Short Review in Crystal and Molecular Structures of Copper(I) Complexes

Aghabozorg, H. and Ranjbar, M.
Department of Chemistry, Faculty of Sciences, Teacher Training University, Tehran - IRAN.

Key Words: Preparation, Copper(I) Complexes, Crystal and Molecular Structures, Metal-Metal Interactions.

Abstract: In this review article, the methods of preparation of copper(I) complexes, stereochemistry (crystal and molecular structures) of mono-, bi-, tri-, tetra-, penta-, hexa-, octa-, dodeca-, and finally polynuclear complexes have been studied. In addition, metal-metal interaction in some cases, have been discussed. For the first time, four new copper(I) complexes (mono-, di-, and hexamer) have been reported.
مروری کوتاه بر ساختار بلوری و مولکولی کمپلکسهای مس (I)
حسن‌الله پورزرگر و مهروی رنجبر
پژوهش شیمی دانشگاه تبریز معلم تهران

چکیده: در این مقاله مروری روشهای تهیه کمپلکسهای مس (I) شیمی فضايي (ساختار بلوری و مولکولي) کمپلکسهای مس (I) ثابت، دو، سه، چهار، پنج، شش، هشت، دوازده هستند و نهایتاً پلیمر مولکولی به شکل بررسی فرآیندهای است. افزون بر آن، بر هم کش فلز - فلز در مورد حجم کلی از این کمپلکسهای مورد بحث و تجزیه و تحلیل قرار گرفته و همچنین کمپلکس جديد مس (I) که دارای ساختارهای منومر، دیمر و هگزامر است، برای پرداختن به اختصار گزارش شده است.

واژه هاي کلیدي: کمپلکسهای مس (I)، ساختار بلوری و مولکولی، بر هم کش فلز - فلز.

1- مقدمه
کمپلکسهای مس (I) به علت ناپایداری مسئله در مقایسه با کمپلکسهای مس (II) که مورد توجه بوده اند، حالات اکسایش مس (II) یکی از مهمترین حالت‌های اکسایش مس است. شیمی ترکیبات مس (II) کاملاً شناخته شده است و آراشی اکسایش الکترونی [Ag]3d8 بر اثر Cu(II) باعث شود و نهایتاً به ساختار سیاسی نسبت به [Ir]3d7 بر اثر Cu(II) تغییر کنند. بنابراین برای اخذ فیزیک، دسترسی به این اثرات نیاز است.
شونده و برای اینکه به صورت یک سیستم پایدار در آید تقارن آن کاهش می‌یابد. بنابراین، پژوهشگران به منظور پژوهش اثر بان تهیه، به این حالت اکسایش مس پرداخته‌اند و مقاله‌های زیادی در این زمینه تاکنون انتشار داده‌اند. از طرف دیگر کمپلکسهای مس (І) به دلیل نقش مهمی که در سیستم‌های طبیعی دارند، به ویژه ول شیمی‌پزشکان آنها در برخی از پروتئینها از درون‌پرداز مورد توجه شیمی‌دانان و شیمی‌دانان بوده‌اند. مثال (І) در ساختار ترکیباتی Cu(I) (II) از دی‌ابزار نیز، نیترین، پلاستوسیتان، دوبامین، هیدروکسی‌الدان و ... با Cu(I) (II) به همراهی نقش سیستم‌های آمینه‌ای می‌تواند اکسایش و ... نقش اساسی دارد [1]. همچنین نقش سیستم‌های Cu(I) (II) در اثر کاتالیتیک می‌تواند [2 - 3] و خواص نورسپری [4 - 5] همواره مورد توجه شیمی‌دانان بوده‌اند. لیگاند‌های کیل آنتیونی سه مركبی توانایی قابل ملاحظه‌ای در تشکیل ترکیبات دیمر، ترترام و ... با فلزات واسط و غیرواسط با فاصله کوتاه فلز – فلز دارند. بی‌سوزی بسیار کوتاه فلز – فلز در شیمی فلزات واسطه در حضور دو یا چند لیگاند آنتیونی پل شده که دارای شکل هندسی کی لت می‌شوند، به چهار الکترون Pi آئریل هستند. در این شده است (شناپ‌ای) [6]:

\[
X, Y, Z = C, N, O, P
\]

شما I
در اینجا به اجمال روشهای تهیه کمپلکس‌های مس (I) گزارش شده و شیمی همراهی (کوئورودینامیک) این ترکیبات و ساختار بلوری و مولکولی آنها و برهم کنش کلر از لحاظ مطالعه و بررسی قرار گرفته است.

