Geochemical Variation of Carbonates Close to the Tin Ore Deposits

Adabi, M.H.
Department of Geology, Ferdowsi University of Mashhad

Abstract: Geochemical variations of the Proterozoic dolomite samples close to the ore deposits in the Renison mine area, Tasmania, Australia, are the result of alteration. The oxygen isotope values of the most altered dolomites surrounding the ore deposit indicates that these are affected by hot (up to about 350 °C) hydrothermal fluids. There is a trend of decreasing lighter oxygen and carbon isotope values towards the ore deposit. Carbon isotope values in dolomites are significantly lighter than those least-altered dolomites away from mineralised area, due to alteration ranging from 47 to 95%. Oxygen isotope values are also significantly lighter close to the ore deposit, than less altered samples away from mineralised area. Alteration in oxygen ranging from 20 to 97%. Geochemical analysis also indicates that Fe and Mn are very high but Ca, Mg, Sr and Na are very low in dolomite samples close to the ore deposits. Thus, the result of this study shows that the gradual decreases in oxygen and carbon isotope values, which corresponds to the increasing alteration percent, towards the orebody, along with elemental compositions, are useful for recognition of ore deposits.

Key Words: Isotopes, Ore Deposits.
روند تغییرات ذخیش‌شیمیایی در سنگهای کربناته نزدیک به کانسار قلع

محمد حسن ادابی
گروه زمین شناسی - دانشکده علوم - دانشگاه فردوسی مشهد

چکیده: از تجزیه شیمیایی سنگهای دوماتیتی پروتوزوئیک نزدیک به کانسار، قلع معدن رنسون ناسماقا در استرالیا معلوم شده است که تغییرات شیمیایی در آن سنگها نتیجه دگرسانی است. ایزوتروپ اکسیژن موجود در سنگهای دوماتیتی کامل‌اکسیژن شده‌است اطمینانی که کانسار قلع می‌شود این است که سنگها تحت تأثیر محلول‌های گرم‌آبی (هیدروترمال) گرم (در حدود 250 درجه سانتی‌گراد) قرار گرفته‌اند. در مقدار ایزوتروپ اکسیژن و کربن به سمت توده معدنی قلع در سنگهای دوماتیتی بی‌هزینه، روشتی کاوشی دیده می‌شود، به طوری که هرچه با کانسار نزدیک‌تر شویم مقدار ایزوتروپ اکسیژن و کربن در این سنگ‌ها به کاهش چشمه حرکت می‌کرد و به مقدار ایزوتروپ کربن در دوماتیت‌های این کانسار به کاهش می‌رسید. سپس از دوماتیت‌های دگسان، نتیجه‌گیری شد که این اثر می‌تواند اثرات مهمی بر سنگ‌های کانسار دارد. نتایج ایزوتروپ کربن به نتیجه‌گیری دگسانی شدید بر این سنگ‌های کانسار تا 94 درصد در نوسان است. ایزوتروپ اکسیژن در سنگ‌های دوماتیتی نزدیک به کانسار قلع نیز به مقدار کابل توجهی سپرک از نمونه‌های دوماتیتی دگسان نشده و یا دوماتیت‌های دور از کانسار است. محاسبه نشان می‌دهد که مقدار دگسانی در ایزوتروپ اکسیژن سنگ‌های دوماتیتی نزدیک به کانسار قلع بین 20 تا 97 درصد است. این تغییرات بیشتر به فاصله سنگ‌میزانی تا کانسار نسبت می‌دهد. تجزیه شیمیایی نشان می‌دهد که مقدار آهن و مگنز در سنگ‌های دوماتیتی نزدیک به کانسار قلع نیز بیشتر است. اما مقادیر کلسیم، مینزیم، سدیم و استراتسم به نجریست است. نتایج ایزوتروپ کربن به کانسار قلع بین 20 تا 97 درصد دگسانی این ایزوتروپ کربن به سمت کانسار قلع که به آقایان درصد دگسانی این ایزوتروپ کربن به سمت کانسار قلع که به آقایان درصد می‌تواند به عنوان وسیله‌های برای رسیدن به کانسار نشان‌دهنده مورد استفاده قرار گیرد.
مقدمه

مطالعات زئوتوزیمایی سنگهای کربناتی میزبان توده معدنی می‌تواند راه‌گشایی رده‌بندی کسانسرهای ناشناخته‌اش بیشود. این مطالعات به علت شناخته‌کردن دردسته‌هایی که دقت و سرعت بالای (در مقایسه با روش‌های زئوتوزیمایی) از اهمیت ویژه‌ای برخوردار است.

