An Appraisal of Mineralization Antimony in Sirzar Area
(North East of Khorasan)

Saadat, S. and Shahabpour, J.
Department of Geology
University of Shahid Bahonar, Kerman

Abstract: Geological and geochemical studies in Sirzar area, located in the north east of Khorasan province, indicate the presence of antimony in a vast area. This element mainly occurs as stibnite, associated with native antimony, kermesite, getchellite (?), pyrite, chalcopyrite, arsenopyrite, tetrahedrite and galena, in carbonate rocks, as veins, veinlets and disseminations. The gangue minerals are calcite, dolomite, barite and quartz. Investigations indicate that thrust faults and brecciated zones are the most important channelways for migration of ore fluids, and deposition of the ore assemblage and The mineralization has occurred in several physico-chemical episodes.

The strategic importance of antimony, and its association with valuable commodities such as gold, silver, mercury and arsenic, demand more detail investigations in this region.

Key Words: Ophiolitic melange, Thrust faults, Antimony, Gold, Silver
نگرشی بر کانسسوراسی آنتیموان در منطقه سیرزور
شمال شرق خراسان

سید سعیدت و جمشید شهاب پور
بخش زمین شناسی دانشگاه شهید باهنر کرمان

چکیده: مطالعات زمین شناسی و زئوژئوپلیتی در منطقه سیرزور، واقع در شمال شرق خراسان، نشان دهند، حضور گسترده آنتیموان در این منطقه است.
آنلیمان بشر به صورت کانی استیلیت و به شکل رگه‌ای و رگچه‌ای و انشاری، همراه با آنتیموان خالص، تتراهدریت، کرمست، [که چی لیت (؟)]، پپریت، کالکوپریت، تتراهدریت، آرسنیپریت، و گالن در سنت میزبان کربناته جای گرفته است. کانی‌های غیر فلزی نظری کلسیت، دولومیت، باریت، و کوارتز این مجموعه را همراهی می‌کند. بررسی‌ها نشان می‌دهند که گسل‌های رو رانده و زونه‌های خرد شده گسلی، مهم‌ترین راه‌روهای برای ته و نشا می‌باشد آنتیموان از شاره‌ها به شمار می‌رودند و کان‌های زابلی از یک مرحله و در شرایط متفاوت، روی داده است. اهمیت استراتژیک عنصر آنتیموان در ورود عناصر هر یک آن، نظر طالع، تقره، چوب و آرسنیک، توجه به پیش از بخش به این منطقه را طلب می‌کند.

واژه‌های کلیدی: ملانژفلئیتی، گسل‌های رو رانده، آنتیموان، طالع، تقره.

تاریخچه آنتیموان
آنتیموان عنصری است باستانی که از زمان پادشاهان بابل، استفاده از آن به عنوان یک ماده آرایی‌برای سیاه کردن چشم (سرمه چشم) مرسوم بوده است. بعضی از مورخین به معنی ضد انزور و عزلت ریشه Antimono یا معتقدند که آنتیموان از کلمه بونانی گرفته است، و این بدان معنی است که این عنصر در طبیعت کمتر به تنهای دیده
شده است، و معمولاً همراه با عناصر دیگر یافته می‌شود. اسم روسی آنتیمیان، Surma است که از کلمهٔ ترکی سرمهٔ به معنی همان ماده‌ای که زنی برای آرایش بر پشت چشمان خورد می‌کشد، مشتاق شده است. در لاتین، آنتیمیان Stibium می‌شود که از کلمهٔ لاتینی Stibi به معنی یک ماده‌ی بلوری شکل، و با از کلمه‌ی يعني رنگی، که زنی دختر در آرایش بکار می‌برند، گرفته شده است. اولین مقاله‌ای که در مورد جامعی از آنتیمیان و خواص آن را ارائه داده‌اند، داوید رالف که در قرن پانزدهم انتشار یافت [1]؛ به همین منظور کانی و شیمیایی Sb2O3 به افتخار وی نام‌گذاری شده است.

