بررسی و شناسایی فازهای تریدیمت

مهدیه بالحکیمی
دانشکده علوم دانشگاه تهران

چکیده: تریدیمت L₁-T تبدیل به L₁-T در اثر فشار، ضریب گرمايی و یا هسته‌گام پودر شدن به تریدیمت T-T تبدیل می‌شود. به همین دلیل برای شناسایی تریدیمت T-L₁ و تعیین فازهای آن نیز توان از دستگاه‌هایی که به روش پوردی عمل می‌کنند استفاده کرد. لذا برای شناسایی آن از بلور خوش ریخت تریدیمت T-L₁ بی‌تسخ استفاده و فازهای آن با میکروسکوپ نور قطبی به اثبات کرده. شناسایی T-L₁ در دمایی 145°C، 115°C، 85°C و 55°C برگشت آن در دمایی 120°C و 130°C نیز شکل می‌گیرد.

مقدمه

تریدیمت یکی از جند شکل‌های سیلیس است که اولین بار راث (1868/1247) آن را در سنگ‌های آندزیتی مکریک مشاهده کرد و نام تریدیمت بعنی سه ماکلی نامگذاری کرد [1]. بلور تریدیمت همیشه در جهت {101} بی‌سرپرست است. نمودار نکت حوزه‌ای SiO₂ را اولین بار فیشر (1913/1292) بصورت تابعی از فشار و دما ترسیم کرد [2] (شکل 1). مرز پایداری تریدیمت در این نمودار بین 145°C و 130°C است.

[2]
شکل 1 نمودار تکه جزئی تریدیمیت در دمای اتاق سه نوع تریدیمیت $\text{L}_{1\text{T}}$, L_2T و L_3T با یکدیگر است. حرف L معروف دمای باعی (دمای اتاق) و حرف T میانگین تریدیمیت است. شاخص بالایی حرف L نوع تریدیمیت را نشان می‌دهد. تریدیمیت $\text{L}_{1\text{T}}$ در سیستم دوک میل بلوئین می‌شود و شکل ظاهری آن شبیه شیکوگوئی است. نوکوئی (1967/1967/1967) پارامترهای شبکه‌ای تریدیمیت $\text{L}_{1\text{T}}$ را چنین گزارش کرده است [3]

$$a_0 = 18511 \text{ Å}$$
$$b_0 = 5330 \text{ Å}$$
$$c_0 = 25876 \text{ Å}$$
$$\beta = 117.48^\circ$$

با گروه فضایی Ce مشخصات نوری بلور تریدیمیت $\text{L}_{1\text{T}}$ به شرح زیر است

$$n_\alpha = 1.67$$
$$n_\beta = 1.67$$
$$n_\gamma = 1.67$$
$$n_\gamma - n_\alpha = 0.000$$
$$\Delta V_z = 75.5 \pm 2$$
سطح محور نوری آن (10)، در نور همگرای دو محوری، مثبت و دارای صلبه‌های پهن است.

روش کار

برای شناسایی و تعیین فازهای تریمیدیتی T-1، از میکروسکوپ نور قطیعی با انواع گرما بایستی استفاده شده است. با قرار دادن بلور تریمیدیتی T-1، بر نش بر صفحه گرما تریک درون انواع گرما بایستی متصاق به میکروسکوپ نور قطیعی، به بلور از دمای انواع با آهنگ 3 در هر دقیقه تا دمای 150 درجه سانتی‌گراد می‌گردد و دما هزار میلی‌درجیل و آن عکس‌برداری گردد. سپس بلور را با همان آهنگ سردرکده و دمای فازهای پرگشته مطابق شرایط قبلی مورد بررسی قرار گرفت.

شناسایی فازهای تریمیدیتی T-1

نخست بلور تریمیدیتی T-1، بر نش بر صفحه میکروسکوپ نور قطیعی در دمای انواع شناسایی شد، که در شکل 2 در حالت صلب نیکل مشاهده می‌شد. سپس تریمیدیتی مزبور را با آهنگ 3 در هر دقیقه گرم کرده و تغییر فازی که بلور در طول مدت اندازه‌گیری دما تحمل می‌کند به شرح زیر است.

