Review of Synthesis and Structure Determination of
Triethanolamine Complexes

Naiini, A. A.
Research associate, Iowa State University, U.S.A

Taeb, A.
Iran University of Science & Technology, Tehran-IRAN.

Key Words: Triethanolamine Complexes, Preparation, Molecular Structure.

Abstract: Up to date 12 complexes of triethanolamine with alkali, alkaline earth, lanthanide metals and hydrogen have been reported. The synthesis and structure determination of these compounds is the subject of this review paper. Moreover, the similarities and the differences of the complexes with respect to the metals and ligand are discussed.
مروری بر تپه و شناسایی ساختار کمپلکسهای تری اتانول آمین

احمد علی‌آبادی نائینی

بخش شیمی دانشگاه ایران آباد، آمریکا

عباس طالب

دانشکده مهندسی شیمی دانشگاه علم و صنعت ایران

چکیده: ناکون ۲۴ کمپلکس مختلف از فلزات قلیایی، قلیایی خاکی، لانتانیدها و میدروژن با تری اتانول آمین تهیه و ساختار آنها بروز و تعیین شده است. این بیان مهندسی سیبی می‌شود. این در مورد تهیه و ساختار این مواد، تحلیل مقایسه‌ای ارائه و نقش فلزات مركب و لیگاند در ابعاد و جوهر همانند و ناهمانند بحث شد.

واژه‌های کلیدی: تری اتانول آمین، تهیه، ساختار مولکولی

مقدمه

کلها و جنگ‌نامه، به دلیل بالا بودن پایداری کمپلکسهایی که می‌سازند، بسیار مورد توجه انسانها و علمدانان. این کلها می‌توانند بیماری‌هایی ایجاد کنند که تجزیه ناپذیرند. ماده تری اتانول آمین از محدود کلها و جنگ‌نامه است که با بالا بودن پایداری کمپلکس که
می‌سازد، از یک طرف از بلیمی‌های شدن ماده حاصل، چه علی‌القاعدی برای این نوع مواد معمول است، جلوگیری می‌کند، و از طرف دیگر موجب شناسایی ساختار آن ماده می‌شود.

تری آتانول آمین می‌تواند به دو صورت آلکوکساید $\text{LX}_3(\text{OCH}_2\text{CH}_2)_3\text{N}$ و کالکی $\text{M}((\text{HOCH}_2\text{CH}_2)_3\text{N})\text{LY}$ در ساختار کمپلکس ظاهر شود. اگر چه اخیراً آلکوکسایدهای ناشی از تری اتانول آمین مورد بررسی گروه‌های تحقیقاتی مختلف قرار گرفته است، ولی به دلیل تغییرات جدید این نوع مواد، در این مقاله تنها به کمپلکس‌های نوع دوم می‌پردازیم.

بررسی نتایج

عناصری که تاکنون کمپلکس‌های آنها با تری اتانول آمین تهیه شده‌اند:

- هیدروژن، سدیم، کلسیم، استرونسیم، باریم، پرازتودیمیم و اتریم. در اینجا تهیه و ساختار

این مواد به اختصار توصیف و نتایج حاصل با هم مقایسه می‌شوند:

- با هیدروژن تنها کمپلکسی که تهیه شده است، تری اتانول آمین پرکلریت، با فرمول

[\text{H(OCH}_2\text{CH}_2)_3\text{N}(\text{CLO}_4)]SH_2 است. این ماده از هیدروژن سیلیترانیم پر کلریت تهیه می‌شود. در این کمپلکس هیدروژن با سه اکسیژن و یک

[\text{Si(OCH}_2\text{CH}_2)_3\text{N}(\text{CLO}_4)]SH_2 نیتروژن از تری اتانول آمین قابلیت پیوندی دارد و یکی از ترکیبات نادری است که در آن

عدد هماهنگی (کوئرودینامیک) چهار حاکم است [1] از این ماده به نام ماده کمپلکس‌های

ناشی از تری اتانول آمین نیز نام برده می‌شود [2].