در حالی‌که اخیراً استفاده از ایزوتوپهای پایدار اکسیژن و کربن به عننای فرعي نظير سدیم، استوانسیم، آهن و منگنز برای مطالعه و پژوهش زئوتوزیمایی کربناتیها، از سوی بسیاری از پژوهشگران مورد استفاده قرار گرفته است. بنابراین ایزوتوپ اکسیژن و کربن بیشتر برای تعیین دامای تطبیق و شناخت گونه‌های دیازنتیک [درون زاد] [۱۷] حاکم بر محیط است. فرآیند ایزوتوپ اکسیژن و کربن در محیط‌های طبيعي، همراه با ویژگی‌های تفريعی ایزوتوپهای آنها موجب می‌شود تا در بررسی تاریخچه و تکوين بسیاری از سنگهای کربناتی و کسانسرهای تعیین میزان دگرسانی در آنها از این ایزوتوپهای پایدار استفاده شود. تغییرات ایزوتوپ اکسیژن و کربن در کربناتیها معلول عوامل متعددی از قبل دامای محیط، کالیشن و درجه شوری، عمق تهیه و ویژگی‌های زئوتوزیمایی، و با و بسته بهونه می‌تواند نظر ایزوتوپی است. افزایش دامای محیط موجب می‌شود که در سنگ‌های اکسیژن در کربناتی‌ها، دمای هرچه سنگ میزبان به کسانسر نزدیک باشد، به دلیل تماس بیشتر با محلولهای گرمایی، فرآیند دگرسانی در آنها بیشتر صورت می‌گیرد و ایزوتوپ اکسیژن کاهش یافته و یا اسکلت سنگ می‌شود. برای محاسبه دمای محلولهای دیازنتیکی یا گرمایی معمول از اسکلت سنگ ایزوتوپ اکسیژن استفاده می‌شود.

در این پژوهش مطالعه این است که براساس تغییرات ایزوتوپهای موجود در سنگهای کربناتی میزبان، پیشینه دمای تشکیل را محاسبه کرده و پس از تعیین درصد میزان دگرسانی ایزوتوپها و نیز بررسی میزان عناصر اصلی و فرعی آن، قدمی در راستای ردیابی کسانسرهای ناشناخته برداشت.

زمین شناسی ناحیه‌ای

معدن رنسون به‌ویژه در معدن فلز‌های لایه‌ای در استرالیا، در بخش مرکزی گودال دان داس، که یک پژوهشگر فنی با روند شمالي و جنوبي است، در غرب ایالت تاسمانیا
واقع شده است (شکل 1). این گودال از توالی‌های رسوبی با سن پروتروزوئیک تا کامبیوین تشکیل شده است. قدمت‌های ترین رسوبات دان داس شامل رسوبات آواری و کربناتی گروه ساکس شهر ۳ را شامل می‌شود. روی این تشکیلات، رسوبات کربناتی آواری و لیکانولاسیتیک سازند کریستوس گروهی قرار دارد و اتفاق دومیتی یک را شامل می‌شود. در توالی‌های رسوبی معدن رنسون این سه اتفاق دومیتی، سنگ‌های کانسیر قلع بوده و به‌طور ناکام تا کامبیوین به وسیله کاستربیت غنی از پتروتیت جایگزین شده است. اگر چه گرانیت‌های متعددی در غرب ایالت تاسمانیا رخمنوش شده‌اند (شکل 1)، اما این معدن را گرانیت پایین هیل* با سن دویست هزار کرده و محلول‌های گرمابی از طریق گسل‌های اصلی متعددی که بزرگ با‌الا آمداگی همین توده گرانیتی به وجود آمده‌اند، کانسیری و سیاهی را در محفظه موجب شده است. حقیقت براکه است که گرانیت پایین هیل منبع اصلی تزریق محلول‌های گرمابی به درون گسل‌هاست.