کاربرد و موارد مصرف
آنتیمیان، به صورت خالص یا به صورت ترکیبات معدنی، کاربردهای گسترده‌ای دارد. در سال‌های اخیر، حدود یک‌سوم به صورت فلز برای ساخت باطری‌های اتومبیل‌های جدید، جمع‌بندی‌های اتصال نرو، سیم جوش، آلومینیوم نرم و نیز در صنایع نظامی استفاده می‌گردد. اما در کار کردن با آنتیمیان، ماده‌های مناسب برای ساخت ماده‌های انفجاری و انفجار و ... بکار رفته است. ترکیبات معدنی آنتیمیان در صنایع پلاستیک سازی، لاک‌سیک ماسی، رنگ‌سازی، چاپ، تولید سرامیک و شیشه و نیز در صنایع شیمیایی برای ساخت مواد مفاهم در مقابل آنتیمیان، کاربرد فراوان دارد [2]. افزودن آنتیمیان به قارچ‌های قارچ‌ها به فلزات در شرایط معین باعث کاهش ضریب ابسیاط لیزه حاصل، سی رفت نخستین تورق پدیده، پایین آمدن نقطه ذوب، و انفیش مقاومت فلز در برای خورشیدی های شیمیایی می‌شود. مقدار بسیار کم این فلز با خلود با (الا 1999.9) در تولید نیمرسانا به کار می‌رود.

کانی شناسی و توصیف
آنتیمیان چهارمین عنصر گروه V_A جدول تناوبی است، و در طبیعت به سه حالت اکساپیافت می‌شود. حالت فلزی (I)، درجه‌بندی (II) و حالت فلزی در دوبیکی از

1 - Basil Valentine.
جدول ۱ نام و ترکیب شیمیایی برخی از کانیهای حاوی آنتیموان.

<table>
<thead>
<tr>
<th>Antimony</th>
<th>Sb</th>
<th>آنتیموان</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stibnite</td>
<td>Sb₂S₃</td>
<td>استیبینت</td>
</tr>
<tr>
<td>Aurostibite</td>
<td>AuSb₂</td>
<td>اورواستیبینت</td>
</tr>
<tr>
<td>Tetrahedrite</td>
<td>(Cu,Fe)₁₂Sb₄(Se,S)₁₃</td>
<td>تتراهیدریت</td>
</tr>
<tr>
<td>Getchellite</td>
<td>AsSbS₃</td>
<td>گچ جه لیت</td>
</tr>
<tr>
<td>Stephanite</td>
<td>Ag₅SbS₄</td>
<td>استفانیت</td>
</tr>
<tr>
<td>Livingstonite</td>
<td>HgSb₂S₈</td>
<td>لوینگستونیت</td>
</tr>
<tr>
<td>Tellurantimon</td>
<td>Sb₂Te₃</td>
<td>تلورآنتمیون</td>
</tr>
<tr>
<td>Montbrayite</td>
<td>(Au,Sb)₂Te₃</td>
<td>مونت بریت</td>
</tr>
<tr>
<td>Senarmontite</td>
<td>Sb₂O₃</td>
<td>سنارمونتیت</td>
</tr>
<tr>
<td>Kermesite</td>
<td>Sb₂S₂O</td>
<td>کرمزیت</td>
</tr>
</tbody>
</table>

