Short Review in Crystal
and Molecular Structures of Copper(I) Complexes

Aghabozorg, H. and Ranjbar, M.
Department of Chemistry, Faculty of Sciences, Teacher Training University,
Tehran - IRAN.

Key Words: Preparation, Copper(I) Complexes, Crystal and Molecular
Structures, Metal-Metal Interactions.

Abstract: In this review article, the methods of preparation of copper(I)
complexes, stereochemistry (crystal and molecular structures) of mono-, bi-,
tri-, tetra-, penta-, hexa-, octa-, dodeca-, and finally polynuclear complexes
have been studied. In addition, metal-metal interaction in some cases, have
been discussed. For the first time, four new copper(I) complexes (mono-, di-,
and hexamer) have been reported.
مروری کوتاه بر ساختار بلوری و مولکولی
کمپلکسهای مس (I)
حسین آقا بزرگ و مريم رنجبر
بخش شیمی دانشگاه تهران معلم تهران

چکیده: در این مقاله مروری روشهای تهیه کمپلکسهای مس (I)، شیمی فضایی (ساختار بلوری و مولکولی) کمپلکسهای تک، دو، سه، چهار، پنج، نه تنها، دوازده نهایتاً پلیمر مولکولی و بررسی قرارگرفتن است. افزون بر آن، بر هم کنش فلز - فلز در مورد برخی از این کمپلکس‌ها مورد بحث و تجزیه و تحلیل قرار گرفته و چند کمپلکس جدید مس (I) که دارای ساختارهای منعوم، دیم و هگزامتر است، برای اولین بار به اختصار گزارش شده است.

واژه‌های کلیدی: کمپلکسهای مس (I)، ساختار بلوری و مولکولی، بر هم کنش فلز - فلز.

1 - مقدمه
کمپلکسهای مس (I) به علت نابایدادریان، در مقایسه با کمپلکسهای مس (II) کمتر مورد توجه بوده‌اند. حالات اکسایش مس (II) یکی از مهم‌ترین حالت‌های اکسایش مس است. شیمی ترکیبات مس (II) کاملاً شناخته شده است و آرامش الکترونی [Ar]3d⁹ در Cu(II) باعث شده است و آرامش الکترونی [Ar]3d⁹ در Cu(II) کاملاً شناخته شده است و آرامش الکترونی [Ar]3d⁹ در Cu(II) باعث شده است و آرامش الکترونی [Ar]3d⁹ در Cu(II)
موردی کوتاه بر ساختار بلوژور و مولکولی کمپلکس‌های مس.

شودود، و برای اینکه به صورت یک سیستم پایدار درآید تفاوت این کاهش می‌یابد. بنابراین، پژوهشگران به منظور بروز اثر بان – ترل، به این حالت اکسایش مس برداخته‌اند و مقاله‌های زیادی در این زمینه تاکنون انتشار داده‌اند. از طرف دیگر کمپلکس‌های مس (I) به دلیل نقص مهمی که در سیستمهای طبیعی دارند، به ویژه وظایف پیلولوژیکی آنها در برخی از بروزی‌ها از دیرباز مورد توجه شیمی دانان و بیوشیمی دانان بوده‌اند. مثلاً (I) در ساختار ترکیباتی Cu(I) از دیروزباین، تروزباین، بلاستوسیاتین، دوبامین، هیدروکسیلات، بینیبیل، گلیسین، آلفا، Cu(I)/(II) آپیمیتیک، منا کسپن (I) و... نقص اساسی دارد [1]. همچنین نقص سیستمهای Cu(I)/(II) چون همکریان، در فرآیندهای اکسایش، کاهش 2 بسیار با هدایت است [2,3]. هالیدها و آپیمین‌های مس (I) به دلیل اثر کاتالیتیکی مفید [4–9] و خواص نور گذاری [10–15] همواره مورد توجه شیمی دانان بوده‌اند. لیگاندهای کی لیت آنتیو بسیار مدور کوپری خوانی قابل ملاحظه‌ای در تشکیل ترکیبات دیمیدی ترول و... با فلزات واسط و غیرواسط با فاصله کوتاه فلز – فلز دارند. پونده‌های سیار کوشته فلز – فلز در شیمی فلزات واسطه در حضور دو یا چند لیگانده اپنی پل شده که دارای شکل هندسی کی لیت معکورد با چهار الکترون Pi شمای 1 [16]:

\[X, Y, Z = C, N, O, P \]

