بررسی و شناسایی فازهای تریدیمیت

محمدم حسن برقی
دانشکده علوم دانشگاه تهران

چکیده: تریدیمیت L1_5-T در اثر فشار، ضریب گرمایی و یا هنگام پودر شدن، به تریدیمیت L1_5 تبدیل می‌شود. به همین دلیل برای شناسایی تریدیمیت L1_5-T و تعیین فازهای آن، نیازی نیست از دستگاه‌هایی که به روشهای گوناگونی برای دریافت و کنترل استفاده کرد. لذا در این شناسایی آن از بلور خوشه‌ای تریدیمیت L1_5-T پیشتر استفاده و فازهای آن با میکروسکوپ نور قطعی به دست آورده، این گروهی شناسایی شده. تریدیمیت L1_5-T در دمای 165 تا 110 °C، 278 تا 260 °C و 471 تا 450 °C مشاهده شده است.

مقدمه

شکل 1 نمودار نکته جزئی تریدیمیت
در دمای اتاق سه نوع تریدیمیت \(L_1-T\) و \(L_1'-T\) و \(L_1''-T\) پایدار است. حرف L معنی دمای پایین (دمای اتاق) و حرف \(T\) پیمانگیر تریدیمیت است. شاخه‌های پایین حرف L نوع تریدیمیت را نشان می‌دهد. تریدیمیت \(L_1''-T\) در سیستم تک میل بلورین می‌شود و شکل ظاهری آن شبیه ششگوشی است. نوکوبی (۱۳۵۷/۱۹۷۷ بارامترهای شبکه‌ای تریدیمیت \(L_1'-T\) را چینه گزارش کرده است [3]؛

\[
\begin{align*}
a_0 &= 18.511 \text{ Å} \\
b_0 &= 5.033 \text{ Å} \\
c_0 &= 25.876 \text{ Å} \\
\beta &= 117.88^\circ
\end{align*}
\]

با گروه فضایی \(C_{c}\) مشخصات نوی بلور تریدیمیت \(L_1-T\) به شرح زیر است:

\[
\begin{align*}
n\alpha &= 670 \\
n\beta &= 6418 \\
n\gamma &= 63526 \\
n\gamma - n\alpha &= 28000 \\
4V_z &= 275.76
\end{align*}
\]
سطح محور نوری آن (0.10)، در نور همگرای دو محوری می‌شود و دارای صلیب‌های بهن است.

روش کار
برای شناسایی و تعیین فازهای تریدیمیت L-T 1-1 از میکروسکوپ نور قطیعی با اندازه
گرماها در شرایط 6-1 تیتانیت L-T 1-1 نیز بر صفه کوارتز و درون اندازه گرماها منصفی به میکروسکوپ نور قطیعی با بلور، از دمای اتاق با آنها
در دماهای 3-1 در هر دقیقه تا دماهای 0-1 در گرمداشت و دماهای هر مشخص و از آن عکس‌برداری
گرما دید. سپس بلور را با همان آهنگ سرد کرده و دماهای فازهای پیوسته مطابق شرایط قبیل
مورد بررسی قرار گرفت.