اولین فاز تریمیدیتی T-1 خیلی زود در دمای 110 درجه سانتی‌گراد می‌دهد و هم‌زمان دو شکستگی نسبت به دمای انواع اندکی تغییر می‌کند. فاز تریمیدیتی T-1 در دمای 110 درجه سانتی‌گراد در شکل 3 نشان داده شده است. برای نامگذاری فازهای تریمیدیتی T-1 در دمای H-1-T، با استفاده از H بالا از حرف اول (High) شناخته می‌شود. شناخته پایین H تعداد فاز را نشان می‌دهد. آخرين فاز دمای بالا را با شناخته پایین نشان می‌دهد. دو میان فاز در دمای 165 درجه سانتی‌گراد آغاز و تا دمای 171 درجه سانتی‌گراد ادامه می‌پذیرد. دو شکستگی نسبت به فاز قبیلی خیلی ضعیف تر است.

این فاز در شکل 4 با علامت آغاز و با بالا و دومین فاز در دمای 180 درجه سانتی‌گراد ادامه می‌پذیرد. دو فاز سوم در دمای 238 درجه سانتی‌گراد کامل می‌شود (شکل 5).

H-1-T
تا سر انجام خاصیت همسانگردن در بلور ظاهر می‌شود. جهار می‌تواند تغییر فاز بین ۴۰۰ تا ۴۰۳.۶ درجه سانتی‌گراد در ۱۰۰ درجه سانتی‌گراد را پذیرفت. اینگونه عملکرد به یکی از دو عامل وابسته است:

۱. تغییر فاز بگشتی
۲. تغییر فاز بگشتی بعدی

این فاز که از تغییر مرحله تغییر تریدیمیت L۱-T به L۱-T به L۱-T، هنگام سرد شدن بلور با آهنگ C۳۰ در دقیقه اولین فاز بگشتی (شکل ۷) بین تا ظاهر می‌شود و یا با پایین آمدن دما و شکست کم دیوه خواهد شد. در شکل ۸ تغییر فاز بگشتی بعدی بین دیده می‌شود. این فاز نسبت به فاز قبلی دارای دو شکستی ضرب قوی تر است. تغییر فاز بگشتی بعدی به طور ناگهانی و در دمای C۱۶۱ درجه سانتی‌گراد (شکل ۹) آن را می‌تواند به L۱-T در دمای C۴۵ را دو صورت امکان پذیر است. اگر دو شکستی نسبت به فاز قبلی کمتر تغییر یابد به تریدیمیت L۱-T تبدیل می‌شود و در دمای اتقاپ باید دار است. در صورتی که دو شکستی ناگهانی ضعیف شود که همسانگردن ظاهر گردد در آن صورت این فاز را بر پایه شرایط خاصی می‌تواند در دمای اتقاپ به T۰۳-T تبدیل کردد (شکل ۱۰). تریدیمیت L۱-T زیر فشار کافی می‌تواند به صورت تریدیمیت درآید. برای آنکه عامل فشار را در تریدیمیت L۱-T مورد بررسی قرار دهم می‌توان آزمایش ساده‌تر به یک انجام داد. هرگاه بلور تریدیمیت را بین دو دیسک در راستای (۰۰۱) روز پلاکین میکروسبور نور قطعی، قرار دهیم، خاصیت ناهسانگردن آن را در حالی صلبی نیکل به سادگی می‌توان تشخیص داد. در صورتی که با انگشتان خود کمی فشار بر شیشه وارد آوریم خاصیت همسانگردن در دیده خواهد شد، و بلور مرزور به تریدیمیت T۰۳-T تبدیل می‌شود. هرگاه فشار از روی شیشه بالای پایاده شود، خاصیت ناهسانگردن آن دوباره ظاهر می‌شود (۲). تریدیمیت L۱-T در اثر عوامل مکانیکی مثل فشار کافی با ضرایب ها، که برای بودن شد و آماده‌سازی نمونه به آن وارد می‌شود به تریدیمیت L۱-T تبدیل می‌گردد.
نتیجه