شماي 1

\[
\text{دیه شده است (شما 1 [16]):}
\]

\[
\text{شما 1 [16]:}
\]

\[
\text{دیه شده است (شما 1 [16]):}
\]

\[
\text{دیه شده است (شما 1 [16]):}
\]

\[
\text{دیه شده است (شما 1 [16]):}
\]
در اینجا به اعمال روشهای تهیه کمپلکس‌های مس (I) گزارش شده و شیمی‌های ارائه (کوثرودینیاسیون) این ترکیبات با ساختار بلور و مولکول آنها و برهم کنش فلز-فلز مطالعه و بررسی قرار گرفته است.

۲- طرز تهیه کمپلکس‌های مس (I)

پیشرفت کمپلکس‌های مس (I) نسبت به هوا برای حساسیت، بنابراین، برای تهیه اغلب ترکیبات مس (I) عمليات در شرایط آنسبست نیتروزون یا آرگون خالص و با استفاده از روشهای انجام می‌گیرد. در پیشرفت برخی از هالیدهای مس (I) برای تهیه کمپلکس‌های مس (I) Schlenk استفاده می‌شود و لیگاندهای F و P به سهولت Cu(I) Cu۲⁺ را به گونه‌های پایدار تبدیل می‌کند [۱۷]

\[2Cu^{2+} + 4I^- \rightarrow Cu_2I_2 + I_2 \]

مس (I) کلرید بهترین ماده اولیه برای تهیه پیشرفت کمپلکس‌های مس (I) است که در زیر جدید دقایق بعد از این نوع دیده می‌شود:

i) \[CuCl + dmpe + NaCo(CO)_{4} \rightarrow \frac{1}{2} [Cu(dmpe)_{2}[Cu(Co(CO)_{4})_{2}]+NaCl \] [۱۸]

ii) \[CuCl + [HB (t - BuPz)_{3}] \rightarrow ([HB(t - BuPz)_{3}Cu]_{2} \] [۱۹]

iii) \[HBPz_{3} K^{+} + CuCl \rightarrow \frac{[KBPz_{3}Cu]}{CO} \rightarrow \frac{HBPz_{3}Cu}{CO} \] [۲۰]

در تهیه مس (I) Cu۲⁺ به عنوان CuCl به عنوان CuCl۲ پیدا می‌شود. بنابراین، بهترین ماده اولیه برای تهیه این کمپلکس‌ها استفاده از CuCl۲ است [۲۱] با ماده‌ای اولیه از مس (I) مولکول آنها و برهم کنش فلز-فلز این مس (I) مولکول آنها و برهم کنش فلز-فلز این مس (I) مولکول آنها و برهم کنش فلز-فلز این مس (I) مولکول آنها و برهم کنش فلز-فلز این مس (I) مولکول آنها و برهم کنش فلز-فلز
3- شیمی فضایی کمیلکس‌های مس (I)
آراشی الکترونی یون + به صورت Cu [Ar]3d^{10} است. بنابراین، در این ساختار کمیلکس بکار رفته به دسته‌های منعور، دیمر، تریمر، تترامر، پنتامر، هگرامر، اکتامر، دودکامر و پلیمر طبقه‌بندی می‌کنند.

3- 1 کمیلکس‌های منعور با تک هسته‌ای مس (I)
کمیلکس‌هایی که حاوی یک اتم مس (I) در ساختار مولکولی اند و در این رده قرار دارند. این کمیلکس‌ها را می‌توان بر حسب عدد هماوری‌ای مس (I) به چهار گروه رده‌بندی کرد که عبارت اند از:
الف) کمیلکس‌های با عدد هماواری 2
چند نمونه آن از یک نوع کمیلکس‌ها ساخته و شناسایی شده‌اند که یک نمونه از آن کمیلکس [Cu{NS}2] با [Cu (5 - Me - Th - 2 - CH = N - i - Pr)3](O3SCF3) سیستم بلوری سه میل (تری کلینیک) و گروه فضایی Pt مبتنی می‌شود. با خاتمه یکه شامل Λ زوج کمیلکس انتی‌بیوولار یکی کاتیون با آراش Α و کاتیون دیگری با آراش است. هیبریداسیون اتم فلز مرکزی sp به اتمهای نیتروژن به طور خطی به هسته فلز همراه شده است (شکل 1) [29] معمولاً حجم بودن لیگاندها نیز باعث باین آمدن عدد هماواری می‌شود.