2 - طرز تهیه کمپلکس‌های مس (I)

پیشتر کمپلکس‌های مس (I) نسبت به هوا بسیار حساس‌اند، بنابراین، برای تهیه اغلب ترکیبات مس (I) عملیات در شرایط آنتی‌سئزر یا آرگون خالص و با استفاده از روشهای انجام می‌گیرد. در پیشتر مورد از هالیدهای مس (I) برای تهیه کمپلکس‌های مس (I) استفاده می‌شود و از پون F کمتر به عنوان لیگاند به کار می‌روند. لیگاندهای P و I به سهولت یون Cu(I) به عنوان Cu2+ را به گونه‌ای پایدار تبدیل می‌کنند [17]:

\[
2Cu^{2+} + 4I^- \rightarrow Cu_2I_2 + I_2
\]

ماس (I) کلمه بهترین ماده اولیه برای تهیه پیشتر کمپلکس‌های مس (I) است که در زیر چنین فرآیند از این نوع دیده می‌شوند:

i) \(CuCl + dmpe + NaCo(CO)_4 \rightarrow \frac{1}{2} [Cu(dmpe)_2][Cu(Co(CO))_4]_2 + NaCl\) [18]

ii) \(CuCl + [HB(t-BuPz)_3] \rightarrow ([HB(t-BuPz)_3Cu]_2\) [19]

iii) \(HBPZ_3 K^+ + CuCl \rightarrow HBPZ_3Cu(CO) \rightarrow [HBPZ_3Cu]_2\) [20]

در تهیه Cl به عنوان CuCl \(CuCl\) (I) به عنوان ماده اولیه استفاده می‌شود. در برخی حالت‌ها مثل کمپلکس‌های آمید و مس (I) CuCl2 تبدیل می‌شود. بنابراین، بهترین ماده اولیه برای تهیه این کمپلکس‌ها استفاده از CuCl2 است [21]. با ماده: TMEDA، N,N,N',N'' - tetramethylethlenediamine در حضور اولیه \(Cu(CNMe)_4\) از مس (I) مثل پیریدین، پی پیریدین، اتیلن دی آمین و... که حاوی لیگاندهای نیتروژن‌اند را به تهیه کرد [22، 25] به عنوان مدل نمونه‌های زیر را می‌توان نام برد:
شیمی فضایی کمپلکسهای مس (I)
آراشی الکترونی یون Cu+ به صورت Cu[Ar]3d10 است، بنابراین، دارایی یک تقارن کروی است. کمپلکسهای مس (I) بیش از اعداد اتمهای مس که در ساختار کمپلکس بکار رفته به دسته‌های منومر، دی‌مر، تری‌مر، تری‌مر، پن‌ام، هگ‌ام، اک‌ام، دو‌کام و پلیمر طبقه‌بندی می‌کنند.

3-1 کمپلکسهای منومر با تک هسته‌ای مس (I)
کمپلکسهایی که حاوی یک اتم مس (I) در ساختار مولکولی و در این رده قرار دارند. این کمپلکسهایی را می‌توان بر حسب عدد هماهنگی مس (I) به چهار گروه رده‌بندی کرد که عبارت‌اند از:
الف) کمپلکسهایی با عدد هماهنگی 2
چند نمونه از این نوع کمپلکسهای ساخته و شناسایی شده‌اند که یک نمونه از آن کمپلکس Cu[NS2]2 [Cu (S - Me - Th - 2 - CH = N - i - Pr)]2(O3SCF3) سیستم پلوری سه میل (تروی کلینیک) و هردو فضایی Pt متبلور می‌شود. باختنه‌ی یک شامل یک زوج کمپلکس انتی‌بودن یک کاتیون با آراشی و کاتیون دیگری با آراشی است. هر دو کاتیون اتم فلز مرکزی sp3 است که اتمهای نیتروژن به طور خاص به هم‌هسته فلز همرا شده است (شکل 1) (29) معمولاً حجم بودن لیگاندها نیز باعث پایین آمدن عدد هماهنگی می‌شود.