- تاکنون ساختار دو کمپلکس از سدیم به روش بلور تگاری بررسی شده است:

الف - ترکیب $[\text{Na(OCH}_2\text{CH}_2)_3\text{N}]$ که در آن سدیم با سه اتم اکسیژن و یک اتم

نیتروژن از تری اتانول آمین بیکیره دیده، و دو اتم اکسیژن از مولکول‌های مجاور محصور

است. چند وجه‌های حاصل به موازات صفحات (110) به صورت زنجیری به هم متصل است [3].

ب - ماده $[\text{Na(OCH}_2\text{CH}_2)_3\text{N}(\text{CLO}_4)]$ در نتیجه واکنش یک مول تری اتانول آمین با
یک مول سدیم برکلرات در حلال THF ساخته شده است. تک بلوهای مناسب برای مطالعات بلوه‌گاری با تبخير تدریجی حلال به دست می‌آید. در این کمپلکس، که در گروه Px2/c P21/c بلوه می‌شود، نوع سدیم به صورت نامتقارن به اتم‌های آکسیژن و نیترژن از تری اتانول آمین متصل است. علاوه بر این، سدیم با یک طیفی آکسیژن از بنن برکلرات و دو آکسیژن از مولکول‌های مجاور نیز پیوند دارد، و عدد همراهی هفت را تشکیل می‌دهد.
پیوندهای هیدروژنی باعث می‌شوند تا اکسیژن‌های موازی در شیب که بلوه‌زی بار دهنده [1] کلیسم و استروئنیم با لیگاند تری اتانول آمین کمپلکسی با فرمول کلی M((OHCH2CH2)3N)3(N3)2 استروئنیم باشد. این ترکیبات، با افزودن تری اتانول آمین به محلول اشعاع آبی کلیسم آزید در دمای معمولی، بهبود می‌شوند. تک بلوهای مناسب این کمپلکس را می‌توان با گرم کردن رسمی حاصل تا دمای 55°C و سپس خنک کردن تدريجی محلول تا دمای محيط به دست آورد. هر دو ماده دارای شبکه شگفت‌آوری بوده و در گروه فضا 32 R3 č افراد دارند. عدد همراهی پن فلز هست است. پن آزید بی‌پون فلز متصل نیست، ولی فاصله اولین اتم نیترژن آن با گروه OH مولکول مجاور در حدی است که وجود پیوندهای هیدروژنی ممکن است [2].
4. از استروئنیم کمپلکس دومی، با فرمول 2 Sr[(HOCH2CH2)3N]2(NO3)2 خود پیوندهای هیدروژنی از طریق پن هیدروژنی از تری اتانول آمین، با عنصر باریم بوده است. در آن پررسی 3 بلوه جدید تهیه و به وسیله برای نتایج مورد بررسی قرار گرفته است [3].
5. البته عده بررسی‌های به عمل آمده بر روی کمپلکسهای تری اتانول آمین با عنصر باریم بوده است. در آن بررسی‌های جدید تهیه و به وسیله برای نتایج مورد بررسی قرار گرفته است [4].
الف - ترکیب

{Ba[(HOCH₂CH₂₃N)₂(CH₃COO)](CH₃COO)}

ب - ترکیب

{Ba[(HOCH₂CH₂₃N)₂(C₆H₅N₂O₃)]}

بازی آنال آمین به یک مول باریم استات تهیه شد. بلور مربوط به کمکه مخلوط دو کل متانول و بوتانول تهیه شد. عدد هماهنگ باریم در این ترکیب نه است که عبارت اندازه نان و تام اکسیژن، دو تام نیتروژن از تری اتانول آمین، و یک اکسیژن از هیدرژنیهای بین هیدرپکسید و گروه‌های استات

بر قرار است [١].

