Chemical Etching of CdTe and CdSe
Single Crystals

Tajabor N., Mahmoodi T.
Ferdowsi University of Mashhad, Faculty of Sciences, Mashhad - IRAN.

Key Words: Crystal Growth, Chemical Etching, Polarity Determination.

Abstract: Single crystals of CdTe and CdSe have been grown by vaper phase deposition. Crystals grown in the form of platelets were studied by X-ray diffraction Laue method. It was found that the faces of CdTe with zincblende structure are of {111} type and those of CdSe with wurtzite structure are of {1120} or {1010} types. Platelets of CdTe have one smooth face and one rough face which can be distinguished even with bear eyes. Chemical etching of CdTe revealed that the smooth face is composed of Cd atoms and the other face of Te atoms. However, chemical etching of CdSe did not show any polarity because both types of crystalline planes {1120} and {1010} are composed of both atoms. The chemical solution of HCl, Mt, Br₂ (2:3:0.3) was found to act as a suitable chemical polish for CdSe single crystals.
دانشگاه علوم - دانشگاه فردوسی مشهد

ناصر تجرب، طاهره محمودی

چکیده: در این پژوهش تک بلوهای CdSe و CdTe، از قار شاخ رشد داده شد و دو سطح موایی بلوهای صفحه‌ای رشد یافته، با استفاده از پراش پرتو X و روش لاوه مورد مطالعه قرار گرفت. این سطوح در CdTe با ساختار بلاند روي از نوع صفحات (111) و در CdTe با ساختار شش گوش و ونرستی از نوع (110) و (110) شیمیایی شدند. در یکی از دو سطح گسترده بلوه صاف و سطح موایی با آن ناسی یا بلوه می‌کنند، که حتی با نشان داد که سطح صاف CdTe چشم غیر مسلّح قابل تشخیص اند. سونش شیمیایی بلوهای CdTe و سطح ناسیف آن از اتمهای Te تشکیل شده است. اثر سونشگرایی شیمیایی متفاوت بر اتمهای CdSe مطالعه شد. صفحات (100) و (110) در این بلوه‌ها از هر دو نوع ام تشکیل می‌شوند و فاقد قطعیت اند، بنابراین تأثیر سونشگرایی شیمیایی بر صحافی خوش رشد یا خود کننده یا با کسان است. محلولی با ترکیب:

\[HCl, 3 \times Br_2 \times 0.3 \]

به عنوان یک پرداختگر مناسب برای بلوه‌های CdSe معرفی می‌کنیم.

واژه‌های کلیدی: رشد بلوه، سونش شیمیایی، تعیین قطیت.
مقدمه
یک بلور واقعی در اولین نگاه به خاطر نوسانات گرمایی اتم‌ها، یک بلور ایده‌آل نیست. افزون بر آن، نواصع ساختاری نیز وجود دارند که در حین رشد بلور و یا در مراحل دیگر بلوری شدن و آماده شدن یک بلور روی می‌دهند. به همین اصل در این کارزار در مورد نواصع یک بعدی با خطوط دو رنگی است. در فرطیها را می‌توان به کمک تغییر شکل‌ها ناکسان در جامدات توصیف کرد. این تغییر شکل‌ها در اثر لغزش‌های انتقالی در بلور روی می‌دهند. حالات لغزش را توسط بردار برگر (1) تعریم می‌کنیم که اندیزه‌ای این بردار برای با اندازه لغزش و راستای آن معرف جهت جابه‌جا ای اتم‌ها یا همان راستای لغزش است.

در فرطیها در دو مرحله از مراحل رشد و آماده سازی بلور ممکن است روی دهند:

1- در مرحله رشد: اگر دانه اولیه که برای رشد استفاده می‌شود، دارای خطوط دو رنگی باشد، این در فرطیها می‌توانند به داخل لاهای اتمی در حال رشد نیز انشار یابند. همچنین تغییرات ناگهانی در آهنگی رشد نیز ممکن است منجر به تولید در فرطی شود. عامل دیگر در ایجاد در فرطی عدم تطبیق ثابت شکل در بستر (2) و لایه برا است. (3) است. این مسائل در مورد رشد‌های چند بلوری و یا رشد لاهای چپ یک نوع بلور، ولی با مقدار ناخالصی آلاینده معاف شده و رشد بر روی سطح تغییر نشده نیز منجر به چگالی بالایی از در فرطیها می‌شود.