1- لازم به یادآوری است کمپلکسهای دی‌مر، تری‌مر و... همچونی به عنوان کمپلکشایی دو هسته‌ای، چهار هسته‌ای و... نیز تلقی می‌شوند ولی عکس قضیه ممکن است درست نباشد. یعنی، هر کمپلکس دو هسته‌ای، چهار هسته‌ای و... از آنها کمپلکسهایی دی‌مر، تری‌مر و... محصول نمی‌شوند.
[Cu{NS2}]_2^+\] نمادین ۱ ساختار مولکولی کاتیون

ب) کمپلکس‌ها در تعداد هماژگی

کمپلکس‌ها با عدد هماژگی ۳ متداولتر از نوع (الف)اند [۴۰-۴۱]. یک صورت از کمپلکس‌ها که β-دیکتونات (β-diketone) لیگاندهای استیل استونات، نری فلور و استیل استونات و هگزالارول استیل استونات از آن جمله‌اند، ساخته شده و به روش پروش سنگی پروتو X مورد مطالعه و بررسی قرار گرفته است. کمپلکس CuPMe₃ در (tfa) کمپلکس Pbca سیستم بلوری راستگوش (ارتوومیکت) و گروه فضایی منتقل شده است. ساختار مولکولی آنها در حال تجزیه متوسط و عدد هماژگی مس (I) در این کمپلکس‌ها ۷ است و به صورت مثلثی شکل می‌گیرند (شکل ۲) [۴۰].

کمپلکس‌های مس (I) با اکینه‌های جزئی این رده از کمپلکس‌ها مس (I) قرار می‌گیرند.

سر ی دیگری از کمپلکس‌ها با مشخصات (R=H,Ph,CO₂Et)[Cu(Phen)(HC≡CR)]ClO₄\] ساخته شده‌اند که ساختارشان با استفاده از روشنای پروش سنگی تکه بلوری پروتو X شناسایی شدند.
شکل ۲ ساختار مولکولی کمپلکس

\[(\text{tfa})\text{CuPMe}_3 \]

تری فلوروضیل استونات (tfa)

شکل ۳ ساختار مولکولی کمپلکس

\[[\text{Cu(Phen)}(\text{CH≡CR})]\text{ClO}_4 \]
ساختار مولکولی کاتیون $[\text{CuL}_2]^+$ (شکل 4) [54].
در کمپلکس $[\text{CuCl}_2 \text{Cl}]$ است که به عنوان ماده اولیه در تهیه کمپلکس‌های مس (I) مورد استفاده قرار می‌گیرد. ساختار این کمپلکس به وسیله پریش پرتو X اخیراً مورد مطالعه قرار گرفته است [127]. فلز مرکزی کاتیون $[\text{Cu} \text{Cl}_2 \text{Cl}]^+$ دارای عدد هماوری پیچیده و دارای آراشی پیچیده و جهت منحرف شده است. آنیون این کمپلکس، CuCl_2, خلو است و اتم مس در مرکز تقاضا قرار دارد.

(د) کمپلکس‌های با عدد هماوری 5

این نوع کمپلکس‌ها بسیار کمیاب و غیر متداول‌اند. نمونه‌ای که در این زده جای دارد کاتیون $[\text{Cu} \text{Cl}_2 \text{Cl}]^+$ هسته ویژه و به صورت $\text{Cu} \text{Cl}_2 \text{Cl}$ است که با DAP و هسته ویژه $\text{H}_{2} \text{O}$ در دست گرفته می‌شود. در ابتلا به [imidH]$_2$DAP$+$ هم یک لیگاند پنجم دندان‌های [imidH]$_2$DAP$+$ را تشکیل می‌دهد، که نام آن $\text{Cu} \text{imidH} \text{DAP}$. این بررسی در سیستم P21- (2- اینیل.) یا اینیل) اینیل پریدین است. این ترکیب در سیستم بلوری تکه میل و گروه فضایی 6/ممنب و متنوع می‌شود. این کمپلکس دارای شکل هندسی دو هرمی مثلثی منحرف شده است [125]. شکل 5 ساختار مولکولی این کمپلکس را نشان می‌دهد.