1- لازم به یادآوری است کمیلکس‌های دیمر، تریمر، تترامر... همیشه با عناوین کمیلکس‌های دو هسته‌ای، چهار هسته‌ای و... تیز تلقی می‌شوند و لیکس قضیه ممکن است درست نباشد. یعنی، هر کمیلکس دو هسته‌ای، چهار هسته‌ای و... لازماً کمیلکس‌های دیمر، تریمر... محسوب نمی‌شوند.
ب) کمپلکس‌هایی با عدد هماوری ۳

کمپلکس‌های با عدد هماوری ۳ متداولتر از نوع (الف)‌اند [۳۰-۳۱]. یکی سه‌ای از کمپلکس‌های Copper (۳) که β-دیکتانونات (β-diketonate) لیگاندهای استیل استونات، نری فلور و استیل استونات و هگزالفولور استیل استونات از آن جمله‌اند. ساخته شده و به روش پراش سنگی پرتون X مورد مطالعه و بررسی قرار گرفته است. کمپلکس (tfa) CuPMe₃ در سیستم بلوری راستگوشه (ارتروموتیک) و گروه فضایی متساوی (Pbcn) در این کمپلکس‌ها می‌شود. ساختار مولکولی آنها در حاله جامد منفرد و عدد هماوری مس (I) در این کمپلکس‌ها ۳ است و به صورت مثلثی شکل می‌گیرند (شکل ۲) [۳۰].

کمپلکس‌های مس (I) با الکتری نیز جزء این ردیش از کمپلکس‌های مس (I) قرار می‌گیرند. سری دیگری از کمپلکس‌ها با مشخصات ساخته شده‌اند که ساختار شان با استفاده از روش‌های پراش سنگی پرتون X شناسایی شده‌اند.
(tfa)CuPMe₃

شکل ۲ ساختار مولکولی کمپلکس (tfa) = تری فلورواستیل استونات.

[Cu(Phen)(CH≡CR)]ClO₄

شکل ۳ ساختار مولکولی کمپلکس
شکل ۳: ساختار مولکولی کاتیون
[CuL₂]⁺ (شکل ۳) [۵۲].
در کمپلکس [Cu(dmpe)]_{2} [Cu(CO)_{4}] و [Cu(CO)_{4}] کاتیون در دایره آراش چهار و جهیز منحرف شده است. آنیون [Cu(dmpe)]_{2} در باختری یک بی صورت در کنور متقابل (Eclipsed) و منفی دارند. شکل منفی دارند و گروه نقطه‌ای D_{5h} و شکل متقابل به گروه نقطه‌ای C_{5v} تعلق دارد، زیرا زاویه Co-Cu-Co در فرم متقابل 180° و در فرم متقابل کمتر از 180° است [54].

نمونه دیگری که در این رده جای دارد کمپلکس [Cu(TMEDA)]_{2} [CuCl_{2}] که به عنوان ماده اولیه در تهیه کمپلکس‌های مس(I) مورد استفاده قرار می‌گیرد. ساختار این کمپلکس به وسیله پریش پنتو X اخیراً مورد مطالعه قرار گرفته است [55]. قفل مرکزی کاتیون دایره عدد هماهنگی چهار و دایره آراش چهار و جهیز منحرف شده [Cu(TMEDA)]_{2} است. آنیون این کمپلکس [CuCl_{2}] خلی است و این مس در مرکز تقارن قرار دارد.

