار فشار آب گرم کردن و سپس آن را در شرایط متفاوت زیر منجمد کردن:
الف - وقتی ظرف محیطی نمونه به هوای فشرده سرد شود بلورهای لوستیت همرنگ با شیشه و
بخار در ظرف بر جا ماند بلورهای لوستیت مداری تیغه‌های اکسولاسیون با ترکیب احتمالی
آنالیسم بوده است (شماره ۱، شکل ۴).
ب - اگر فشار و دما ظرف محیطی نمونه به آرامی پایین آورده شود پس از بار کردن
ظرف لوستیت‌های زنازین همراه با شیشه و بخار بهدست می‌آید و ترکیب زنازین خارجی
پس از لوستیت بوده است (شماره ۲ در شکل ۴).

۱ - اگر دما ظرف محیطی نمونه از ۸۶۰ به ۲۳۰ درجه رسانده شود و سپس آن را به مدت
۲ تا ۴ ساعت در شرایط ۲۳۰ درجه سانتی‌گراد و در ۲ کیلوبار فشار بخار آب قرار دهد،
پس از بار کردن ظرف، حاشیه ترکیب آنالیسم داشته (مشابه نمونه‌های مورد مطالعه که با
دایره‌های کوچک تر و مشخص شده‌اند) و هسته مخلوطی از لوستیت و آنالیسم بوده است.

به این نکته باید توجه داشت که بلوری شدن هسته سرشار از لوستیت، مایع باقی‌مانده را از آب
و سدیم اشباع می‌کند و محیط را برای بلوری شدن آنالیسم فراهم می‌آورد.

با توضیحات بالا و با مقایسه تجربه شیمیایی نمونه‌ها با کارهای آزمایشگاهی،
می‌توان چنین نتیجه گرفت که آنالیسم از ماگمای قلب‌ای، آبادان غیر اشباع از سیلیس و در
دماهای متوسط ۲۳۰-۲۶۰ درجه و فشار بخار آب ۵ کیلوبار به بالا بلوری می‌شود. امروزه
با توجه به کارهای آزمایشگاهی به این نتیجه رسیده‌ایم که آنالیسم در فشار بالای آب‌دار
۱۳ کیلوبار و در دماهای ۲۶۰ تا ۲۷۰ درجه سانتی‌گراد به وجود می‌آید. این شرایط در اعماق
۱۵ تا ۲۰ کیلومتری پوسته فراهم است. بعنای مخلوطی که ماگما شویندی در آن هیچگاه
نمی‌تواند به وجود آید. حال اگر نمونه‌های پس‌لوسویت نفلین دار نواحی کلیبر اهر را که در
سنگهای آذرین درونی از نوع سینتیت در سنگهای این مناطق به وجود آمده، و عدم حضور
آنالیسم درشت بلور در سنگ‌های سینتیت مربوط که از نظر ترکیب شیمیایی و سی نیز با انواع
پژوهش و که عکسی باختنیه تکنیکی مشابه‌اند بروین به این نتیجه می‌رسیم که اگر
سنگهای آنالیسم دار مورد به بحث، در شرایط درونی بلوری می‌شوند هیچگاه آنالیسم
نمی‌شدند.
حضور بخار آب و حالات انفجاری شدید و هیپر آلومین و مقدار تیتان کم در
نمونه‌های مورد مطالعه و با توجه به سی و موقعیت زمین شناسی محل، این فکر را تقویت
می‌کند که باید نمونه‌های آنالیسیم دار ایران در مناطق در حال فرو رانش به وجود آمده باشد
که آن‌ها با تفاوتی از نوع شوشهایی از ویژگی‌های این قبل مناطق است. فاکورهوشایی در مرز
اووسن-اولیگوسن ایران، خود ممکن است حاکی از یک فرو رانده یک‌پای درست دقیق به
داده‌های زنگ شیمیایی و ایزوتپی زیادی نیازمندیم.

مراجع

1- Roux J, Hamilton D L, 1976, Primary igneous analcite, an experimental Study, J Petro, 17, 2
2- Gupta A K, Yagi K, 1980, petrology and genesis of leucite-bearing rocks, springer
verlag 254 pp
3- Deer W A, Howie R A, Zussman J, 1963, Rock forming minerals, 5 vol,
John Wiley and sons. Inc.
4- طلغی م، 1345، بررسی‌های زمین شناسی و پترولئورژی منطقه شمال شریف میانه
آذرپیام خاوری، رساله‌ فوق لیسانس دانشکده علوم دانشگاه تهران، 127 صفحه
5- Stalder P, 1971, "Magnatismes tertiari et Subsequent enter Taleghan et Alamout
Elbourz Centeral (Iran), Suisse de Min, et Petr, Vol 51,1,151P.
Azerbaijan Oriental (Iran), étude geologique et Petrographique du I’ edifice et Son
son environement régional. these zeme cycle, Univ. Sci. et medical de Grenoble,
France, 304P
Contribution à l’ étude du Volcanisme tertiaire de l' Iran. These zeme cycle, uni. de
sci. et Medica de Grenoble, France, 233P.
8- Amidi S M, 1975, "Contribution à l’ étude Strgraphique Petrologique et
Petrochimique des rockes Magnaetique de la region Natanz-Nain-Surk". (Iran Center)
These uni. sci, et Medical de Grenoble, France, 316P.
de mission en Iran. Etude et lever géologique de formations volcanique a l'a bordure
nord-est du Zagras dans le Secteur, Nain, Esfahan, Ardestan, Kashan, Trauaux du
Dept. de G'eo et Mineral Clermont Fd. France, 15P.
10 - مرادیان شهر باکی، ع، 1369، بررسی پترولوژی سنگهای آننشناهی شمال شهر باکی،
رclipse فوق ليسانس دانشگاه تهران، 129 صفحه.
No.3
12- Brousse R, 1960, Minéralogie et Pétrographie des rocks volcaniques du Massif du
Mont-Dore (Auvergne). These Dr. état université de Paris, France.
13- Kuno H, 1959, "Origin of Cenozoic Petrographic Provincey of Japan and
14- Peccerulo A, Taylor S R, 1976, "Geochemistry of Eocene calclalkaline volcanic
rocks, Contr. Mineral Petral, 68.
15 - دروش زاده ع، 1367، پترولوژی تجزیه و کاربردهای آن؛ انتشارات دانشگاه تهران -
شماره 1956، 1371 صفحه.
16- Darvichzade A, 1971, "Les Amphiboles et les minéraux associés' dans les leves
basaltiques du Massif Centeral Francais. These. Dr.Specialité. Clermont, Ed France,
169P.
17- Taylor S R, Mekenie S D, 1975, "The Application of trace Element Data to