2- در مرحله پس از رشد: در این مرحله تنش‌های مکانیکی وارد بر بلور ناشی از سردکردن بلور، عملیات باز پخت، پخش ناخالصی به داخل شکل و عملیات شکل دهی از قبل پرداخت، سایه و برخ یا اثر تولید خطوط دو رنگی می‌شوند.

1- Burger Vector 2- Substrate 3- Epitaxy
سونش شیمیایی
در تحقیگی‌ها و چگالی آنها در واحد سطح را از توان به روش‌های مختلف مطالعه و مشاهده کرد.
جدول 1 این روش‌ها و محدوده استفاده از آنها را نشان می‌دهد. [1]. چنانکه از جدول پیداست که روش شیمیایی (1) روشی است که ρ_{max} را بیش از سایر روش‌ها آشکار می‌کند، ضمن اینکه هنگ محدودیتی بر روی ضخامت نمونه اعمال نمی‌کند. اما با این روش نمی‌توان اندرازه و جهت بردار برگر را به دست آورد.

<table>
<thead>
<tr>
<th>ρ_{max} (cm$^{-2}$)</th>
<th>ضخامت نمونه</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-11} - 10^{-12}</td>
<td>100μm</td>
<td>$\geq 1000 \mu$m</td>
</tr>
<tr>
<td>10^{-6} - 10^{-5}</td>
<td>5μm</td>
<td>$0.25 - 1 \mu$m</td>
</tr>
<tr>
<td>10^{-6} - 10^{-5}</td>
<td>2μm</td>
<td>2μm - 5μm</td>
</tr>
<tr>
<td>2×10^{-7}</td>
<td>0.5μm</td>
<td>$\approx 1 \mu$m</td>
</tr>
<tr>
<td>4×10^{-8}</td>
<td>0.5μm</td>
<td>محدودیت ندارد</td>
</tr>
</tbody>
</table>

سونش شیمیایی فرایندی است که می‌تواند هنگام آماده‌سازی سطح نمونه برای انجم هریک از مراحل ساخت و با در تحقیق نواصع بلواری نیم‌سالاری کاربرد داشته باشد.
سونش‌گرها شیمیایی را می‌توان بر اساس نوع کاری که انجم می‌دهد به دو گروه تقسیم کرد:
1- سونش‌گر گریئر
2- سونش‌گر پرداختی
در یک سونش‌گر پرداختی ایده آل، سرعت پرداختن ماده از روی سطح به راستای

1- Chemical Etching
بلورتگاری و یا نواصع بلوری بستگی ندارد، ولی با شعاع انحای موضوعی سطح نسبت عکس
دارد. در مقابل، یک سوئینگر گزینشی ابدی آن در مناطق با چگالی بالا و از نواصع بلوری;
اما کمایا صاف و آهنی، سرعیتر عمل می‌کند. به طور کلی یک سوئینگر، حداکثر با یک شیمیائی
سیم مولفه باشد، یکی از مولفه‌ها سطح را کسب کند. دیگری قسمت‌هایی اکسید شده را کمیکلس
کرده به یک‌‌madه و حالت در آورند و سوئینگی رقیق کردن محلول را انجام دهند. واکنش‌هایی که
هنجام سوئینگ انجام می‌گیرند از نوع واکنش‌های اکسیدش و احیا هستند.
پس از سوئینگ شیمیایی سطح بلوری، عموماً مناطقی به صورت فرورفتگی و یا برآمدگی
بر روی سطح مشاهده می‌شوند، که آنها را به ترتیب چال سوئینگ (1) و خال سوئینگ (2)
گفته‌اند. خال سوئینگ در نقاطی از سطح ایجاد می‌شود که در آنجا سرعت حل شدن به دلیل
جبشنده روسی‌ها حاصل از سوئینگ بر سطح یا یونی‌های شدن سطح به وسیله دیگری، اکسید شده
و یک چکبی، به‌طور گسترده‌ای از سطح آباد می‌شود که در آنجا سرعت حل شدن به دلیل
عمدتاً از بروزی نقص چاله‌ای سوئینگ به دست می‌آید و توجه کمتری به خال نمی‌گردد.
چال سوئینگ در نقاطی از سطح ایجاد می‌شود که در آنجا سرعت حل شدن پیشرفت از سایر نقاط
است. هر چال سوئینگ می‌تواند به ویژگی‌های خاصی، مثلاً وجود یک در فلت در آن نقاط،
مربط باشد.