(د) کمپلکس‌های با عدد هماهنگ 5

این نوع کمپلکس‌ها بسیار کمیاب و غیر متداولند. نمونه‌ای که در این رده جای دارد کاتیون دایره است (DAP و هیستامین) است که با [Cu(imidH)_{2} DAP]^{+} [imidH] را تشکیل می‌دهند که نام آیوراک آن ۲۱-۲۲-۱-۱ (امیدزارول – ۲- امید) امیدازوت ۲- امیدازوت این پریدین است. این ترکیب در سیستم بلوری تکه میل و گروه فضایی 0/2 مربوط می‌شود. این کمپلکس دایره شکل هندسی دو هرمی مثلثی منحرف شده است [55]. شکل ۵ ساختار مولکولی این کمپلکس را نشان می‌دهد.

(3-۲) کمپلکس‌های دو هسته‌ای مس(I)

کمپلکس‌های دو هسته‌ای مس(I) به طور وسیعی با هندس مشابه‌سازی جایگاه‌های فعال بروتون‌های مس، مثل هموسائین و تیروزیناز، مورد مطالعه قرار گرفته‌اند [56]. بنابراین،
شکل ۵ ساختار مولکولی کاتیون [Cu(imidH)₂DAP]^+

مطالعه و بررسی ساختار بلوری و مولکولی این دسته از کمپلکس‌ها از اهمیت ویژه‌ای برخوردار است. افزون بر آن، نظر به اینکه برهم کنش فلز - فلز در این دسته از کمپلکس‌های مس بیشتر به‌چشم می‌خورده و همچنین این مشکل در این مقاله مورد بررسی قرار می‌گیرد.

این دسته از کمپلکس‌های مس (I) را می‌توان براساس عدد همازی اتم مس به چهار گروه تقسیم کرد. ممکن است عدد همازی هر دو اتم مس (I) در این کمپلکس‌ها یکسان با متفاوت باشد.

الف) کمپلکس‌های دو هسته‌ای دو همازی

چند نمونه از این نوع کمپلکس‌ها ساخته و شناسایی شده‌اند. [۴۲] که در اینجا به سه نمونه اشاره می‌شود. ترکیب $\text{[Cu}_2\text{L}_3\text{(ClO}_4\text{)}_2]$ (I) به (II - متیل) از L^3 به عنوان اکت (1) بنا شده‌است. نمونه‌ای از این گروه است که ساختار پیچ نخورده و

1- nonhelical
هسته‌های دارده که اتم‌های مس به طور خاطرین به وسیله یک گروه بنز ایمیدازول از هر لیگاند
اواطش شده است. کمپلکس حاصل در سیستم بلوری راستگوشه و گروه فضایی
Pbca می‌شود (شکل ۶) [۵۹].

آنیون نمک سدیم ۲- بنزیل آئینن پیریدین، [Cu(TMEDA)۲][CuCl۲] با BAP، THF محلول
در تشکیل کمپلکس دیمر [Cu(BAP)]۲.H۲O می‌دهد. ساختار مولکولی این
کمپلکس اخیراً به وسیله پراش پروتو X مورد مطالعه قرار گرفته است. این کمپلکس در سیستم
بلوری تکه میل و گروه فضایی P2_1/c مشابه می‌شود. فاصله Cu-Cu بسیار کوتاه و برابر
P(۱۵۸۵۵(۱۴) A است، که در نوع خود غیرعادی است (فاصله فلز- فلز در مس فلزی برابر
(۱۰۰) A است. (۵۶ A

[Cu(TMEDA)۲][CuCl۲] با DPT، آنیون نمک سدیم ۳- دی فنیل تری آزن،
در محلول تشکیل کمپلکس دیمر [Cu(DPT)]۲ می‌دهد. ساختار مولکولی این
کمپلکس اخیراً به وسیله پراش پروتو X مورد مطالعه قرار گرفته است. این کمپلکس در سیستم

شکل ۱ ساختار مولکولی کاتیون +

[Cu۲(L^3)۲]^{2+}
ب) کمپلکس‌های دو هسته‌ای سه همزمان نمونه‌های زیادی از این نوع کمپلکس‌ها نهی و شناسایی شده‌اند. [16] که در اینجا فقط با یک نمونه از آنها آشنا می‌شویم. کمپلکس \([\text{(Cu(3,5 Me}_2\text{- Pz))(CNR)}]_2\) در این کروه قرار داردو و در سیستم بلوری \(C2/m\) متبلور می‌شود. فاصله‌ی Cu-Cu تک میل و گروه فضایی \(C2/c\) متبلور می‌شود.