نهشته‌های معدنی و درجات III و V آن به صورت کانیهای مختلف و نمک‌های محلول SbH₃ در آب‌های طبیعی، معمولاً است. درجه III این عنصر در ترکیبات گازی آن در (استیبین) دیده شده، که ممکن است در شرایط طبیعی معینی وجود داشته باشد. به واسطه درجات اکسیداسیون مختلف این عنصر و تغییر به تکانه محلول و ترکیبات مختلط، زئوتسمی آنتیموان حالت بفرز و پیچیده‌ای دارد. آنتیموان در طبیعت در ایزوتوپ با پایدار دارد، که فراوانی آنها به این ترتیب است: 121Sb = 57.3٪ و 123Sb = 42.7٪. علیرغم اینکه آنتیموان عنصری کالکوفیل است، ولی به صورت خالص نیز در انواع معینی از نهشته‌های معدنی یافت می‌شود. بیش از ۱۵۰ مورد از انواع کانی‌های آنتیموان تاکنون معرفی شده‌اند که نام و ترکیب شیمیایی برخی از آنها در جدول ۱ آمده است. متوسط فراوانی این عنصر در بوستون زمین ۳۰ پیپر مگزا است (۳۰). این عنصر در نهشته‌های معدنی می‌تواند با پیشیاری از عنصر نظر مس، نقره، طلا، روی، کادمیوم، جیوه، باریوم، اورانیوم، قلع، سرب، فسفر، آرسینیک، پتاسیم، گوگرد، سلنیوم، تلوریوم، نیوپروم، تالیم، مولبیدن، آهن، نیکل،
کلاغ، و عناصر گروه پلاتین همراه باشد. بنابراین آنتیمون شاخص بسیار خوبی برای بررسی‌های شیمیایی حدود ۲۰ عنصر مهم به شمار می‌رود.

روش مطالعه

برای بررسی فرآیندهای کانه زایی در منطقه مورد مطالعه، علاوه بر مطالعات صحراei و تهیه نقشه زمین شناسی، از تاکید تجزیه‌شیمیایی حدود ۱۴۰ نمونه استفاده شد که با توجه به کوچک خاص آباه ایها و در نظر گرفتن شرایط منطقه‌ای با تراکم ۱ تا ۵ نمونه در کیلومتر مربع، از روش‌های رودخانه‌ای برداشت شده بودند. این نمونه‌ها در آزمایشگاه تحقیقات فیزیکی - شیمیایی کانی‌ها در جمهوری اذربایجان مورد تجزیه قرار گرفته بودند. برای بررسی‌های تکمیلی و مطالعه نمونه‌های برداشت شده از رگه‌های حاوی مواد معدنی از مکرو‌وسکب قطبی (SEM) و مکرو‌وسکب الکترونی (XRD) پرداشت و نتایج آنها با نرم‌افزار spss/pc تجزیه و تحلیل و برداشت گردیده است.

موضعیت جغرافیایی و جایگاه زمین شناسی

منطقه مورد مطالعه در ۱۹۰ کیلومتری جنوب شرقی مشهد (شکل ۱) و در محدودهٔ ۴۰° ۰۰' تا ۴۱° ۳۵' طول شرقی و ۵۳° ۱۵' تا ۵۵°۲۵' عرض شمالی، با وسعت تقریبی ۷۰ کیلومتر مربع در شمال شرقی ایران و در امتداد شرقی رشته کوه البرز که خود جزئی از کمرندد زمین ساختنی آلپ - هیمالی محسوب می‌شود، قرار گرفته است. بر اساس نقشه زمین ساختنی البرز [۴]، منطقه مورد بحث در مجاورت خط درزی (۱) صفحات ایران و توران و روی صفحه ایران واقع شده است.

زمین ساختنی و زمین شناسی عمومی منطقه

مطالعات انجام شده از سوی پژوهشگران مختلف (از جمله مکه الهی) [۵].