روش‌های مطالعه
در این پژوهش 24 نمونه از سنگ‌های دومیتی زیرزمینی واقع در فاصله ۱ تا ۱۱۰ متری از کانسیر قلع مورد مطالعه قرار گرفته است (شکل 2). این دومیتی‌ها که مربوط به افق شماره ۲ است در اعماق ۱۲۰۰ تا ۱۴۰۰ متری از سطح زمین قرار دارند. درصد وزنی (درصد وزنی) نزدیک به نمونه‌ها برداشت شده در شکل ۳ مشخص شده است. نوع مختلف دومیتی‌ها برای تجزیه شیمیایی بس از مطالعه مقاطع نازک، با استفاده از مه‌های دندانی‌پوشی و میکروسکوپ دوجسمی، نمونه‌برداری شده است. ۱۵ میلی‌گرم از پودر دومیتی به مدت ۲۴ ساعت تحت تأثیر اسید فسفریک و در دمای ۵۰ درجه سانتی‌گراد داده شد، و گاز CO2 متصاد شده از هر نمونه برای تعیین ایزوتوپ اکسیژن و کربن با طیف سنج جرمی مرکز آزمایشگاهی علوم دانشگاه تاسمانیا (استرالیا) مورد بررسی قرار گرفت. از آنجا که ایزوتوپ اکسیژن در دومیتی‌هایی که تحت تأثیر محلول استید
شکل 1: موقعیت زمین‌شناسی تاحیدی‌های غرب ایالت تاسمانیا در استرالیا. کانی سازی قلع و محل معدن رنسون [3].

فسفریک در دمای 5°C واکنش نشان می‌دهند، نسبت به نمونه‌های تظییر در دماهای 25°C به مقدار 0.5 کاهش می‌یابد [2،3]؛ لذا برای استاندارد کردن ایزوتوپ‌های اکسیژن در این دولومیت‌ها به اندازه 1% ایزوتوپ اکسیژن به هرینک از نمونه‌ها اضافه شده است. نشان داده و نسبت به استاندارد بین Per mil PDB سنجیده شد. درستی اندازه‌گیری‌های ایزوتوپی ± 0.2 بوده است.
شکل ۲ مواقعی فضایی مغزی‌های زبرزمینی مورد مطالعه (مریخ به پروره‌
زن دیپ) که در عمق بین ۱۴۰۰ تا ۱۷۰۰ متری از سطح زمین قرار دارند. فاصله
با توجه به مقیاس نقش قابل محاسبه است. Zeehan
مغزی‌ها نسبت به کانسار

بخش دیگری از همان پودر دیولومینی را که برای بررسی ایزوتروپی مورد استفاده
قرار دارید، پس از ۲ ساعت که در محلول یک مول اسیدکلریدی بروز داده شد، با
دستگاه جذب اتمی (AAS) برای تعیین عناصر اصلی و فرعی مورد بررسی قرار گرفت.
یک بسته از این تیم و برای
معدل ±۵ ۵ ۵ ۵ ۵
Mn و Fe، Na، Sr
صحت بررسی‌ها برای عناصر فرعی
Ca و Mg
عناصر اصلی و
برابر با ۱/۱ بود.

از استانداردهای GFS - ۴۰۰ و
NBS - ۸۸b
برای درستی و کنترل تجزیه‌های شیمیایی مربوط به عناصر اصلی و فرعی
استفاده شد.
شکل 3 بررسی‌ی از وضعیت زمین‌شناسی و فاصله‌های زیرزمینی نسبت به توده معدنی. مقدار میزان کانسنگ قلع نماش داده است.

ایزوتوپی‌های پایدار
از زئوپیکی ایزوتوپی‌های پایدار برای بررسی و مطالعه سنجشی، رسوایی کربناتی، ارتباط ترکیب کربناتها با محیط رسوب‌گذاری، فراگیری دیپزلایک و تعیین میزان دگرسانی استفاده می‌شود. در این پژوهش از ایزوتوپی‌های پایدار آسیسیون و کربن تیز برای بررسی
شکل ۳ تغییرات ایزوتوپ اکسیژن و کربن در سنگهای دولومیتی میزان نسبت به مسافت آنها تا کانسار. ایزوتوپ اکسیژن و کربن در دولومیت‌ها به تدریج با نزدیک‌تر شدن به کانسار سبک‌تر می‌شود و سپس تحریک ایزوتوپ اکسیژن و کربن در دولومیت‌هایی است که در فاصله کمتر از یک متری کانسار قرار دارند. دولومیت‌های با کمترین دگرسانی که در فاصله چندین کیلومتری کانسار قرار دارند از نظر ایزوتوپ اکسیژن و کربن به مراتب سنگی تر از دولومیت‌های نزدیک به کانسارد.