است. عدد همزمان اتمهای مس در آن، آراش اتمهای مس مثلثی است.

در این کمپلکس دولیگاند ۶، ۵-دی متیل پیرازول، به صورت بیل بین دو فلز قرار گرفته و

پک لیگاند سیکلوهگزیل ایزو‌ساینید به طور اتمهایی به هر اتم مس پوند خورده است. شکل

ساختار مولکولی این کمپلکس را نشان می‌دهد. [17]
چ) کمپلکسهای دو همستای چهار هماهنگ

تعداد این نوع کمپلکسهای پیشتر از دو گروه اول است [16] 281766، 17-65 نمونه‌ای از این گروه کمپلکس (Cu(Diphen))₂(CIO₄)₂ است.

فناوتروولین - 2- ایل اتان است) که به‌وسیله پرایش سنج تک بلوری پرتو X، شناسایی شده است. این کمپلکس در سیستم بلوری تک میل و گروه فضایی C2/c متیلور می‌شود. این ترکیب تشکیل یک ساختار double-helicate چهار و چهار متوازنا شده است.

طرح‌های منحرف شده است و فاصله Cu-Cu 729، 715 است. کاتیون‌های دو کمپلکس در شکل 8 نشان داده شده است [16].

کمپلکس دی‌پر چهار هماهنگ است که در سیستم بلوری سه میل و گروه فضایی P1 متیلور می‌شود. در ساختار این کمپلکس، دو گروه [Cu(Diphen)]_2^2+ ساختار مولکولی کاتیون (بیون مشت) شکل 8 ساختار مولکولی کاتیون (بیون مشت)
شکل 9 ساختار مولکولی کاتیون \([\text{Cu}(\text{dmpe})]^+\) از اتمهای هیدروژن برای سادگی حذف شده‌اند.

\(\text{Cu}_2\text{P}_4\text{C}_4\) لیگاند به صورت یک بیل اتمهای مس (I) تشکیل حلقه 10 عضوی dmpe به صورت لیگاند دو دندانهای متصل می‌دهد، و افزون بر آن، به هر اتم مس یک لیگاند dmpe به صورت لیگاند دو دندانهای متصل شده است، و اتمهای مس دارای عدد همراهی چهار با آراپی چهار یا چهار سمتی منحرف شده است (به شکل 9 رجوع شود) [۵۶].

(5) کمپلکسهای دو هسته‌ای با عدد همراهی متفاوت کمپلکسهای دو هسته‌ای با دو عدد همراهی متفاوت بسیار محدودند [۶۲ و ۷۶]. در اینجا \(\text{Cu}_2\text{L}(\text{CH}_3\text{CN})(\text{PF}_6)_2\) کمپلکس از این کمپلکس‌ها مورد بررسی قرار می‌گیرد. کمپلکس \(\text{L} = \text{Cl}_{3}\text{ - بیس (2- پیر - یدیل مثیل) آمینو} [بزن است] \) در سیستم سه میل و گروه فضایی متبلور می‌شود. و اتمهای مس (I) در محیط‌های متفاوت قرار دارند، زیرا استوندررل \(\text{P}1\) فقط به یکی از محیط‌های مس متصل شده است. در این کمپلکس \(\text{Cu}_2\text{L}\) دو همراه و \(\text{Cu}_2\text{N}_2\) سه همراه است. فواصل طولی و برهم کنش مس - نیتروژن کم است [۷۶]. ساختار مولکولی کاتیون این کمپلکس در شکل 10 نشان داده شده است.
شکل ۱۰: مولکول کاتیون $[\text{Cu}_2L(\text{CH}_3\text{CN})]^2^+$.