(3) کمپلکس‌های دو هسته‌ای مس (I)

کمپلکس‌های دو هسته‌ای مس (I) به طور وسیعی با هدف مشابه‌سازی جایگاه‌های فعال پروتئین‌های مس، مثل همبسیانین و تیروزیناز، مورد مطالعه قرار گرفته‌اند [126].
ماطعه و بررسی ساختار بلوری و مولکولی این دسته از کمپلکس‌ها از اهمیت ویژه‌ای برخوردار است. افزون بر آن، نظر به اینکه برنده کننده فلز فلز در این دسته از کمپلکس‌های مس بیشتر به چشم می‌خورد نمونه‌های بیشتری در این مقاله مورد بررسی قرار می‌گیرد.

این دسته از کمپلکس‌های مس (I) را می‌توان براساس عدد همازمان‌ها اتم مس به چهار گروه تقسیم کرد. ممکن است عدد همازمان هر دو اتم مس (I) در این کمپلکس‌ها یکسان یا متفاوت باشند.

الف) کمپلکس‌های دو همازمان دو همازمانی
چند نمونه از این نوع کمپلکس‌ها ساخته و شناسایی شده‌اند. [47, 57-61] که در اینجا به سه نمونه اشاره می‌شود. ترکیب [Cu₂(L³)₂(ClO₄)₄] (L³ = 1- بیکس (1- متیل بنزامیدزاول - ٢- ایلی) بنزن است) نمونه‌ای از این گروه است که ساختار بیچ نخورده‌ی دو

1- nonhelical
مروه‌ی کوتاه بر ساختار بلوری و مولکولی کمپلکس‌های آنیونی نمک سدیم ۲- بنزیل آمینوپیریدین، BAP با [Cu(TMEDA)₂][CuCl₂] در THF محلول، تشكیل کمپلکس دیسر [Cu(BAP)]₂H₂O مي‌دهد. ساختار مولکولی اين کمپلکس اخري با وسيله پراش پرتوا X مورد مطالعه قرار گرفته است. اين کمپلکس در سبيستم بلوري تکه ميل و گروه فضايی P2₁/c مي‌باشد. فاضله Cu-Cu بسيار كوتاه و در غيره Cu-Cu با مس فلزي براير (A) ۱۶۵۵ (A) ۱۶۵۶ است. [۱۰۰] [Cu(TMEDA)₂][CuCl₂] با DPT در THF محلول تشكیل کمپلکس دیسر [Cu(DPT)]₂ مي‌دهد. ساختار مولکولی اين کمپلکس اخري با وسيله پراش پرتوا X مورد مطالعه قرار گرفته است. اين کمپلکس در سبيستم

[۲۱] شکل۶ ساختار مولکولی کاتيون + شکل۶ ساختار مولکولی کاتيون +
کمپلکس‌های دو هسته‌ای سه همراهی

نمونه‌های زیادی از این نوع کمپلکس‌ها نهایی و شناسایی شده‌اند [12-17] که در اینجا فقط با
یک نمونه از آنها آشنا می‌شویم. کمپلکس \(\left\{ \text{Cu}(3,5 \text{Me}_2 \text{- Pz})(\text{CNR}) \right\}_2 \)
در این کروه قرار دارد و در سیستم بلوری

\(R = K_1 \) 5/3 - دی متیل پیرازولات و

\(R = K_2 \) 3/5 - دی متیل پیرازولات در این کمپلکس می‌شود. فاصله Cu-Cu

3/2/2 متیل و گروه فضایی اصلی C2/m می‌باشد. فاصله Cu-Cu

55/81 3/2 است. عدد همراهی اتمهای مس در آن، 3 و آرایش اتمهای مس مثلثی است.

در این کمپلکس دولیگاند 3، 5 - دی متیل پیرازولات به صورت بلن دو نیلی قرار گرفته و

یک لیگاند سیکلوهگزیل ایزوسینانید به طور انتهایی به هر اتم مس پوند خورده است. شکل

\[\left\{ \text{Cu}(3,5 \text{Me}_2 \text{- Pz})(\text{CNR}) \right\}_2 \]

شکل 7 ساختار مولکولی کمپلکس

cمپلکس دیмер چهار همازابی است که در سیستم بلوری سه میل و گروه فضایی P21 متبلور می‌شود. در ساختار این کمپلکس، دو گروه [Cu(Diphen)]۲۲+ ساختار مولکولی کاتیون (دون مثبت) شکل ۸ دارای همازابی چهار همازابی است.
شکل ۹ ساختار مولکولی کاتیون [Cu(dmpe)]^2^+. اتمهای هیدروژن برای سادگی حذف شده‌اند.