تغییر تدریجی در صورت دگرسانی و تعیین دمای تشکیل کربناتها استفاده شده است. معمولاً برای مطالعه کربناتها از نسبت‌های ایزوتوپی ۱۸O به ۱۶O و ۱۸C به ۱۶C استفاده می‌شود، در حالیکه برای مطالعه توالی‌های تبخیری و کانات‌های رسوبی می‌توان از ایزوتوپ‌های سلفور به کار گرفته می‌شوند [۶]. نتایج ایزوتوپ اکسیژن و کربن نمونه‌ها معمولاً در مقابل یکدیگر ترسیم می‌شوند زیرا به راحتی می‌توان ارتباط بین نمودنها و تغییر آنها را به خوبی مشاهده کرد (شکل ۴).
توزیع آزمایشگر و کریم

توزیع آزمایشگر در دولومیت‌های رگه‌ای بین ۷ و ۶۶ پی‌دی‌بی (میانگین ۳۳ پی‌دی‌بی) در تغییرات در حالی که در سایر دولومیت‌ها مقدار تغییر از توزیع آزمایشگر در دوز‌های بین ۱۵ تا ۷۰ پی‌دی‌بی (میانگین ۳۵ پی‌دی‌بی) است. این توزیع آزمایشگر در دوز‌های بین ۱۵ تا ۷۰ پی‌دی‌بی (میانگین ۳۵ پی‌دی‌بی) در تغییر بهره در حالی که در سایر دولومیت‌ها این تغییر بین ۱۵ تا ۷۰ پی‌دی‌بی (میانگین ۳۵ پی‌دی‌بی) در نوسان است. این بررسی نشان می‌دهد که ایزوتوپ آزمایشگر و کریم در دولومیت‌های رگه‌ای به مراتب سبکتر از سایر دولومیتهای هاست. کاهش ایزوتوپ آزمایشگر به ویژه ایزوتوپ آزمایشگر در این دولومیت‌های حاجیکی از این است که آن ایزوتوپ‌ها در دماهای بالایی تیزتر تشکیل شده‌اند. چنانکه شکل ۴ نشان می‌دهد یک کاهش تدریجی ایزوتوپ آزمایشگر و کریم در دولومیتهای ناحیه مورد مطالعه مشاهده می‌شود. این کاهش تدریجی ایزوتوپ‌ها نیز به دلیل افزایش تدریجی دمای حاصل از محلولهای گرمایی است که یک از تاساپ‌ها سنجش دیوپ‌های میزان موجب سبکتر شدن ایزوتوپ‌های پایدار آن می‌شود. عقیده براین است که محلولهای گرمایی نیز از گرانیت باین هیل تیزتر شده و از طریق گسل‌ها و شکستگی‌های متنوع موجود در منطقه با آن‌ها و پس از تاساپ‌ها دولومیت‌ها کانی سازی وسیعی را در منطقه موجب شده‌اند [۱۰۲].

تغییر ایزوتوپ آزمایشگر و کریم در دولومیت‌ها و درصد دگرسانی آنها در شکل‌های ۵ و ۶ نشان داده شده‌اند. برای محاسبه درصد دگرسانی در دولومیت‌ها، نخست سنجش توزیع آزمایشگر و کریم مربوط به دولومیتهای با کمترین دگرسانی در منطقه را با سنجش آزمایشگر و کریم دولومیتهای با کمترین دگرسانی بالا جمع‌بست می‌کنیم. حال سنجش توزیع آزمایشگر و کریم مربوط به دولومیتهای با کمترین دگرسانی را با تک تک نمونه‌های مورد مطالعه خود جمع و بر مجموع اختلاف بین سنجش توزیع آزمایشگر و کریم مربوط به دولومیتهای با کمترین و بیشترین دگرسانی در منطقه تقسیم می‌کنیم. ذکر این نکته ضروری است که سنجش توزیع آزمایشگر و کریم مربوط به دولومیتهای دارای کمترین دگرسانی به ترتیب صفر (۰ پی‌دی‌بی) و
شکل ۵ تغییر درصد دگرگسایی ایزوتوپ کربن در سنگهای دولومیت میزان نسبت به مسافت آنها تا کانسیور. درصد دگرگسایی ایزوتوپ کربن در سنگهای دولومیتی نزدیک به کانسیور بیش بالاتر است.