این نمونه از کمپلکسها نسبت به کمپلکس‌های مونومورودیمی مس (I) یا کمپلکس $[\text{Cu}_3(\text{dpmp})_2(\text{MeCN})_2(\mu-X)_2]\text{ClO}_4$ با $X = \text{Cl}$ یا I به وسیله واکنش CuX در متانول تهیه شده، و به وسیله پراش پروتو-تکانده، قرار گرفته است. این کمپلکس در سیستم بلوری سمیل و غرفه فضایی dpmp می‌شود. این کمپلکس شامل سه مس (I) است که درون کلید بین آنها به ClO_4 می‌باشد. این کمپلکس شامل سه مس متشکل است. میانگین فاصله بین پارا‌های μ این کمپلکس برابر 3.24 است که نشان دهنده عدم وجود برهم کنش فلز - فلز است. دوینهای مس Cu–Cu برابر 2.24 است که نشان دهنده عدم وجود برهم کنش فلز - فلز است.

در این نمونه از کمپلکس (I) Cu–Cu می‌باشد. این کمپلکس شامل سه مس Cu–Cu می‌باشد. این کمپلکس شامل سه مس متشکل است و در نتیجه dpmp با سه مس (I) Cu–Cu متشکل است. این کمپلکس شامل سه مس Cu–Cu می‌باشد. این کمپلکس شامل سه مس Cu–Cu می‌باشد.
شکل 11 ساختار مولکولی کمپلکس

نمونه دیگری از کمپلکس سه هسته‌ای که به صورت تریمر است، کمپلکس

\[\text{[Cu}_3(\text{dpmp})_2(\text{MeCN})_2(\mu-\text{Cl})_2]\text{ClO}_4 \]

است که عدد همازان‌های اتم‌های مس (I) سه و

[CuSC₆H₄(R-CH(Me)NMe₂)-2]½ THF

نسبت فلز به لیگاند 1:1 است. ساختار مولکولی این کمپلکس به وسیله پراین-پرتور X

موردن بررسی و مطالعه قرار گرفته است. فاصله Cu-Cu

برای Cu-Cu در این کمپلکس برابر 21828 است.

شکل 12 ساختار مولکولی این کمپلکس را نشان می‌دهد [87].

3-3 کمپلکس‌های چهار هسته‌ای مس (I)

این نمونه از کمپلکس‌ها مانند کمپلکس‌های دیسرس (I) بسیار متداولند (89-86-85-84-83-82) در

اينجا به جزئی نمونه از کمپلکس‌های چهار هسته‌ای که به صورت تریمر تمایل اشاره می‌شود.
کمپلکس تتراکس (دی اتیل آمید) تترامس (I) \([{\text{CuSC}}_n{H}_4{(\text{R-CH(Me)NMe}_2)}_2]\) در سیستم بلوری جارگوشی و گروه فضایی \(\text{I}_4\text{h} \) مبتنور می‌شد. هر چهار اتم مس تقренی به شکل مربع کامل برابر ۹۹° است، به قسمی که باعث می‌گردد مولکول به وسیله نظریه نیوتن به دست می‌آید (شکل ۱۳).\[13\]

در کمپلکس تترامس تری مسیل سیلیل متیلن مس (I) \([{\text{Me}}_3{\text{Si CH}}_2{\text{Cu}}_4] \) که کمپلکس چهار هسته‌ای به صورت تترامس تری مسیل سیلیل متیلن مس (I) \([{\text{Me}}_3{\text{Si CH}}_2{\text{Cu}}]_4 \) به صورت فاصیه گروه آلکیل به صورت گروه آلکیل به صورت بلی، کمپلکس کلاستر \(\text{Cu-Cu} \) در آن بسیار کوچک و برابر ۱۷۵۴ آست که غیر عادی به نظر می‌رسد. ساختار مولکولی این کمپلکس که به وسیله پراش پروتو \(X \) تعبیه شده است، در شکل ۱۳ نشان داده شده است \[14\].
کمپلکس 2- مس - 1 (دی متیل آمینومتیل) فروسرن نمونه دیگری از کمپلکس مس (I) تهیه کرده است که به صورت تراریم موجود است و ساختار مولکولی آن به وسیله پرای در آن بسیار کوتاه و Cu-Cu X مورد مطالعه و بررسی قرار گرفته است. فاصله Cu-Cu در آن بسیار کوتاه و Cu-Cu X مورد مطالعه و بررسی قرار گرفته است. فاصله Cu-Cu در آن بسیار کوتاه و Cu-Cu X مورد مطالعه و بررسی قرار گرفته است.
کمپلکسهای پنجم هسته‌ای مس (1)
کمپلکسهای پنجم هسته‌ای مس (1) بسیار نادر است. در اینجا فقط به یک نمونه از این کمپلکسهای اشاره می‌شود. کمپلکس [PPh₃CuH]₅THF در سیستم بلوری تک میل و گروه فضایی P2₁/c متبلور می‌شود و دارای بلورهای نارنجی رنگ است. فاصله‌ها CuₑₓCuₑₒ ϖ بین (AV) 631 (V) 631 (V) 2 تا (V) 682 (V) 682 و فاصله‌های Cuₑₒ ϖCuₑₒ ϖ ϖ بین (8) 693 (8) 693 و (7) 676 (7) 676 است و محیط‌های هیدرید در آن مشخص نیست. ساختار مولکولی این کمپلکس در شکل 15 نشان داده شده است [96].
شکل 16 ساختار مولکولی کمپلکس