1 - Suture Line. 2 - Mc Elhiny.
سافل و دیگران (۱) [۷] بربرن و کینگ (۲) [۶] و بولین (۳) [۸]، بیانگر قرار گرفتن این ناحیه در حاشیه شمالی خوردورق ایران-افغانستان، در بالاژوراسیک، فوقانی است. تصادم خوردورق ایران-افغانستان با لوراسیا در تریاس فوقانی سبب رانده شدن بخش‌هایی از بوستنی افغانی و رسوبهای نواحی دریا بر روی خوردورق ایران گردیده و گوهای افراش (۴) و ایجاد کرده است که به خاطر درهم ریختگی و بهم آمیختگی شدید، یک آمیزه افبولیتی را در منطقه‌های و وجود آورده است. این مجموعه با روند شمال غربی-جنوب شرقی، شامل سنگ‌های آذریان با ترکیب ماونیک، نظر گروهی، بازالت و اسپیلت، و به مقدار کم سنگ‌های اولتراوامیک، که برخی آنها را به سری‌های کامنة‌تی نسبت داده‌اند، سنگ‌های رسوبی نظر ماهکهای بلازینک، چرخ‌های رادیولارد، رادیولازیت، شیل و مواس سنگ‌آست. مجموعه سنگ‌های بغداده عمداً تحت تأثیر دگرگونی ناحیه‌ای، تا رخساره شیست‌های سیز و بعضی آمفیولیت دگرگون گشته‌اند. بر روی کل این مجموعه، آهکهای پرمین رانده شده است که آثار کانه‌ی زایی بیشتر در تمام همین واحد با واحدی‌های زبرهای آن مشاهده می‌شود. بررسی سیستم گسل‌های زورانده در منطقه‌ی مورد مطالعه و نقاط مجاور، حاکی از وجود صفحات زورانده متعدد و متواوی است که با توجه به فواصل کم این صفحات و زورانده بودن آنها، در مجموع یک کمر بین چین خوردگی و زورانده نازک ورق (۴) را تشکیل می‌دهند.

با توجه به زمان تصادم و نیز حضور قطعاتی از سنگ‌های فوق الذکر در کنگلوریایی با سن زوراسیک زبرین، سن نسبی حاگزنده سنگ‌های گول‌های زیرین مرتب و به آنها، می‌باشد در محدوده اوایل تریاس فوقانی تا اوایل زوراسیک زبرین باشد. هم‌زمان با فعالیت‌های زمین‌ساختی منطقه، گزارش زایی نیز صورت گرفته است. به گونه‌ای که در شرق منطقه با فاصله کم و در غرب آن با فاصله بیشتر،

1 - Soffel et al. 2 - Berberian & King.
3 - Boulin. 4 - Accretionary Wedge, Prism.
5 - Thin Skinned Fold Thrust Belt.
نگرشی بر کاسرسازی آتیومان در منطقه سیرزار

رختنمه‌های گسترده‌ای از تواده‌های گرانیتوئیدی مشاهده می‌شود. واحدهای جوانتور به‌ окру از آن‌ها بطور محدود در منطقه رختنمه دارند، به‌ خصوصی از سنگ‌های رسوبی که داغ (شیل، ماسه شیلی، کنگلومرا، آهک و مارن) با سن زوراسیک و کرتاسی، کنگلومرا (شیل) و رسوبی‌های سخت نشته‌های کوادرن را شامل می‌شوند.

شکل ۱ نقشه زمین‌شناسی منطقه را نشان می‌دهد.

شکل ۱ نقشه زمین‌شناسی و موقعیت جغرافیایی منطقه سیرزار

(خلاصه شده از نقشه ۱۰۰۰۰ منطقه که توسط نقاشی‌گران این مقاله تهیه شده است.)
شکل ۲ پراکندگی سطحی آنتیمون در منطقه سیرزاز (مقادیر بر حسب پی بی ام).