شناسایی فازهای تریدیمیت L-T 1-1
نخست بلور تریدیمیت L-T 1-1 بی‌نشان با میکروسکوپ نور قطیعی در دمای اندازه شناسایی
شد، که در شکل ۲ در حالت صلب نیلک مشاهده می‌شود. سپس تریدیمیت مزبز را با
آهنگ ۳ در هر دقیقه گرم کردیم. تغییر فازی که بلور در طول مدت اندازی انجام دمای
می‌کند به شرح زیر است.
اولین فاز تریدیمیت L-T 1-1 خیلی زود در دمای ۱۱۰ درجه سانتی‌گراد همزمان دو
فعالیت می‌شود. لب تریدیمیت و دمای اندازه‌گیری تغییر می‌کند. فاز تریدیمیت L-T 1-1
در دماهای ۱۱۰ درجه سانتی‌گراد به شکستن شناختی تبدیل می‌شود. شکستگی شناختی به
شرایط افزایش در تعداد فاز را نشان می‌دهد. شاخص اول (High) استفاده می‌شود. شاخص باین
H تعداد فاز را نشان می‌دهد. دومین فاز در دمای ۱۵۰ درجه سانتی‌گراد با کندی
آزاد می‌شود. و در دماهای ۱۷۱ تا ۱۹۱ درجه سانتی‌گراد به شکستگی شناختی تبدیل
می‌شود. و در دماهای ۲۱۸ تا ۲۳۸ درجه سانتی‌گراد به شکستگی شناختی تبدیل
می‌شود. و در دماهای ۳۸ تا ۴۰ درجه سانتی‌گراد به شکستگی شناختی تبدیل
می‌شود. و در دماهای ۴۰ تا ۴۲ درجه سانتی‌گراد به شکستگی شناختی تبدیل
می‌شود.
تا سرانجام خاصیت همسانگردی در بلوار ظاهر می‌شود. چهارمین تغییر فاز بین 180 تا 410°C صورت می‌گیرد. راستای محور نوری این فاز بر سطح (1001) عمود. لذا این سطح با ویژگی همسانگردی دیده می‌شود (شکل 6). این فاز به کمک H1-T نویده می‌شود و سایر مراحل تغییر فاز تریدیمیت T-L1 است و با افزایش دما، فاز دیگری تشکیل نمی‌شود. هنگام سردر شدن بلوار با آهنگ C3 در دیقته اولین فاز برگشتی (شکل 7) بین 450 تا 415°C ظاهر می‌شود و با پایین آمدن دما و شکستن کم قوی خواهد شد. در شکل 8 تغییر فاز برگشتی بعدی بین 221 تا 210°C دیده می‌شود. این فاز نسبت به فاز قبلی دارای بیشتری داشته و سپس بیان قوی تر است. تغییر فاز برگشتی بعدی به طور ناگهانی و در دمای 415°C رخ می‌دهد. (شکل 9) آن در روند فاز برگشتی تریدیمیت T-L1 در دمای 42°C به دو صورت امکان‌پذیر است. اگر این دو شکستی نسبت به فاز قبلی کمکی کمتر تغییر یابد به تریدیمیت T-L1 تبدیل می‌شود و در دمای اتاق با ایجاد است. در صورتیکه دو شکستی ناگهان آنچنان ضعیف شود که همسانگردی ظاهر گردد در آن صورت این فاز را بپایه شرایط خاصی می‌توان در دمای اتاق به تریدیمیت T-L1 تبدیل کرد (شکل 10). تریدیمیت L1-T زیر فشار کافی می‌تواند به صورت تریدیمیت L1-T مورد بررسی قرار دهد. می‌توان آزمایش ساده زیر را انجام داد. هرگاه بلوار تریدیمیت را بین دو شیشه در راستای (2011) روى پلاتین میکروسکوپ نور قطعی به قرار دهم، خاصیت هماهنگی تاریک بروز آن را در حالی صلبی نیکل به شکل می‌توان تشخیص داد. در صورتی که با انگشتان خود کمی فشار بر شیشه وارد آوریم خاصیت همسانگردی دیده خواهد شد، و بلوار مرزبر به تریدیمیت T-L1 تبدیل می‌شود. هرگاه فشار از روی شیشه بالایی برداشته شود، خاصیت ناهمسانگردی دیده می‌شود (شکل 6). تریدیمیت T-L1 در اثر عوامل مکانیکی مثل فشار کافی با ضربه‌هایی که بیاید بودر شدن و آماده سازی نمونه به آن وارد می‌شود به تریدیمیت T-L1 تبدیل می‌گردد.
نتیجه
در منابع علمی در خصوص فازهای تریدیمیت-T L-ta که با دستگاه DTA شناسایی شده‌اند، گزارش‌های متناوبی ارائه شده است. در این مورد می‌توان چنین گفت که نمونه‌های صورت پودری و عامل تغییر فاز به تریدیمیت-T L-ta در اثر نیروهای ضربه‌ای پودر شدن در نظر گرفته نشده است. بهترین روش برای تعیین فازهای تریدیمیت-T L-ta میکروسکوپ نور قطعی‌بندی گرماپی است. که نمونه با بید به صورت یک بلوک بی‌نش مورد آزمایش قرار گیرد. فازهای تریدیمیت-T L-ta، در دمای‌های 115، 118، 211، 213، 260 و 290 درجه در دمای‌های 43، 421 درجه می‌گردد. شکل می‌گردد تریدیمیت-T L-ta در دمای انواع در روش‌های پراش سنجی پودری پرتو X تا کنون به درستی شناسایی نشده است. به‌طور کلی در کارتهای ASTM مخصوص تریدیمیت که با دو بی‌شکل گاز-شیلد و گی‌نر، نمونه به صورت پودر مورد تحقیق موضع قرار داده‌اند تغییر فاز تریدیمیت-T L-ta در اثر نیروهای ضربه‌ای پودر شدن در نظر گرفته شده است و ثانیاً نوع تریدیمیت مشخص نبوده است.
شکل ۲: بلور ناهسان‌گرد تریدیمیت \(L \) در دما اتاق در حالت صلب نیکل

شکل ۳: تریدیمیت \(L \) در دما \(1100^\circ C \) و تغییر فاز آن به \(H_0 \)
شکل ۴ تریدیمیت T۱۲،در دماه ۱۱۸ تا ۲۲۸ درجه سانتی‌گراد و تغییر فاز به H۳۷،T۱۲ در دماه ۱۱۸ تا ۲۲۸ درجه سانتی‌گراد
شکل ۶ تریدیمیت L_1-T در دمای بین $460^\circ C$ تا $480^\circ C$ تغییر فاز به H_{12} با خاصیت هسته‌گردی در حالت صلب نیکل

شکل ۷ فاز پرگشتی تریدیمیت L_1-T در دمای $415^\circ C$ تا $450^\circ C$ نام فاز H_{21}.
شکل 8: فاز برگشتهٔ تریدیمیت T1 لایه‌های با ماسه فاز THp-T1 در دمای ۲۲۱°C تا ۲۱۰°C.

شکل 9: فاز برگشتهٔ تریدیمیت T1 لایه‌های با ماسه فاز THp-T1 در دمای ۱۴۱°C تا ۱۳۱°C.
شکل ۱۰ فاز برتگنش تریدیمیت T-۵L در دمای ۸۵ درجه سانتی‌گراد و تبیین به تریدیمیت T-۵L-۵L پایدار در دمای انتهایی حساسیت همسان گردد.

مراجع

2- Fener CN, 1913; Die Stabilitätsbeziehungen der Naturwiss. 18,419.