$\text{Cu}_2\text{P}_4\text{C}_4$ به صورت پل بین اتمهای مس (I) تشکیل حلقه ۱۰ عضوی را dmpe به صورت یک لیگاند دو دندانه‌ای متصلا در رنگ زرد مشاهده شده است، و اتمهای مس دارای عدد هماهنگی چهار با چهار بخشی متاخره شده است (به شکل ۹ رجوع شود).

(۵) کمپلکس‌های دو هسته‌ای با عدد هماهنگ مشابه هستند که نمونه از آن کمپلکس‌های مورد بررسی قرار گیرد. کمپلکس $\text{Cu}_2\text{L(CH}_3\text{CN})(\text{PF}_6)_2$ در اینجا بررسی شده است. در سیستم مولکولی به‌صورت $\text{L} = 1$, ۳- بیس (۲- پیر - یدیل متیل) آمینو [زین است] در سیر این سیستم، هر یک از دو گروه فضایی P_1 می‌تواند به دو اتمهای مس (I) می‌تواند به دو اتمهای مس (I) در محیط‌های متفاوت قرار دارد، زیرا استاتیون برای P_1 فقط به یکی از محله‌ای مس متصلاً شده است. در این کمپلکس Cu_2 در هما و Cu_2N_2 و Cu_2N_1 است. فواصل بنیل و برهم کنش مس - نیتروژن کم است [۷۶]. ساختار مولکولی کاتیون این کمپلکس در شکل ۱۰ نشان داده شده است.
شکل ۱۰ ساختار مولکولی کاتیون $[\text{Cu}_2L(CH_3CN)]^{2+}$ اتمهای هیدروژن برای سادگی حذف شده‌اند.

۳- اکمپلکس‌های سه هسته‌ای مس (I)

این نمونه از کمپلکس‌ها نسبت به کمپلکس‌های مونومرودیмер مس (I) کمپلکساند [77-79] با $X = \text{Cl}$ یا $X = \text{Br}$ کمپلکس CuX به وسیله واکنش به (dpmp) در مانیول تهیه شده و به وسیله پراش پروتو X مورد مطالعه قرار گرفته است. این کمپلکس در سیستم بلوری سه‌بعدی و گروه فضایی $P1$ مبتدی می‌شود. این کمپلکس شامل سه‌این مس (I) است که دویون کلیدی بین آنها به صورت پل قرار گرفته است و هر لیگاند dpmp به سه اتم مس متصال است. میانگین فاصله برابر \AA است که نشان دهنده عدم وجود برهم کنش فلز-فلز است. بونهای مس $\text{Cu}-\text{Cu}$ دارای ساختار چهاروجهی منحرف شده است که بین دو لیگاند dpmp به صورت پل قرار گرفته است. $\text{Cu} \rightarrow \text{Cu}$ میان گروه لیگاند MeCN به اتمهای (I) Cu(3) و Cu(2) و اتمهای پیکاسی دارند. بنابراین، علیرغم عدد همگرایی چهار برا ۹‌تول اتم مس، موضوع (I) Cu(3) و Cu(2) و Cu(I) با موضوع (I) Cu(3) متفاوت است (شکل ۱۱) [82].
شکل ۱۱ ساختار مولکولی کمپلکس

نمونه‌ ذیگری از کمپلکس سه‌همه‌ای که به صورت تریبار است، کمپلکس
[Cu3(dpmp)2(MeCN)2(μ-Cl)2]ClO4 است که عدد همایی اتمهای مس (I) و
[CuSC6H4(R-CH(Me)NMe2)-2]-2[THF] نسبت فلز به لیگاند ۱:۲ است. ساختار مولکولی این کمپلکس به وسیله پرایش پرتو X مورد
بررسی و مطالعه قرار گرفته است. فاصله Cu-Cu در این کمپلکس برای ار (1828)
۲ است.