شکل ۶ تغییر درصد دگرگسایی ایزوتوپ کربن در سنگهای دولومیت میزان نسبت به مسافت آنها تا کانسیور. درصد دگرگسایی ایزوتوپ کربن سنگهای دولومیتی نزدیک به کانسیور بیش بالاتر است. در این تصویر دولومیت‌های با کمترین دگرگسایی در مسافت‌های بیش از چند کیلومتری کانسیور تقریباً دارند.
روند تغییرات زئوشیمایی در سنگهای کربناته نزدیک به کانسار قلع

PDB

[۱] بیشترین دگرگرایی است به ترتیب ۲۱ و ۱۸ درصد دگرسانی ایزوتوب اکسیژن و

هرمانتور که شکل‌های ۵ و ۶ نشان می‌دهند درصد دگرسانی ایزوتوب اکسیژن و

کربن در نمونه‌های نزدیک به کانسار، به مراتب بیشتر از دومین مطابق است که در

فواصل دورتری از کانسار قرار گرفته‌اند. درصد دگرسانی ایزوتوب اکسیژن در سنگهای

dولومیتی مورد مطالعه بین ۴۰ تا ۷۱ درصد و درصد دگرسانی ایزوتوب کربن بین ۴۷ تا

۷۲ درصد در تغییر است. نکته جالب اینکه درصد بیشترین دگرسانی ایزوتوب کربن (بیش

از ۸۰ درصد) به دلیل همبستگی مربوط می‌شود که در فاصله کمتر از ۲۰ متری کانسار

قلع قرار گرفته‌اند (شکل ۶). اصولاً دولومیت‌های با دگرسانی کم در فاصله جنگل‌های

کیلومتری از قومی معلقند فاصله دارند و از نظر انرژی اکسیژن و کربن به مراتب سنگین‌تر

از نمونه‌های نزدیک به کانسارند. علت این است که این دومین مطابق در تمام بوده‌های

معدنی در بیشتر تاثیر محلول‌های گرمابی گرم بر آنها بسیار ناجی است. لازم به ذکر

است که دومین مطابق با دگرسانی کم معمولاً ریزدانه‌تر از دومین مطابق با دگرسانی بالا

هستند، زیرا این دومین مطابق تحت تأثیر فرآیند تبلور مجدد قرار گرفته‌اند. تبلور مجدد در

این دومین مطابق داشته تأثیر سیالات گرمابی گرم بر آنهاست [۲].

محاسبه دما

از زمینه که معلوم شد که تفکیک ایزوتوب اکسیژن بیشتر به دلایل محدود، منتظر دارد

[۶ و ۷] استفاده از ایزوتوب‌های پایدار اکسیژن در زئوشیمی و رشته‌های وابسته به علوم

زمین توسعه بیشتری کرده است. عقیده برای این است که از روی اختلاف بین نسبت ایزوتوب

۱۸O به O به ۱۶O در رسوبات کربناته و سیالاتی که در آنها تحت این نشان می‌شوند، می‌توان پاره‌ای

دما را محاسبه کرد [۶ و ۷]. نسبت بین ایزوتوب‌های اکسیژن از رابطه زیر محاسبه

می‌شود.

$$
\delta^{18}O = \left(\frac{{^{18}O/^{16}O}_{\text{sample}} - {^{18}O/^{16}O}_{\text{standard}}}{{^{18}O/^{16}O}_{\text{standard}}} \right) \times 1000 \quad (1)
$$

استانداردی که برای نشان دادن ایزوتوب اکسیژن و کربن در کربنات که کار

Downloaded from ijcm.ir at 1:37 +0430 on Wednesday May 6th 2020.
مورد استاندارد PDB (استاندارد بلمینت مربوط به کرتاسه فوقانی) است. ایزوتوپ اکسیژن (Standard Mean Ocean Water) SMOW گزارش کرد.