CdTe
بلور
CdTe در گروه نیمرساناهای II-VI قرار دارد. مانند کار پیوند در این ترکیبات کووالانسی
است، یک مشخصه برای آن نیز قوی است، اثر این پیوند بنابر استحکام شبکه بالا، رفتار
 نقطه‌ذوب و نیز افزایش گراف انرژی ترکیبات CdTe کاملاً مشهود است. این دارای ساختار
II-VI کاملاً مشهود است. گراف انرژی CdTe
بلند روي است و به گرده فضایی بدون مکان تقارن تعیین دارد. گراف انرژی Fm3m

1- Etch Pit 2- Hillock
نسبت بازگشت و در حدود \(10^{-2}\) است.

ویژگی‌های الکتریکی و اپتیکی مناسبی سبب شده است تا آن در ساخت CdTe قطعاتی چنین دیودها و ترانزیستورها استفاده شود. همچنین به دلیل حساسیت شدید آن به نور، بایستی از آن در ساخت قطعات حساس به نور از قبل تسلیم‌کننده‌های فروریخت \((1)\) و مشابه آن در ساخت در ساخت پنجره‌های فرود سرخ،قوتو کالریک ممکن شده است. اخیراً نیز از CdTe مدولاسوره‌های الکترو-اپتیکی، قطعات پیوسته الکترونی، قطعات اپتیکی غیر خطی، سلولهای خورشیدی و آشکار سازه‌های هسته‌ای استفاده شده است [۲۳].

از دیگر موارد کاربرد بسیار مهم CdTe، استفاده از آن به عنوان بستر در رشد لاشه‌های B-Araستی است، که ماده‌ای اخیر در ساخت آشکار سازه‌های فرودسیر اهمیت دارد. به دلیل تطابق فواصل شبکه‌ای به بارترین شرط در HgCdTe و CdTe و نیز به خاطر سازگاری شیمیایی این دو HgCdTe ماده، این آن رشد La را به عنوان رشد B-Araستی در CdTe بلورهای که به یکی از روشهای استریت سنتی (THM) روش گرم‌سازی متحرک (۲) تهیه می‌شود. روشهای مختلف رشد مشابه داده‌اند که عمده ترین نقص ساختاری در تکه بلورهای CdTe، رشد دوقلویی، مرز ریزدانه‌ها و رسوب‌ها هستند [۲۳].

نکته دیگری که در مورد بلورهای CdTe باید ذکر کرد وجود قطعه در امتداد در امتداد 111> بایستی باشد. در این مورد ساختار بلند روز است. اگر در امتداد 111> به این ساختار نگاه کنیم، خواهیم دید که صفحات شامل اتم‌های Cd و صفحات شامل اتم‌های Te به تناوب روز

1- Infrared Telescope Image Intensifier
2- Traveling Heater Method
3- Vapour-Transport Growth
سونش شیمیایی تک بلورهای CdSe و CdTe

یکدیگر چهده شده اند. هر صفحه با صفحه بعد یا با یک بلور یکسانه و یا با یک بلور دو گانه ارتباط دارد. اگر با خواهیم این بلور را در راستای ۱۱۱ تحت کشش قرار دهیم احتمال شکستن بلور در اتمد پیوندهای یکسانه بیشتر است. در تیپ یک صفحه به وجود می‌آید که هر اتم Cd و هر اتم Te در رباتیک II-VI یک ترکیب Cu۲S، در این صفحه، با توجه به اینکه Cd۲S دارای دو الکترون نیست، که این دو الکترون را در پیوند با شیشه قرار داده است، بنابراین هر الکترون نظریت است، که این دو الکترون آن در پیوند با شیشه قرار داده و چهار الکترون نظریت دیگر دارد که به راحتی می‌توانند در ظرفیت دیگر نیازهای آن دو الکترون آن را با کشیدن شیمیایی شرکت کنند. این مسئله، و اینکه اتم‌های Te دارای شش الکترون نظریت است که دو الکترون آن را با کشیدن شیمیایی فعالیت از صفحه Te باشد و از این رو در اتمد ۱۱۱ اثر آثار پیشین در بلورهای CdTe مشاهده شود. با عنوان مثال لاایه‌های HgCdTe در اتمد ۱۱۱ بسته برآورده (۱۱۱) شناختی سطح لاایه‌های شیشه با قطعه بر صفحه Te برای بهره از لاایه‌های مشابه که روی صفحه (۱۱۱)Cd رشد می‌کنند [۳] لذا تعیین قطعیتلایه‌های زیادی صورت گرفته و سونشگرهای نیز معرفی شده‌اند که آنها را در جدول ٢ فهرست کرده‌ایم.