شکل ۱۲ ساختار مولکولی این کمپلکس را نشان می‌دهد [۱۳]

۳- کمپلکس‌های چهار هسته‌ای مس (I)
این نمونه از کمپلکس‌های ماند، کمپلکس‌های دی‌سرس (I) بیشتر مورد
[۱۹۸۴-۸۵] در
اینجا به کمک نمونه از کمپلکس‌های چهار هسته‌ای که به صورت تریبار اشاره می‌شود.
کمپلکس تتراکیس (دی اتیل آمیدو) تترامس (I) در سیستم بلووری \(\text{CuSC}_3H_g(R-\text{CH(Me)}\text{NMe}_3)_2\)\(\text{THF}_2\)\] شکل ۱۲

کمپلکس تتراکیس (دی اتیل آمیدو) تترامس (I) در سیستم بلووری \(\text{CuNEt}_4\) چارگوشی و گردو فضایی \(\text{I}_4/\text{a}\) مبتن می‌شود. هر چهار اتم ترارامس تقاطعی به شکل مربع کامل با برای \(99° 91\) است و قسمتی که

\[\text{CuCu-Cu} = \text{۱۷۶۶ اند، و زاویه Cu-Cu}\]

یک‌موطع \(\text{MOLKOL}\) به وسیله تقارن \(4\) به سادگی به دست می‌آید (شکل ۱۲). [۱۳] در کمپلکس تتراکیس تزری مثال سایل متیلن مس (I) \(\text{Me}_3\text{Si CH}_2\text{Cu})_4\]

کمپلکس چهار هسته‌ای به صورت ترارامس، گردو آلکیل به صورت پل کمپلکس کلاستر مس (I) چهار هسته‌ای را به وجود می‌آورد که فاصله \(\text{Cu-Cu}\) در آن بسیار کوچک تا ۱۷۶۶۸ است که غیر عادی به نظر می‌رسد. ساختار مولکول این کمپلکس که به وسیله

پراس پرتو X تعیین شده است، در شکل ۱۵ نشان داده شده است. [۱۶]
شکل ۱۳ ساختار مولکولی کمپلکس [CuNEt$_2$]$_4$

کمپلکس ۲- مس - ۱ (دی متیل آمینو میل) فروسن نمونه دیگری از کمپلکس مس (I) چهار هسته ای است که به صورت ترکبی می‌باشد و ساختار مولکولی آن به وسیله پرایت ژولیت X مورد مطالعه و بررسی قرار گرفته است. فاصله Cu-Cu در آن بیشتر کوتاه و Cu-Cu یک بازتکه کوتاه با [Me$_3$SiCH$_2$Si]$_4$Cu هیدروفسیل ی می‌باشد بای مناسب خواندن داده نشده است.
2×۵ کمپلکس‌های پنج هسته‌ای مس (I)
کمپلکس‌های پنانتور مس (I) بسیار نادر است. در اینجا فقط به یک نمونه از این کمپلکس‌ها اشاره می‌شود. کمپلکس [(PPh₃CuH)₅THF] در سیستم بلوری تک میل و گروه فضایی P2₁/c مربوط می‌شود و دارای بلورهای ناورانیلی رنگ است. فاصله‌ها Cuₓ Cuᵧ بین ۲۶۳۱(7)Å و Cuᵧ Cuᵧ در (v) ۲۶۵۸(7)Å و در (v) ۲۶۹۳(8)Å و Cuₓ Cuᵧ در (v) ۲۶۰۸(7)Å است و محیط‌های هیدروکسید در آن مشخص نیست. ساختار مولکولی این کمپلکس در شکل ۱۶ نشان داده شده است [96].
شکل 1۲. ساختار مولکولی کمپلکس

این کمپلکسها متوالی از کمپلکس‌های پتاموند [96-99]. آراش بیشنر این کمپلکس‌ها
نذیدنی به هستند و جهت منظم یا هشت و جهت منحرف شده
است. مثلاً کمپلکس شش
هسته‌ای قرمز رنگ [H6Cu6(PPh3)6]·DMF نمونه‌ای از این گروه است که در سیستم بلوری
رژه گروه و گروه پلاستیک متبلور می‌شود. خوشه Cu6 راست گروه گروهی فضایی
منتظم کمی انحراف دارد و فاصله‌های
Pbca از حال تقارن هسته و جهت
Cu-Cu
A
4۹۶۲۷۶۴۲۰ ۲۱ A

موکولی این کمپلکس در شکل ۱۷ نشان داده شده است [98].