پراکندگی آنتیمون در منطقه

نتایج حاصل از ۱۱۸ مورد تجزیه شیمیایی برای شناسایی آنتیمون نشان می‌دهد که حدود ۹۵/۸٪ نمونه‌های برداشت شده از رسوبهای رودخانه‌ای، دارای ۳۰ تا ۵۰ پی‌بی ام و بقیه نمونه‌ها، دارای ۵ تا ۵۰ پی‌بی ام، آنتیمون هستند. بر این اساس نقشه پراکندگی سطحی آنتیمون در مقياس ۱/۲۰۰۰۰۰ تهیه شد که شکل ۲ نمونه کوچک
کاتئ دیگر
شواهد صحرایی و مطالعه میکروسکوپی مقاطع تهیه شده از زگ‌های حاوی ماده معدنی، بیانگر وجود کاتئ استیمینت (Sb₆S₈) به عنوان فراوان‌ترین ترکیب حاوی آتیمویان در نمونه‌های مورد نظر است. مطالعات به وسیله دستگاه برداشت پروتو ایکس (XRD) نیز وجود کاتئ استیمینت را تایید می‌کند. از نظر خصوصیات فیزیکی، این کاتئ دارای رنگ خاکستری سری به طبیعت گل‌فی، سختی 5-6 و وزن مخصوص حدود 24 است. از نظر خواص نوری (پاترات نور) این کاتئ دارای رنگ سفیدی به خاکستری، چند رنگی سفیدی تا خاکستری، ناهسگانگری قوی، خوشه‌ای تا آبی مایل به خاکستری و قهوه‌ای که در مواردی خاموشی موجی نیز از خود نشان می‌دهد و واقع فاقد پاترات داهی است. در مقاطع مورد مطالعه، استیمینت غالباً دارای ماکل تیغه‌ای است و بافت‌های گرانولی بروانی‌هایی و بی‌پر سنتیک نیز از خود نشان می‌دهد. در بعضی از قسمت‌ها این کاتئ دیگر تبلور مجدد گردیده است (شکل
(۳) جهت فراوری را می‌توان برای تشکیل مناسب‌بینیت در نظر گرفت هر چند این کانی می‌توانند باعث اولیه نیز باشد. وجود نیاز به فشار و ماکل‌های دارای خمیدگی و انحنای (شکل ۲) می‌باشد. ضمن آنکه تا حدی تحت تأثیر تنش‌های جدید است، ولی می‌تواند بیان‌گر تشکیل کانی استیبانت در روزیمی فشاری باشد که خود حاصل از ویژگی‌های ساختاری و زمین‌ساختی حاکم بر منطقه در زمان تشکیل رگ‌های جاودان مواد معدنی بشرمی‌رود. حضور کم‌رنگ حفره‌ها و بافت پرکنده فضاهای خالی نیز می‌تواند خاکی از وجود لایه‌های شرایطی باشد.

بر اساس شواهد موجود دولومیت، کلسیت و با تغییر بخش عمده‌ی کانیهای باطله‌ای تشکیل می‌دهد و شکل گیری آنها لاقیل در بک مرحله قابل توجه است. شایان ذکر است که شواهدی دلی بر تشکیل کلسیت پس از باریت و کانی‌های اینک نیز وجود دارد. مجموعه شواهد حاکم از آن است که کانی‌های سازی و احیا‌کننده زایی همراه یک دیگر به یکی مرحله‌ای رود داده است.

پاراژن

بررسی مقاطع صیقلی با میکروسکوپ قطعی، نشان می‌دهد که علاوه بر استیبنت و آنتیموان خالص، کانی‌های نظر کرموزی، [یکه چه‌لب (۱)]، آرستوپریت، پیریت و ذرات ریز با ویژگی‌های نوری مشابه طلا به صورت خالص و با ترکیبات آلی نیز حضور دارند. در برخی نمونه‌ها که مربوط به افته‌های پایین‌گرده معدنی می‌باشند، حضور تتراپکت‌ریت، گانل، کالکوپیریت و کانی‌های ثانوی نظر موروزیت، آنگلزیت، کوولیت، کالکوژیت، بورنتیت، مالاکیت، و آزوریت گسترش نسبتاً زیادی دارند. نتایج با توجه به امکان جانشینی آن در گالن می‌تواند عمدتاً در این بخش از رگ‌های معدنی حضور داشته باشد. این مجموعه با کانی‌های غیر فلزی نظر کلسیت، دولومیت، باریت و کوارتز همراه است.