دو محلول اول سونشگرهای E ورم در متانول، صرفًا سطوح بلوری را پرداخت می‌کند. می‌تواند به‌هی‌ها و بلورهای روی سطح را گرد کرده و سطح را صاف و آهنگ می‌کند. سونشگرهای EAg۲ و EAg۱ (۱۱۱)جالهای سونشی مثلاً عمیق و بر روی صفحه Cd۲S (۱۱۱)جالهای سونشی ته - صاف به وجود می‌آورند [۵]. اما جالهایی که به وسیله EAg۲ بر روی صفحه (۱۱۱)Te ایجاد می‌شوند، ۶۰ درجه نسبت به جاله‌ای که توسط
جدول ۲ سوشینگرهای شیمایی موثر بر CdTe

<table>
<thead>
<tr>
<th>Cd بر مبنای</th>
<th>Te بر مبنای</th>
<th>ترکیب محلول</th>
<th>نام محلول</th>
</tr>
</thead>
<tbody>
<tr>
<td>برداشت سطح</td>
<td>Br₂, Mt(1:100)</td>
<td>بر درماننالا</td>
<td></td>
</tr>
<tr>
<td>برداشت سطح</td>
<td>H₂O, K₂Cr₂O₇,</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Te مشکی</td>
<td>HNO₃ (1/10:2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te مشکی</td>
<td>E, AgNO₃</td>
<td>EAg₁</td>
<td></td>
</tr>
<tr>
<td>عمیق</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te صاف</td>
<td>(10:10 mg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te مشکی</td>
<td>E, AgNO₃</td>
<td>EAg₂</td>
<td></td>
</tr>
<tr>
<td>عمیق</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te صاف</td>
<td>(10:10 mg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>برداشت سطح</td>
<td>HF, H₂O₂, H₂O</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ضایعات غیرشیمیایی</td>
<td>(1/10:2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>برداشت سطح</td>
<td>HF, H₂O₂, H₂O</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>جال مشکی</td>
<td>(1/10:5 mg)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

سشنگرهای EAg₁ روى همین صفحه تشکیل می‌دهد چراکه، و در نقاط دیگری نیز بوجود EAg₁ می‌آیند. این دو نوع خال را به دو نوع در فتقی Br, α در بلور CdTe می‌توان نسبت داد. در ترکیب دو محلول N و آب اکسیژن استفاده شده است. فقط در صد ترکیب (111)Cd بر صفحه N در آن‌ها با یکدیگر تفاوت دارد. محلول N بر صفحه Te در (111)Cd را فقط برداخت می‌کند و هیچ نوع خال سشنگره بر روی آن به وجود نمی‌آورد [6]. سشنگره B بر خلاف محلول N، صفحه Te بر روی (111)Cd را برداخت می‌کند و در حالی که دو نوع خال سشنگره کوچک و بزرگ وابسته به دو نوع در فتقی لبه‌ای بر روی صفحه β, α ایجاد می‌کند [4].
رشد تک بلورهای CdSe و CdTe

برای دست‌یابی به بلورهای CdSe و CdTe از روش رشد در لوله باز استفاده کرده‌ایم [7]. در این روش ماده بلور را در یک فاقد در لوله کوارتز قرار داده و سپس منطقه‌ای از کوره راکه فاقد در آن است دمای تصعيد ماده کروم می‌کنیم. آنگاه با عبور گاز آرجون‌ای هالیوم، ماده تصعيد شده به ناحیه سرد لوله برده و در آن‌جا شروع به هسته سازی و رشد تک بلور می‌کنند.

کوره‌ای که برای رشد مورد استفاده قرار گرفت، یک کوره‌ساز منطقه‌ای است که در عمل فقط از دو منطقه دما ایز استفاده شده و منطقه‌ای سوم به عنوان ناحیه سرد که عمل هسته سازی در آنجا صورت می‌گیرد، به کار رفته. منطقه‌ای میانی کوره در دمای تصعيد ماده قرار گرفت و منطقه اول نیز به منظور جلوگیری از افت ناگهانی دما در دماهای به اندازه 1000 °C کمتر از دمای منطقه میانی تنظیم شد.

مدت رشد برای بلورهای CdSe و CdTe 16 تا 20 ساعت و برای بلورهای CdTe 18 تا 20 ساعت انتخاب شد. سرعت حرکت گاز در هر دو مورد 90-150 ml/min بود. دمای تصعيد با 105 °C، CdSe و 95 °C، CdTe انتخاب 105 °C، CdSe و 95 °C، CdTe انجام گردید.