در منابع علمی در خصوص فازهای تریدیمیتیت-1L و تریدیمیتیت-2L که با دستگاه شناسایی شده‌اند، گزارش‌های متفاوتی ارائه شده است. در این مورد می‌توان چنین گفت که نمونه مورد آزمایش‌بی‌پودر به وسیله رقم‌ده‌ر، ثابت گردیده که تغییر فاز به تریدیمیتیت-2L در اثر نیروهای ضربه‌ای پودر شدن در نظر گرفته شده است. بهترین روش برای تعیین فازهای تریدیمیتیت-1L و تریدیمیتیت-2L میکروسکوپ نور قطعی‌های گرمای است که نمونه باید به صورت یک بروز بی‌پودر در دماهای 171، 151، 141، 131 و 121 درجه سانتی‌گراد تا 161\(^\circ\)C تا 141\(^\circ\)C تا 131\(^\circ\)C تا 121\(^\circ\)C تا 111\(^\circ\)C و فازهای گریخته آن در دماهای 450، 440، 430، 420 و 410\(^\circ\)C تا 350\(^\circ\)C تا 340\(^\circ\)C تا 330\(^\circ\)C تا 320\(^\circ\)C تا 310\(^\circ\)C تا 300\(^\circ\)C تا 290\(^\circ\)C تا 280\(^\circ\)C تا 270\(^\circ\)C تا 260\(^\circ\)C تا 250\(^\circ\)C تا 240\(^\circ\)C تا 230\(^\circ\)C تا 220\(^\circ\)C تا 210\(^\circ\)C تا 200\(^\circ\)C تا 190\(^\circ\)C تا 180\(^\circ\)C تا 170\(^\circ\)C تا 160\(^\circ\)C تا 150\(^\circ\)C تا 140\(^\circ\)C تا 130\(^\circ\)C تا 120\(^\circ\)C تا 110\(^\circ\)C شکل می‌گیرند.

تریدیمیتیت-1L در دمای اندازه‌بر شرایطی بوده‌ای که تا کنون به آن با دستگاه شناسایی شده است زیرا در کارتهای ASTM مخصوص تریدیمیتیت که با دو بین دبای-شور و گنیه، نمونه به صورت پودر مورد آزمایش قرار داده‌اند، اولاً تغییر فاز تریدیمیتیت-2L در اثر نیروهای ضربه‌ای پودر شدن در نظر گرفته شده است و ثانیاً نوع تریدیمیت مشخص نبوده است.
شکل ۲: بلور ناهسان‌گردنی تریدیمیت L1 ۱ در دماه دماه اتان در حالت صلب نیکل

شکل ۳: تریدیمیت L1 در دماه ۱۰۰°C و تغییر فاز آن به H₅₃-T
شکل ۴: تریدیمیت T₁-۲ و تغییر فاز آن به H₀-۲ در دماهای ۱۷۱ تا ۱۷۵°C

شکل ۵: تریدیمیت T₁-۲ در دماهای ۲۲۸ تا ۲۱۸°C و تغییر فاز به H₀-۲
شکل ۶ تریدیمیت L1۰ در دما بین ۶۰۰ و ۴۲۰ درجه سانتی‌گرادی

در حالت صلب نیکل

شکل ۷ فاز برقشی تریدیمیت L1۰ در دما بین ۶۰۵ و ۵۱۵ درجه سانتی‌گرادی
شکل ۸ فاز برگشتی تریدیمیت T

شکل ۹ فاز برگشتی تریدیمیت T

در دمای C ۲۲۱ درجه C

در دمای C ۱۴۱ درجه C

هـ۲ هـ ت
شکل 10: فاز پرگنتری تریدیمیت $T_{1.5}\alpha L$ در دمای $52^\circ C$ و تبدیل به تریدیمیت $T_{1.7}\alpha L$ پایدار در دمای اثاث با خاصیت همسانگر درد

مراجع

2- Fener CN, 1913.; *Die Stabilitätsbeziehungen der Naturwiss.* 18,419.