واکنش ۲- (متیل آمینو) پیریدین به نسبت ۱:۱ با CuCl
در محیط THF تشکیل
کمپلکس شش هسته‌ای (همگونی)، [CuCl(L)]6 می‌دهد. ساختار مولکولی این کمپلکس به
وسیله پراش پروتو X مطالعه و بررسی شده است. این کمپلکس در سیستم بلوری نگه می‌دار
X
P2۱/n

۲۰۱۴ (۳)

Cu(2)

۲۲۴۸۴۲ است [99].
فکر کنید مولکول‌های کالیکه‌هایی همراه با فواصل مس - مس بر حسب \(\AA \) هستند.

شکل 12 ساختار مولکولی کلاس‌هایی که در \(\text{Cu}_6\text{S}_6(\text{PPh}_3)_6 \) همراه با فواصل مس - مس بر حساب

3-7 کمپلیکس‌های دوازده هسته‌ای مس (I)
این کمپلیکس‌ها در مقایسه با سایر نمونه‌هایی که قبل با آن اشاره شد بسیار کمیاباند

\[\text{Cu}_2\text{S}_2\text{C}_6\text{H}_5\cdot\text{PCH}_2\text{P}(\text{C}_6\text{H}_5)\cdot\text{CH}_3\cdot\text{CN} \cdot \text{CH}_3\cdot\text{CN} \]

زمینت بلوئی سه میل و گروه فضایی \(\text{P} \) متبلور می‌شود، مولکول یک هسته با همکنش

که در آن این کمپلیکس‌ها در مقایسه با سایر نمونه‌هایی که قبل با آن اشاره شد بسیار کمیاباند

\[\text{Cu}_2\text{P}_2\text{CS} \cdot \text{Cu}_2\text{P}_2\text{CS} \cdot \text{Cu}_2\text{P}_2\text{CS} \]

در خاصیت حلقه‌هایی مشابه عضوی \(\text{Cu}_4\text{S}_4 \)

\[\text{Cu}_6\text{S}_6(\text{PPh}_3)_6 \]

محصور شده است [101].

3-8 کمپلیکس‌های دوازده هسته‌ای مس (I)
این کمپلیکس‌ها نیز بسیار کمیاباند، کمپلیکس دارایی ساختار مکعبی هستند

\[(\text{PPh}_3)_4[\text{Cu}_{12}\text{S}_8] \]

ورزش گردد. فواصل مس - مس از \(\text{Cu-S} 2\cdot\text{A} \) از \(1.918 \AA \) و فواصل Cu - Cu از \(2.274 \AA \) و ف资产负债表

\[(\text{PPh}_3)_4[\text{Cu}_{12}\text{S}_8] \]

واحد از کمپلیکس

\[(\text{PPh}_3)_4[\text{Cu}_{12}\text{S}_8] \]

و در نهایت

\[(\text{PPh}_3)_4[\text{Cu}_{12}\text{S}_8] \]

یکه نشان می‌دهد [102].
این کمپلکس‌ها می‌توانند به صورت‌های زنجمی، صف‌های و سیله‌های وجود داشته باشند. در اینجا تعدادی از این نوع کمپلکس‌ها معرفی می‌شود [101-107].

ترکیب بلی [ایس (پیریدین - N) مس (I)] [CN:NC - سیلیزوس] [Cu(CN)(Py)] به صورت دو زنجمی پلیمر مجزا می‌شود. زنجمی به وسیله گروه‌های CN زیاد می‌شود به طوری که پیوند Cu به مراکز Cu1 می‌شود. هر Cu به دو پیریدین اتم N از یک CN و اتم C از CN در گر متمت است. همراهی اتم C مس چهار وجهی منجر شده است. این کمپلکس به صورت زنجمی پلیمری وجود دارد و در سیستم پلوری تک میل و گروه فضایی متبلور می‌شود. شکل 19 ساختار مولکولی این کمپلکس را نشان می‌دهد [105].