معادلات متعددی برای محاسبه دمای کربناتها ارائه شده‌اند. در زیر معادله‌ای که آن برای محاسبه دمای دولومیت در این پژوهش استفاده شده است نشان داده می‌شود. این معادله را [8] Land در سال 1985 ارائه کرده است.

\[
T(\text{C}) = 16.4 - 4.3((\delta^{18}\text{O}_{\text{dosl}} - 3.8) - \delta_{\text{water}}) + 0.14((\delta^{18}\text{O}_{\text{dosl}} - 3.8) - \delta_{\text{water}})^2
\]

در این معادله ایزوتوپ اکسیژن سنگ دولومیت با علامت \(\delta^{18}\text{O}_{\text{dosl}}\) و ایزوتوپ سیالات با علامت \(\delta_{\text{water}}\) است. در مطالعه [8] PDB اکسیژن که معادل اکسیژن ایزوتوپ اکسیژن آبی گرمایی 9Q (SMOW) مقدار ایزوتوپ اکسیژن ایزوتوپ اکسیژن موجود در سیالات درگیر رگ‌های کوارتز تعیین و مورد استفاده قرار گرفته‌اند. [1] برای اساس بیشترین دماً نماینده دماً نمایش داده شده معادله 90 درصد است. این دماً مشاهده محاسبه شده سیالات درگیر است.

عناصر اصلی و فرعی

توزیع عناصر اصلی و فرعی در سنگهای کربناتی به عوامل متعددی نظیر تركیب کانی شناختی، دما، تركیب سیالات، و شرایط اکسایش و احیاء به ترتیب دارد. لذا مطالعه عناصر اصلی و فرعی در سنگهای کربناتی می‌تواند راهنمایی برای شناسایی فرایندهای دیازینتیکی حاکم بر محیط باشد.

کلیه بنا بر استانداردهای بین المللی مقدار کلسیم در دولومیت‌های خالص 2176 درصد است، در حالی که مقدار کلسیم در دولومیت‌های مورد مطالعه بین 1940 تا...
روند تغییرات ذلولیسیایی در سنگ‌های کرتانه نزدیک به کانسار قلع

شکل ۷ تغییرات Mn در مقابل Ca در این نمونه بین Ca و Mn یک رابطه منفی با معکوس وجود دارد. به طوریکه با کاهش Ca مقدار Mn افزایش می‌یابد. به جای Ca تغییری به دلیل دگرسانی دیافتوئیک و گانگولی به جای Mn است.

۸۰ (میانگین ۷۹) درصد مقدار کلسم در دولومیت‌های رگه‌ای نسبت به سایر دولومیت‌ها به دلیل دگرسانی شدید بایش نر است. از آنجا که مقدار کلسم با افزایش مقدار منگنز کاهش می‌یابد (شکل ۷) به این نتیجه می‌رسیم که در شیب‌های دولومیت بیشتر منگنز است که بجای کلسم نشته است.

منیزیم: مقدار منیزیم در دولومیت‌های خالص ۸۸ درصد است، در حالیکه مقدار منیزیم در دولومیت‌های موردنظر بین ۸۰ تا ۹۱٪ (میانگین ۸۵) درصد تغییر می‌کند. ترسیم مقدار منیزیم در مقابل منگنز نشان می‌دهد که تغییر منیزیم به تغییر منگنز بستگی ندارد (شکل ۸)، در حالیکه ترسیم مقدار منیزیم در مقابل آهن حاکی از این است که مقدار آهن با کاهش منیزیم افزایش می‌یابد (شکل ۹). بنابراین در شیب‌های دولومیت آهن جایگزین منیزیم شده است. کاهش بیشتر مقدار منیزیم در دولومیت‌های رگه‌ای نسبت به سایر دولومیت‌ها به دلیل دگرسانی شدیدتر آنها است.
شکل 8 تغییرات در مقابل Mn در این نمودار به دلیل اینکه شدت هیچ تغییر منظمی دیده نمی‌شود.