شیب‌های زیادی به کمپلکس قبیل دارد.

باریم با یک اکسیژن و دو تام نیتروژن مرفوط به تری اتانول آمین و تازه یک اکسیژن از

پرونده‌های نیتروژنات حاصله شده است، و در نتیجه عدد هماهنگی نه دارد. دو هم این می‌شود

نیتروفنولات به باریم یک اتیلی ندارد. تمام می‌خورند تری اتانول آمین از طریق

ایکسیژن‌های دی نیتروفنولات به صورت بیوپندهای نیتروژنی به هم مربوط‌اند [٧]

ج - بروز کمپلکس

{Ba[(HOCH₂CH₂₃N)₂(C₆H₅N₂O₃)]}

نشان داد که عدد

هماهنگ باریم ده است. در این جا علاوه بر انمهای تری اتانول آمین، دو باریم نیترو

فنولات نیز، از طریق دو اکسیژن خود به باریم پوند دارند. در این ترکیب نیز پوندهای

هیدروژنیهای اکسیژن‌های فنولات و هیدرپکسید تری اتانول آمین باریم است [٨]

د - کمپلکس

{Ba[(HOCH₂CH₂₃N)₂(CLO₃)⁵]}

با افزودن دو مول تری اتانول آمین به

یک مول باریم پرکرات محول در استونیتریل به دست آمده و بلور آن با خشکت کردن

محول آن در مخلوط از دو حلال استونیتریل و بنزین از ٨٠ به ٤٥ درجه سانتی‌گراد

تناوت بین این کمپلکس با سایر کمپلکسهای قلیایی خاکی در این است که این ماده بر خلاف

کمپلکسهای دیگر دی می‌باشد. در این جا دو باریم پرکرات به صورت لیتانهدای پلی‌سیلیک بر

باریم را به هم پوند می‌دهد. در پنفر رنگی، علاوه بر تام اکسیژن از تری اتانول آمین به دو اتم

اکسیژن از دو باریم پرکرات به هم شدید. عدد هماهنگ باریم ده است. این مولکول‌ها به وسیله

بله‌های هیدرژنیهای مربوط به کمک‌کننده به پوندهای
وان دروس به هم متصاعدند [1].

۶- ساختار کمپلکس Bráz تودیم و یا اتریم (Pr, Yb) است، اخیراً تهیه و شناسایی شده است. این کمپلکس در
نتیجه واکنش دو مول تری آتانول آمین با یک مول Bráz تودیم و یا اتریم تری فلورور و
ماتن سولفونات در حلال THF حاصل می شود. این دو ترکیب دارای ساختار مشابه بوده و
پرون مرکزی دارای عدد هماهنگی تری است. مصرف هر از تری آتانول آمین، یک یک ترکیب
از خلال THF نیز با یک مول مرکزی پیوند دارد. علاوه براین دو مولکول دیگر حلال در بلور
حضور دارد. در بافت پریکه، پریکه‌ای هیدروژن گروه‌های هیدروکسیدی را به حلال و تری
فلورور و ماتن سولفونات مصرف می سازد [9].

تحلیل نتایج

۱- با یک نگاه دیگر به عدد هماهنگی عناصر متغیر، می توان گفت که با بروزگر شدن
پرون مرکزی، این عدد ها بازگران می شوند.

۲- تشکیل کمپلکسهای استروسیم و کلسیم از نظر عدد هماهنگی و اختلاف آنها با باریم
نواصعگر نقش آن‌ها در این کمپلکسهای است. بنابراین می توان پیش بینی کرد که در صورت
تغییر کمپلکس باریم آزید دی تری آتانول آمین، این ماده ساختار مشابه با دو ترکیب
مذكور در بند ۳ داشته باشد.