1 - بر اساس آماری گزارش‌های در دسترس (۱۷۲) این کانی نهایا در دو نقطه از جهان، بکی در معدن طلای گه (جول) (Getchell) ایالات متحده آمریکا و دیگری در معدن طلای زرآفرشان گزارش شده است [۱].
شکل ۳ استیپنیت با تیغه‌های فشرده‌ای فشارشی با موج‌دار، نور پلاریزه طول واقعی شکل ۲ میلی‌متر

شکل ۲ استیپنیت با پله‌های سخت‌ترک همر به یک تبلور مجدد (متاستیپنیت)، نور پلاریزه طول واقعی شکل ۲ میلی‌متر
جدول ۲: نتایج اندازه‌گیری عناصر در کانسیمی مختلف ماده معدنی به کمک میکروسکوپ الکترونی (مقادیر بر حسب درصد) که

\[KV = 20, \quad FIT INDEX = 0.35 \]

<table>
<thead>
<tr>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>حدود نرمال</th>
<th>تعداد اندازه‌گیری</th>
<th>نوع عناصر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۶.۵۹</td>
<td>۴۲.۱۹</td>
<td>۳۵.۹۵ - ۲۷.۷۹</td>
<td>۱۸</td>
<td>Si</td>
</tr>
<tr>
<td>۱۶.۱۴</td>
<td>۱۸.۹۳</td>
<td>۱۹.۱۹ - ۱۷.۷۱</td>
<td>۱۹</td>
<td>S</td>
</tr>
<tr>
<td>۸.۰۳</td>
<td>۹.۰۹</td>
<td>۹.۱۹ - ۷.۱۹</td>
<td>۱۹</td>
<td>Fe</td>
</tr>
<tr>
<td>۱۲.۱۸</td>
<td>۱۷.۹۵</td>
<td>۱۷.۹۵ - ۱۷.۱۹</td>
<td>۱۸</td>
<td>Bi</td>
</tr>
<tr>
<td>۱۵.۸۸</td>
<td>۱۹.۲۱</td>
<td>۱۷.۹۵ - ۱۷.۱۹</td>
<td>۱۹</td>
<td>Sb</td>
</tr>
<tr>
<td>۸.۰۳</td>
<td>۳.۰۹</td>
<td>۱.۹۵ - ۳.۱۹</td>
<td>۱۹</td>
<td>Ba</td>
</tr>
<tr>
<td>۱۱.۱۸</td>
<td>۱۴.۲۴</td>
<td>۱۳.۱۹ - ۱۱.۳۹</td>
<td>۱۹</td>
<td>Ca</td>
</tr>
<tr>
<td>۱۹.۰۲</td>
<td>۵.۰۲</td>
<td>۴.۰۲ - ۶.۰۲</td>
<td>۱۱</td>
<td>As</td>
</tr>
<tr>
<td>۴.۲۱</td>
<td>۸.۴۷</td>
<td>۸.۰۸ - ۱۳.۱۹</td>
<td>۱۱</td>
<td>Te</td>
</tr>
<tr>
<td>۸.۰۲</td>
<td>۱۹.۰۲</td>
<td>۱۹.۰۲ - ۱۵.۰۱</td>
<td>۱۹</td>
<td>Ag</td>
</tr>
<tr>
<td>۸.۰۲</td>
<td>۱۹.۰۲</td>
<td>۱۹.۰۲ - ۱۵.۰۱</td>
<td>۱۱</td>
<td>Au</td>
</tr>
<tr>
<td>۵.۲۰</td>
<td>۱۹.۰۲</td>
<td>۱۹.۰۲ - ۱۵.۰۱</td>
<td>۱۱</td>
<td>Hg</td>
</tr>
</tbody>
</table>