[[(PPh₃)CuH]₅ • THF]

2-3. کمپلکس‌های شش‌هسته‌ای مس

این کمپلکس‌ها متدولتر از کمپلکس‌های پتامرند [196-199]. آراش بیشن این کمپلکس‌ها نزدیک به هشت و جهت منظم یا هشت و جهت منحرف شده است. مثال کمپلکس شش هسته‌ای قرمز رنگ [H₆Cu₆(PPh₃)₆].DMF، هسته‌ای از این گروه است که در سیستم بلوری از حالت تقارن هشت و جهت Cu₆ رست گروه و گروه فضایی متبلور می‌شود. خوشه Cu₆ از جمله کمی انتزاع دارد، و فاصله‌های Cu-Cu منظمی کمی انحراف دارد. ساختار مولکولی این کمپلکس در شکل 17 نشان داده شده است [198].

واکنش 2-3 (متیل آمینو) پیریدین به نسبت 1:1 با CuCl در محیط THF تشکیل می‌دهد. ساختار مولکولی این کمپلکس به وسیله پراش پرتو X مطالعه و بررسی شده است. این کمپلکس در سیستم بلوری نک می‌باشد و گروه فضایی متبلور می‌شود و فاصله Cu(2)-Cu(3) 182 Å است [199].
شکل ۲۷ کمپلکس‌های هشت هسته‌ای مس (۱)
این کمپلکس‌ها در مقایسه با سایر نمونه‌هایی که قبلًا به آن اشاره شد بسیار کمیاباند که در [Cu2S2C3H6-1, 2(C6H5)2PCH2P(C6H5)4]. 4CH3CN [۱۰۱] در مکمل‌نگر [۱۰۰] سیستم بلوری سه میل گروه فضا‌یابی P1 می‌باشد. این مولکول بکه هسته‌های هشت عضوی Cu3S3، Cu2P2CS و Cu2P2CS محصور شده است [۱۰۱].

شکل ۲۸ کمپلکس‌های دوازده هسته‌ای مس (۱)
این کمپلکس‌ها می‌توانند به صورت زنجیری، صف‌های و سعی دو و سه بعدی وجود داشته باشند. در اینجا تعدادی از این نوع کمپلکس‌ها معرفی می‌شود [۱۰۷-۱۰۸] [۱۱]. [Cu(CN)(Py)]۴\[CN:NC_\mu_4-N \text{ (نیس (پیریدین - N) مس (I))}]

 تركیب بلو [ایس (پیریدین - N) مس (I)]

 به صورت دو زنجیر پلیمر مجزا متبول می‌شود. زنجیرها به وسیله گروه‌های CN به هم متصل می‌شود. هر Cu به دو پیریدین,

 به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیونд N و پیوند C به مراکز Cu\text{ با طویل که پیوند N و پیوند C به مراکز Cu\text{ با طویل که پیونو
کمپلکس پلیمر دیگر، است که بر نگه و به صورت صفحات نانومتریک Cu(CO)Cl است. این ترکیب در گروه فضایی Pm(m) مشابه می‌شود. Cu(CO)Cl کلرید - پل شده است و اتم مس (I) تقسیم به صورت چهاروجهی هماهنگ شده و تشکیل می‌دهد. از طریق ترکیب حلقه‌های کلرید مس (I) عضوی به صورت صندلی صورت می‌گیرد [10].