شکل 9 تغییرات Fe در مقابل Mg در این نمودار بین Fe و Mg یک رابطه منفی با معکوس وجود دارد به طوری که با کاهش مقدار Mg افزایش می‌یابد. چنین تغییری به دلیل تغییرات دیاپزیدیکی و نیز جانشینی Mg به جای Fe است.
روند تغییرات زئوئسیمایی در سنگهای کریتگن نزدیک به کاسنار قلع

استرانتسیم: دامنه تغییرات استرانتسیم در دولومیتهای مورد مطالعه بین ۱۰۴ تا ۲۹۲ (میانگین ۱۴۳) بی‌پی ام است. اصولاً مقدار استرانتسیم در دولومیتهای ۱۰۰۰ تا ۲۰۰۰ بی‌پی ام نسبت به کلسیت (میانگین ۵۳۰) بی‌پی ام) به مراتب کمتر است. این کاهش نسبت به دلیل ضریب تقسیم کمر استرانتسیم در دولومیتهای هاست [۱۹]. استرانتسیم معمولاً جانشین کلسیم می‌شود، و از آنجا که مقدار کلسیم در دولومیتهای کمتر از کلسیت است، لذا مقدار استرانتسیم در دولومیتهای کمتر از کلسیت است. برخی از محققین معتقدند که مقدار استرانتسیم با انفراشیم دما انفراشیمی می‌یابد [۷]. از آنجا که مقدار استرانتسیم در دولومیتهای رگه‌ای بیش از سایر دولومیتهای هاست، این انفراشیم استرانتسیم را می‌توان به بالا بودن در واحد تشکیل آنها (که در مواردی به ۵۰۰ م م رسد) مربوط دانست.

سیدم: مقدار سیدم در دولومیتهای ۱۲۴ تا ۲۳۳ (میانگین ۱۶۳) بی‌پی ام تغییر می‌کند. در دولومیتهای رگه‌ای مقدار سیدم در مقایسه با سایر دولومیتهای سیدم به مراتب بیشتر است. این انفراشیم سیدم در دولومیتهای رگه‌ای را می‌توان به بالاتر بودن درجه شوری سیالات دولومیتهای ساز نسبت داد. مقدار سیدم در دولومیتهای با انفراشیم درجه شوری آب انفراشیم می‌یابد، ولذا در بسیاری از نوشتارها از عنصر سیدم به عنوان عامل تعبیه کننده درجه بارحقی شوری محیط‌ها پدیده شده است [۱۰]. از آنجا که مقدار سیدم در دولومیتهای مورد مطالعه (به استثنای دولومیتهای رگه‌ای) بسیار بانی است، این کاهش می‌تواند نتیجه دگرگونی دیازنتیکی دهلیز دیازنتیکی با درجه شوری کم باشد. نتیجه اینکه سیالات دیازنتیکی که عاملی در دگرگونی دولومیتهای هاست مشارکت می‌بندند.

می‌آیند از نظر ترکیب شیمیایی به ویژه از نظر درجه شوری متفاوت بوده‌اند.

سنتز و آهن: مقدار منگنز در نمونه‌های مورد مطالعه بین ۱۵۸۰ تا ۱۵۸۰ (میانگین ۱۵۸۰ بی‌پی ام تغییر می‌کند. دامنه تغییرات آهن در این نمونه‌ها بین ۱۴۲۷۸ تا ۲۷ ۰۵۸ (میانگین ۲۱۲۱۰) بی‌پی ام است. معمولاً میانگین آهن در دولومیتهای به مراتب بیش از آهکه‌های زیرا آهن معمولاً جانشین منیزیم می‌شود. بنابراین انفراشیم قابل ملاحظه‌ای آهن در دولومیتهای به دلیل حضور فراوان منیزیم در شیبک دولومیت است (شکل ۹).
توزیع بیشتر آهن و منگنز در دولومیت‌ها نسبت به استرانسیم و سدیم به دلیل ضریب تسمین بسیار بالای این عنصر (بیش از 15) است [9 و 10] برخی از محققین معقده‌اند که حضور مقداری قابل ملاحظه‌ی آهن و منگنز در دولومیت‌ها حاکم از شرایط احیای حاکم بر محیط در طول فرایند دگرسنجی است [9]. معمولاً شرایط غیراحیایی از جانشینی آهن و منگنز در شکوه دولومیت جلوگیری کرده در حالیکه محیط‌های احیای شرایط مناسبی را برای یا رقابت مقداری قابل توجهی آهن و منگنز در شکوه دولومیت فراهم می‌آورد. بنابراین مقادیر قابل ملاحظه‌ی آهن و منگنز در دولومیت‌های نزدیک به کانسار می‌تواند به دلیل واکنش این سنگها با سیالات غیر احیایی (بیشتر گرماس) در شرایط احیای باشد، زیرا مقادیر آهن و منگنز در سیالات دربایی بسیار بالای است.