۳- از آنجا که پرون های هیدروژن و سدیم با یک مولکول تری آتانول آمین احاطه شده اند،
می توان ادعا کرد که پرون مرکزی عامل تغییر کنتنده اتصال یک یا دو مولکول از این
ماده است. علاوه براین با توجه به اتصال دو مولکول تری آتانول آمین به پرون‌ها با عده
اکسایش دو از فلزات قلیایی خاکی، واکسایش سه از فلزات لانتانیئید، می توان توجه گرفت که
عدد های اکسایش نقش در تعیین لیگاند تری آتانول آمین ندارند.

در پاسخ به این سوال که آیا امکان تهیه کمپلکسی با سه مولکول تری آتانول آمین
وجود دارد یا نیست، می‌توان گفت که با توجه به برخی آنها که از سال ۱۹۵۹ برای سریع شروع و
به آنها در برای باریم ختم می‌شود و در کمپلکس‌های دیگر نیز دو مولکول تری اتانول آمین،
علی رغم برخی باریم، حضور دارد بنا بر این به هیچ وجه انتظار اتصال سه مولکول لیگاند
وجود ندارد.

۴ - آنان ترکیبات اصلی هرچه باشد، در ترکیبات تهیه شده اتم‌های اکسیژن الکلی و ازت
آمیدی به یون مرکزی متصل اند در صورتی که عدد هماهنگ غیر از چهار یا هشت باشد,
اتصال آنان امکان پذیر است.

۵ - صرف نظر از پیوندهای هیدروژنی، تمام کمپلکس‌های مذکور به شکل مونومر هستند،
به استثنای $\text{Ba}[(\text{HOCH}_2\text{CH}_2)_2\text{N}]_2(\text{ClO}_4)_2$ که دیمر است و در آن دو یون پرکلار به
صورت دوبل، یونهای باریم را به هم متصل می‌کند. از این مشاهدات می‌توان نتیجه گرفت که
برای تهیه کمپلکس‌های بزرگ‌تر، لازم است لیگاندهایی به کار روند که توانایی اتصال هم زمان
به چندین هسته مرکزی را داشته باشند.

۶ - با مقایسه سطحی بلورهای تهیه شده با هم، می‌توان گفت که این کمپلکس‌ها در مقابل
اکسیژن و رطوبت هوا پایدارند، که دلیل اصلی آن اتصال چند دندانه‌ای لیگاند تری اتانول
آمین می‌تواند باشد.

۷ - مقایسه طول پیوندهای بین یونهای مرکزی با اکسیژن و نیتروژن از تری اتانول آمین,
نشان می‌دهد که پیوند اکسیژن کو تثبیت‌تر است، که به منزله قوی تر بودن آن نسبت به پیوند مشابه
با نیتروژن است.

۸ - در مورد دو کمپلکس پرکلرات، به دلیل هم فاصله بودن اتم کلر با اکسیژن، پرکلراتی
که به یون مرکزی متصل است و اکسیژنی که به مولکول تری اتانول آمین مربوط است، می‌توان
ادعا کرد که این پیوند درون مولکولی پرکلرات به خاطر اتصال خارجی تضعیف شده است.

[۱۰ و ۱۱]
جمع بندی:
در تمامی کمپلکس‌های دوازده‌گانه نسبت به شده اتم مرکزی را گروه‌های اول و دوم اصلی جدول مندلیف و یا ژنیپریا تشکیل داده‌اند. همانندی و نا همانندی می‌تواند یک شده در بالا و در محدوده ثابت نشوده در آندیه (Sol-Gel) باشد. با توجه به نقش این کمپلکس‌ها در فرابند موسم به سوال مبنی به کارگیری آنها می‌تواند برای تهیه اکسید فلزات و یا مخلوطی از آنها بهتر باشد، اکسیدهایی که به عنوان کاتالیزور‌های صنعتی کاربرد و سیمی‌دارند.

مراجع
4 - Taeb, A., Krischner, H., Kratky, Ch.(1986) Z.Kristallogr. 177,263.