افزون بر کمپلکس‌های مس (I) یاد شده در بالا، کمپلکس‌های دو هسته‌ای دیگری، که است، نیز تهیه مورد مطالعه قرار گرفته‌اند که نقش اساسی در فرآیندهای انتقال الکترون در سیستم‌های بیولوژیکی بازی می‌کنند [108-111]. ضمناً کمپلکس‌های چند هسته‌ای که شامل هسته‌های متغیر و به صورت کمپلکس‌های خوشه‌ای هستند، نیز تهیه و مورد بررسی و مطالعه قرار گرفته‌اند که در این مقاله نمی‌گنجند [112-115].

۶- نتیجه‌گیری

ترکیبات مس (I) دیامغتایسی‌اند و چجدر مواردی که رنگ آنها ناشی از آنیون و یا انتقال بار
است، بر زنگ‌هاند. شیمی فضایی ترکیبات مس (II) در مقایسه با ترکیبات مس (III) پیچیده ترند. ساختار این ترکیبات در مقایسه با ترکیبات مس (II) از نوع پیشرفت بی‌خورداری است. بی‌خورداری ترکیبات مس (I) در اثر اکساپین بی‌خورداری ترکیبات مس (II) تبدیل می‌شوند، و تبدیل آن‌ها به ترکیبات مس (III) در اثر اکساپین بی‌خورداری ترکیبات مس (I) تبدیل می‌شوند.

شیمی ترکیبات مس (I) نیز نشان می‌دهد در زیست‌شناسی دارند.

کمپلکسهای تکه، دو، و چند هسته‌ای، کمپلکسهای منوور، دیبر ... و پلیمر از جمله ساختارهای اند که برای ترکیبات مس (I) شناخته شده‌اند. عدد هماهنگی مس در این ترکیبات دو، سه، چهار و پنج است. خواص کاتالیزوری ترکیبات مس (I) بسیار مهم است. اکساپین به انتقال سریع کمپلکسهای مس (I) در هوا به خوری شناسایی شده است، و احتمالاً در آغاز از طریق یک کمپلکس اکسیدن انجام می‌شود. در این مورد مولکول O_2 به عنوان پذیرنده الکترون عمل می‌کند. کمپلکسهای مس (I) به دلیل نشانه‌هایی که در سیستم‌های طبیعی، به ویژه وظایف بیولوژیکی آنها در برخی از بروزاتیون‌ها دارند از دریابز مورد توجه دانشمندان و پیش‌یاده مانده است.

لیگاندهای کیک آنتی‌ایوی سه مرکزی توانتای قابل ملاحظه‌ای در تشکیل ترکیبات دیبر، تترامور ... با فلزات وابسته و غیر وابسته با فاصله کوتاه فلز - فلز دارند. در مورد کمپلکسهای مس (I) دیبر، تترامور و غیره فاصله کوتاه Cu-Cu چشمگیر است. فاصله کوتاه Cu-Cu در این ترکیبات از 0.382 Å (فاصله Cu-Cu در مس فلزی برابر 0.259 Å است) تا 0.382 Å در این ترکیبات وجود داشته باشد. از طرفی حالت اکسایش مس (I) با آراشید کلروفلور (10) امکان تشکیل چنین پیوندی را نمی‌دهد. از این نطقه نظر، محاسبات اورینتال مولکولی برای چنین سیستم انجام گرفته است.

و نتیجه حاصل نشان می‌دهد که احتمال پیوند مستقیم Cu-Cu پیوسته در مس، و این با تأثیر متمایل شدید فلز - فلز به دلیل شکل هندسی لیگاندهای پلسا در کمپلکسهای مس (I) حکم‌مرست (116 و 117).

23- Aghabozorg, H., Ready For Publication.
60- Aghabozorg, H., and Gambarotta, S., Ready for publication.
61- Aghabozorg, H., and Gambarotta, S., Ready for publication.