نتیجه و برداشت

بررسی‌های این بروزش نشان می‌دهد که تغییر ایزوتوپ اکسیژن و کربن و عنصر اصلی و در سنگهای کربناتی نزدیک به کانسارهای فلز در Mn و Fe، Mg، Ca و فرخ نظر نشان‌دهنده‌ی زیاد بوده و لذا می‌تواند به عنوان کویی برای ردیابی آنها مورد استفاده قرار گیرد.

کاهش تدربیج ایزوتوپ اکسیژن و کربن و افزایش درصد دگرسانی این ایزوتوپها در سنگهای دولومیتی نزدیک به کانسار، که در فاصله یک متری تا 10 متری از آن قرار دارند، حاکی از دگرسانی شدید این سنگها در اثر محلول‌های گرماس حاصل از فعالیت توده‌گرانیتی موجود در منطقه است.

درصد دگرسانی ایزوتوپ اکسیژن و کربن در سنگهای دولومیتی نزدیک به کانسار به ترتیب بین ۲۰ تا ۲۷ درصد در تغییر است. هرچه سنگهای کربناتی به کانسار نزدیک‌تر باشند شدت و درصد دگرسانی در این سنگ‌ها بیشتر و ایزوتوپ‌های اکسیژن و کربن آنها بسیار است. برعکس سنگهای کربناتی دورتر از کانسار از نظر ایزوتوپ اکسیژن و کربن سنگ‌سنگ‌تر و یا مثبت‌تر هستند. سیک‌ترين ایزوتوپ اکسیژن حاکی از تشکیل آنها در دما متوسط ۲۲۰ تا ۳۸۰ درجه سانتی‌گراد است. این دما مشابه دمای سیالات دگرگونی وجود دارد.
مقدار عناصر Na, Sr, Mg, Ca به کانسار قرار دارندکم وی مقدار عناصری نظیر Mn و Fe بسیار بالاست. کمترین مقدار آهن در این نمونه‌ها در حدود 0 درصد و بیشترین آن در حدود 3 درصد است. بیشترین مقدار Mn در این نمونه‌ها در حدود 3 درصد است. این افزایش قابل ملاحظه‌ی عناصر Mn و Fe در این سنگ‌ها به فعلیت‌های گرمایی در منطقه‌ای که تحت شرایط اハイپرتروف فعالیت نسبت داده می‌شود. از آن‌جا که افزایش Fe به ترتیب با Ca, Mg و کاهش H مراد است، نتیجه‌ی می‌شود که در شبکه‌ی دولومیت-دیاگژنی به Sr و Na صورت گرفته است. باترین بودن مقدار عناصر Ca, Mn و Mg جایی به جایی دولومیت‌های نزدیک به کانسار نیز دلیلی بر تأثیر سیالات گرمایی بر این سنگ‌هاست. تحقيق‌ها نشان داده است که کاهش مقدار Sr و Na تأثیر فراهم‌کننده‌ی منکری (آب شیرین) و یا گرمایی قرار گرفته‌اند بسیار باترین است. با توجه به نتایج حاصل از این مطالعه‌های توان چنین گفت که مطالعات زئوئمیایی و توجه به توان کارایی مفیدی در ردیابی کانسارهای میزبان در سنگ‌های دولومیت داشته باشد.

قدردانی
ببنوسیله‌ی از زحمات مستندان آزمایشگاه مرکز علوم دانشگاه تاسمانیا به خاطر همکاری‌هایشان در انجام آزمایشات زئوئمیایی در تاسمانیا 137 و نیز از همکاری سرکار خانم ضیا و بخاطر نتایج آقای احمد رزبانی در رسم علل‌های این مقاله، صمیمانه سپاسگزاری می‌شود.

مراجع