برای شناخت بهتر بعضی از کانسیمی موجود در کانسیمی و اطمینان از حضور بارهای عناصر، سطوح معینی از مقاطع به کمک میکروسکوپ الکترونی مورد بررسی قرار گرفت. نتایج بدست آمده حاکی از وجود آنتیمتون خالص و حضور عناصری نظیر طلا، بیسموت، تلور، جیوه، نقره و آرسنیک است (جدول ۲). بررسی ضرایب همبستگی بین عناصر، نشان دهنده ارتباط منبت و خوب آنتیمتون و گوگرد (۸۹.۹% = ۴)، بیسموت و گوگرد (۸۴.۲% = ۳)، تلور و آنتیمتون (۸۴.۲% = ۳)، و نیز انطباق منبت طلا با تلور و آنتیمتون است. این امر می‌تواند در صورت هم‌خوانی ضرایب عنصر سنجی بیانگر احتمال وجود کانسیمی‌های بی‌پی‌سیوئید به ویژه نیتر بیسموتینیت (AuTe2)، آنتیمتون (Bi2Te2S)، ترادردیمیت (AuSb2)، اورواسیتیت (Sb2Te3)، تلور آنتیمتون (Bi2Te2S) و کالاوریت (AuTe2) به همراه مجموعه‌ای یاد شده باشد.
نتایج حاصل از بررسی‌های انجام شده، حاکی از فرآیند عنصر آنتیمیان تا ۱۰۰ پیام در رسانه‌ها و رودخانه‌های منطقه مورد مطالعه است. مطالعات اولیه (بالتا بر ۱۰۰ مورد اندازه‌گیری در سطح منطقه، متقارن‌یابی بین ۱۵ پیام را برای آن عنصر نشان می‌دهد. شواهد صحرا، مطالعات به کمک میکروسکوپ‌های کیفی‌سنج و پرتو سنج برتو ایکس بانگر و جدول کانی استیتیت به عنوان فرآیند طبیعی ترکیب حاوی آنتیمیان در نمونه‌های مورد مطالعه است.

تجزیه‌های کمی و کیفی با میکروسکوپ‌های الکترونی نیز حاکی از درصد بالای آنتیمیان (۲-۱۰ درصد) در بخش‌هایی از ماده معدنی است. علاوه بر کانی استیتیت و آنتیمیان خالص، کانی‌های نیتر کرومیت، [که به لیت (۲)] توازه‌دیدار، آرسنی‌بریت، گالن، پریت، کالکورپسیت، کانی‌های ناکی در ارتباط با آنها نیز حضور دارند. مجموعه فوق الذکر با کانی‌های نیتر کرومیت، دولاپت، باریت و کوارتز همراه است. عناصری نظیر طلا و تلور که وجود داشتا میکروسکوپ الکترونی مورد تایید قرار گرفته است و انطباق مثبت را با یکدیگر نشان می‌دهد و نیز همراهی این عنصر با آنتیمیان، آنتیمیان و طلا نظیر اوروراستیت (AuTe₂) و یا تلورید‌های طلا نظیر کالکورپسیت (AuSb₂) به همراه مجموعه باشد به‌اضافه بررسی‌های زمین شناسی و ترد شیمیایی نشان می‌دهد که منطقه مورد مطالعه دارای قابلیت‌های بالایی به لحاظ حضور عنصر با ارزشی از قبیل آندیمان و طلا است. رگ‌ها و ساختمان‌های حاصل مواد معدنی در این منطقه، علاوه بر ذخیره با ارزش آنتیمیان، به خاطر مجموعه پاراژنی جالب توجه، مراحل مختلف و تیپ کننده که زایم و نیز حضور کانی‌های نادر، چه از نظر اقتصادی و چه از نظر علمی، توجهی بسیار از پیش را می‌کند.

تشریح و گردانی

از آقای دکتر عباس یوشوی، مدیر عامل مرکز تحقیقات پرتواس و پرستو این مؤسسه و نیز مستقیم این بررسی‌ها در دانشگاه تربیت مدرس به‌خلاف همکاری صمیمانه در استفاده از میکروسکوپ الکترونی و از آقای دکتر ناصر خویی به‌خلاف همکاری در مطالعه مقاطع صیقلی، اکثریتی می‌شد. از سرکار خانم مهندس سهیلا مسئول دستگاه پراش سنج
برتو ایکس در بخش زمین شناسی دانشگاه کرمان به خاطر مساعدتشان سپاسگزاریم.
همچنین از آقایان دکتر محمد حسین آدابی که مشوق و راهنمای ما در ارائه این مقاله بودهاند، صمیمانه متشکریم.

مراجع

9 - عیسی خانیان، ویگن. داستان گه چه لیت و طلا زره شیروان، فصلنامه علمی علوم زمین، شماره 3، صفحات 76-86، 1371.