نتایج رشد بلورهای CdTe

بلورهای CdTe بلورهای تقریباً 8x8 mm و با ضخامت در حدود 1 تا 2 میلیمتر رشد می‌کنند. این بلوره‌ها دارای دو سطح مشخصاند. تصاویر این دو سطح در زیر میکروسکوب با پیستوئیسافی 50 در شکل 1-الف و 2-الف در دیده می‌شوند. از شکل 1-الف پیدا می‌شود که یک سطح بلور، که آن را رخ A می‌نامیم، کاملاً صاف و هموار است و در برخی از نقاط به‌هایی پله‌ای شکل بر روی سطح در امتدادهای معینی دیده می‌شوند. اما سطح دیگر در شکل 1-ب که آن
شکل 1 تصویری از سطح (111) یک تک بلور CdTe.
الف: رخ B و B:
الف: رخ A
رابطه بین نامیمی ناصل و ناصل‌دار است و فقط گاهی می‌توان یک ناحیه کوچک صاف بر روی آن مشاهده کرد.

به منظور تشخیص و شناسایی رخ‌های شدید یافته A و B در بلورهای CdTe از روی عکس پرداخته ذکر است. عکس‌هایی از جنگل نمونه بلوری در راستای عمود بر B رخ A شکل دارد. همین‌طور از مقایسه این تصویر با تصویر پر جست‌گرگ برسی از نگاری صفحه (111) نتیجه می‌شود که ۷رک از دو سطح A و B در بلورهای CdTe از نوع، از نوع صفحه (111) است.

بسیار زیست بود که قطعیت این صفحات نیز نعیمی بودند. برای این منظور از روی سونش شیمیابی استفاده شدند. برای انجام سونش گزینشی، قبل از هر چیز لازم است که سطح بلور کاملاً پرداخت شود. عملیات پرداخت نیز عموماً با هر دو روش مکانیکی و شیمیابی صورت می‌گیرد. در عمل به دلیل کوچک بودن ابعاد بلورهایی که به این روش رشد می‌یابند، امکان پرداخت مکانیکی بلور وجود نداشت، لذا فقط عملیات پرداخت شیمیابی انجام گرفت.

نتایج سونش با سونش‌های EAg2 و EAg1

ابتدا نمونه‌های نکت بلور به مدت ۱ تا ۲ دقیقه در محلول CdTe به مدت ۴۰ تا ۶۰ ثانیه در سونش‌های EAg2 و EAg1 مشاهده شد. در نمونه‌های زیادی که مورد آزمایش قرار گرفتند مشاهده شد که روی سطح صاف بلور، عناین رخ A، قلح‌های مثلث عمقی و بر سطح ناصل‌آن، ۱ا رخ B، قلح‌های مثلثی ته صاف ایجاد می‌شوند. این نتایج در شکل‌های ۲-الف و ب نشان داده شده‌اند. تمام نمونه‌هایی که مورد آزمایش واقع شدند ویژگی‌های فوق را نشان دادند، بنابراین به صراحت می‌توان نتیجه گرفت که
شکل 2: چاله‌ای سوئیسی ایجاد شده در اثر \(EAg_1 \) روی آلف: رخ \(\times 20 \) و ب: رخ \(\times 50 \) (B) و چاله‌ای سوئیسی که با فراوری پلور آز یک تک بلور \(\text{CdTe} \) ایجاد گردید (A).
CdSe و CdTe

روش صاف بلویر به سطح نامگذاری شده A، صفحه (111)Cd و رخ ناصف آن (111)Te صفحه است.

اثر نمونه‌ها سریع تر است به طوری که چپ از ثانیه سیون، روی هر دو رخ یافته سیونی ایجاد می‌شوند. شکل جالیه‌ای رخ صاف بلویر به صورت مثبت‌ها عمق و روی رخ ناصف به صورت منفی‌ها ته صاف است. در شکل 2 آلف دیده می‌شود که جالیه‌ای سیونی در انتظار خطوط خاصی متکن شده‌اند. معمولاً جالیه‌ی درفتگی‌ها درامتقان مرزهای ریز دانه‌ای زیاد است و نیز بر روی این مرزهای جالیه‌ای سیونی نیز زیاد خواهد بود. بر این اساس می‌توان نتیجه گرفت که خطوط مذکور مربوط به مرزهای ریزدانه‌ای هستند.