شکل 18 آرایش واحد کمپلکس Cu12S8 از کمپلکس (Ph4P)4[Cu12S8] در یکه‌ی یکه.
کمپلکس پلیمر دیگر، Cu(CO)Cl، است که به رنگ و به صورت صفحات نانظم Cu(CO)Cl، همراه شده است. این ترکیب در گروه فضایی 2، Pmm2 مطیع شده و شکل کلیدی ناحیه است که از طریق ترکیب حلقه‌های کلیکی مس (I) + عضوی به صورت صندلی صورت می‌گیرد [107]. افزون بر کمپلکس‌های مس (I) یاد شده در بالا، کمپلکس‌های دو هسته‌های دیگری که شامل Cu(II) و Cu(I) هستند، نیز تهیه و مورد مطالعه قرار گرفته‌اند که نقش اساسی در فرآیندهای انتقال الکترون در سیستم‌های پیلولوئیدی بایزی می‌کنند [108-111]. ضمناً کمپلکس‌های چند هسته‌ای که شامل هسته‌های متفاوت و به صورت کمپلکس‌های خوشه‌ای هستند، نیز تهیه و مورد بررسی و مطالعه قرار گرفته‌اند که در این مقاله نیز گنجید [112-115].

۶- نتیجه‌گیری

تکیه‌گیری مس (I) دیامن‌تیسی‌اند و جز در مواردی که رنگ آنها ناشی از آنتون و یا انتقال بار
است، بی‌رنگ‌گانه. شیمی فضایی ترکیبات (I) II در مقایسه با ترکیبات مس (II) پیچیده‌ترند. ساختار این ترکیبات در مقایسه با ترکیبات مس (II) از نوع پیشتری بخش‌دارند. بیشتر ترکیبات مس (I) در اثر اکسایش به ترکیبات مس (II) تبدیل می‌شوند، و تبدیل آنها به ترکیبات مس (III) در اثر اکسایش پیچیده، به سختی صورت می‌گیرد. شیمی ترکیبات مس (III) مانند شیمی ترکیبات مس (I) نیز نشان می‌دهد در زیست شناسی دارند.

کمپلکسهای تکه، دو، و چند هسته‌ای، کمپلکسهای مونومر، دیمر، و پلیمر از جمله ساختارهای اند که برای ترکیبات مس (I) شناخته شده‌اند. عدد هماهنگی مس در این ترکیبات، سه، چهار، و پنج است. خواص کاتالیزوری ترکیبات مس (I) سیبز مهم است.

اکسایش به اندازه سریع کمپلکسهای مس (I) در هوا به خویش شناسایی شده است، و احتمالاً در آغاز از طریق یک کمپلکس اکسیژن انجم می‌شود. در این مورد مولکول O_2 به عنوان پذیرنده الکترون عمل می‌کند. کمپلکسهای مس (I) به دلیل نشان مهیج در سیستم‌های طبیعی، به ویژه وظایف بیولوژیکی آنها در بخشهای پرورش‌دهنده دارند از دیپراز مورد توجه شیمی دانان و بیوشیمی دانان بوده است.

لیگندهای کلید آنتی‌بیوتیک به عنوانی قابل ملاحظه‌ای در تشکیل ترکیبات دیمر، تترامر و دیترامر و غیر واسطه با فاصله کوتاه فلز – فلز دارند. در مورد کمپلکسهای مس (I) دیمر، تترامرهگزام فاصله کوتاه Cu-Cu چشمه‌گیر است. فاصله کوتاه Cu-Cu در این ترکیبات از 3.28 Å تا 3.7 Å (فاصله Cu-Cu در فلز فبرای Cu_2 4.2 Å است) تا Cu_2 4.8 Å این سنوی را پیش می‌آورد که باعث پیوند فلز – فلز در این نوع ترکیبات وجود داشته باشد. از طرفی حال اکسایش مس (I) با آراشید الکترونی 10^6 میکرو امکان تشکیل چنین پیوندی را نمی‌دهد. از این نظر نظری، محاسبات اوریتان مولکولی برای جنین سیستم انجام گرفته است. بسیار ضعیف و قابل چشم‌پوشی است، و تا آثار متقابل شدید فلز – فلز به دلیل شکل هندسی لیگاندهای فلزی در کمپلکسهای مس (I) حکمران ماست (116 و 117).

23- Aghabozorg, H., Ready For Publication.

60. Aghabozorg, H., and Gambarotta, S., Ready for publication.

61. Aghabozorg, H., and Gambarotta, S., Ready for publication.