نتایج رشد بلویرهای CdSe

نک بلویرهای CdSe که به روش بالا رشد می‌کنند کاملاً ترد و شکنندگاند و به صورت برق‌های نازکی با ضخامت‌ی در حدود ده‌ها میلیمتر و ابعاد تقیبی 3.8 میلیمتر هستند. سطوح آنها براق و درخشن است و هر دو رخ بلویر یکسان بنظر می‌رسند. در ساختار CdSe و ورطیت (1) متبلور می‌شود. این ساختار از دو شبکه‌ی شش‌گوشی در هم فرو رفته تشکیل شده است. که هر شبکه فقط شامل یک نوع ذرات است. این ساختار در راستای [1000] دارای قطرشی است. عکس‌های لوه نشان می‌دهند که سطح رشد هرمی این بلویرها از نوع صفحه (1010) و یا (1120) است. در نتیجه انتظار نداریم هر گونه آثار قطرشی روزی این صفحات مشاهده شود.

1- Wurtzite
جدول ۳ سوندرگرهای شیمیایی آزمایش شده بر CdSe

<table>
<thead>
<tr>
<th>محلول</th>
<th>نسبت ترکیب</th>
<th>محلول</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲.۳:۱ (۱:۱)</td>
<td>H₂O, HNO₃, H₂O₂</td>
<td></td>
</tr>
<tr>
<td>۲.۲:۱ (۱:۱)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱.۱:۱ (۱:۱)</td>
<td>HF, HCl, HNO₃, H₂O</td>
<td></td>
</tr>
<tr>
<td>۲.۲:۱ (۱:۱)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱.۱:۰ (۱:۱)</td>
<td>HF, HNO₃, Mt</td>
<td></td>
</tr>
<tr>
<td>۱.۰:۰ (۱:۱)</td>
<td>Br₂, Mt</td>
<td></td>
</tr>
</tbody>
</table>

صفحه آینه‌ای است و گرددگی لیها خوب نیست. افزایش اسید اثر نامطلوب دارد لیها گارد شده و روى سطح لاشه اسید نشسته لیها گارد شده‌اند سطح آینه‌ای است افزایش اسید و بر م اثر نامطلوب دارد. آخرین محلول بحثین پرداخت را می‌کند. (۱:۲:۲:۵)

(۱:۲:۲:۵)

5% Br₂, Mt
15% HCl, Mt, Br₂
CdSe

سونش شیمیایی

CdSe در زمینه سونش شیمیایی چون در منابع موجود هیچ گزارشی به دست نیامده می‌شود که سونشگر پرداختنی و یا گزینشی برای بلورهای پسازیم به پایه‌ای منظور اثر محولهای مختلفی به روش آزمون و خطای روي بلورهای آزمایش شد. اما هیچ یک از محولهای نمونه‌ای هیچ نوع سونشی بر روي هیچ یک از صفحات بلور ایجاد کنند. در مرحله بعد سعی شد به یک سونشگر پرداختنی برای پرداخت سطوح بلور دست یابد. در این زمینه نيز اثر محولهای زيادي روي بلور CdSe آزمایش شده در جدول 4 آمده است. برخی از محولهای جدول 4 باعث ایجاد گردشگي در لبه مي‌شنده، اما سطح را صاف و آينده نمي‌کردن، و يا بر روی سطح لایه‌اي از رسوب يا اكسيدي برجا مي‌گذاشتند. برخی دیگر نيز سطح را مخلخل مي‌ساختند. در محولهای گروه اول فقدان موجوده كمپلکس كننده منجر به ایجاد لایه اكسيدي بر روی سطح مي‌ شود. در محولهای بعدی از اسید HF به عنوان كمپلکس كننده HNO3 به عنوان اكسيد كننده استفاده شد. اما اين دسته از محولهها اصولاً باعث گردشگي در لبه نشانند. به اين دليل از برجا به عنوان اكسيد كننده هم به عنوان كمپلکس كننده استفاده شد. تركيبات HCl و Mt به دست آمد که جلوگاه بر اين که لبه‌ها راگرم مي‌کرد، سطح را نيز صاف و آينده مي‌نمود، و آثاری از لایه‌هاي اكسيدي و یا رسوب و يا حتي تخلخل بر روی سطح مشاهده نمي‌شود. به همین دليل ما اين محول را به عنوان يک محول سونشگر پرداختنی برای بلورهای CdSe معرفي و پيشنهاد مي‌کنیم.