Geological Studies of the Anjireh Pb-Zn Deposits
Esfahan District

Tourchi, M. and Nasr Esfahani, A.
Faculty of Sciences, University of Shahid Bahonar
of Kerman, Kerman, Iran

Abstract: Anjireh Pb-Zn deposits are located 55 km west of Esfahan. These deposits belong to a part of a large sedimentary basin containing lead and zinc metal epidesences, in Sanandaj - Sirjan zone. This basin contains Lower Cretaceous (Albian - Abtian) sedimentary sequences. The Anjireh deposits are typical of Mississippi-valley type stratabound lead-zinc deposits. The principal metal minerals in these deposits are Cd-rich sphalerite and Ag-poor galena. These ores are rich in Cd, Hg and poor in Au and Ag.

Key Words: Geochemistry, Genesis, Anjireh Pb-Zn Deposits.
بررسی زمین‌شناسی کانسارهای انجیره استان اصفهان

محمدرضا طورچی - علی‌خان نصر اصفهانی
گروه زمین‌شناسی - دانشگاه علوم دانشگاه شهید باهنر کرمان

چیزهایی که برای کانسارهای انجیره در ۲۵ کیلومتری غرب استان از جهات شرقی و غربی است و این حوضه در زون سندزج-سردان در حاشیه تپه‌هایی از فلزات سنگی سرب و روی است. این حوضه در حاشیه روی‌ها و یا روی‌هایی که در طول زمان برای کانسارهای سرب و روی چینه کرده‌اند نمی‌سپرده است. کانسارهای انجیره به‌طور کلی به کانسارهای سرب و روی چینه کرده‌اند. این کانسارها از نظر کادموسوم و جیوه‌انی، غنی از کادموسوم و جیوه‌انی، ولی از نظر طلا و نقره فقیرند.

واژه‌های کلیدی: زئویت‌سیمی، کانسارهای سرب و روی انجره

مقدمه


موضع‌های جغرافیایی

کانسار انجره‌ها در امتداد رشته‌کوهی متشکل از وحش‌پایین، و جین بالا و انجره (انجره)
روش‌کار
این کانسار با استفاده از داده‌های زئوئشن‌سایی مورد تجزیه و تحلیل قرار گرفت و مدل مناسبی در مورد چگونگی شکل‌گیری آن ارائه شد.

سنگ‌شناسی و چینه‌شناسی ناحیه انجیره
در شکل ۲ توالی‌های چینه‌شناسی ناحیه انجیره نشان داده شده‌اند. مهمترین واحدهای زئوئشن‌سایی ناحیه انجیره دارای سن کرتاسه زیرین‌اند. سری پایین کرتاسه زیرین (L.S) از سنگ‌آهک متراکمی تشکیل یافته و بخش عمده‌ای از را به خود اختصاص داده است. این واحدهای لایه‌ای و جهان‌پایین و جهان بالا و انجیره را تشکیل می‌دهد و در ناحیه معدنی انجیره (بخشهای بالایی) زئوئشن‌سایی دیده می‌شوند که

فوق نمای و انجیره جدید (پکه) (شکل ۱) تشکیل شده است و در ۱۵۰ کیلومتری غرب اصفهان قرار دارد.
شکل 2: ستون چیت‌نامی ناحیه معدنی انجیره ایزد‌رود

در آنها کانال‌های شده است. سری بالایی کُراتاس زیرین (US) شامل چهار واحد سنگی است. واحد یکم (U1) مهجورین بخش معدنی است و کانال‌ها در آن به صورت عدسی‌های سیلیسی حاوی سولفورهای سرب و روی، همین‌گونه با لایه‌های قرار دارد.

البته این واحد در نواحی سطحی به شدت هوازده شده و غنی از کانال‌های ثانوی سرب
بررسی زمین-شناسی کانسارهای انجره اصفهان

و روی است. واحد دو (U2) حاوی گل‌بری و بی‌کیفیت است و به‌سوی در معدن رو باز و جنگ بالاگسترش دارد. واحد سه (U3) به صورت خرد شده و به‌صورت دائمی هایی در منطقه رخ‌نمودن دارد. واحد چهار (U4) بالاترین تشکیلات در ناحیه است که در سطح ره‌خردن شده است.

زمین-ساخت (تکتونیکی) و زمین-شناسی ساختاری ناحیه انجره

این ناحیه از نظر زمین-ساختی به جنوب شمال - سیرجان تعلق دارد. ناحیه انجره مانند تمام منطقه اصفهان همواره تحت فشار کوه‌زایی آلی بوده است. سه کوه انجره را به توان به‌صورت یک طاق بی‌درنگ شکننده در نظر گرفت که گسل‌های معمولی با امتتاد شرقی آن را قطع کرده است. تغییرات ساختاری زمین-ساختی ناحیه در دو مرحله اصلی، یکی مرحله ابتدایی به‌صورت ترکیبی از جنگ خرودگی و راندگی، و دیگری مرحله انتهایی به‌صورت تأثیر گسل‌های کششی با معمولی صورت گرفته است. در این دو مرحله، در اثر فشارهای زمین-ساختی، توالی‌های چینه‌شناختی شروع به تغییر شکل کرده و ایجاد چین‌های نامتناسب نموده‌اند. علت از گسل‌های رانده، سیماهای زمین-ساختی دیگری نیز در منطقه به‌طور چشمه‌گیر حضور داشته‌اند، از جمله آنها می‌توان از گسل‌های شرقی - غربی و گسل‌های شمالی - جنوبی و سیماهای جدا شونده نام برد. از عناصر ساختاری دیگر در ناحیه، کلیه‌ای است. در هم‌هبة این سیماها نیز های نازک رسمی نزدیک کم‌ساخته و مرکز چینه‌ده صدیم شوند.

کانی‌شناسی کانسارهای انجره

کانی‌شناسی سلته بیامیان: سنگ‌های ناحیه معدنی انجره از توالی‌های رسوبی به‌خصوص سنگ‌های کربناتی تشکیل یافته‌اند. در نمونه‌های مورد بررسی به‌خصوص در سری زیرین، به اشتر حاوی میان‌آواره‌های (اینترکلاسته‌ها) گرد میکراتی است. علاوه بر میان‌آواره‌ها، سلته کربنیک‌های نیز در این لایه‌ها مشاهده می‌شوند. زمین‌شناسی سنگ‌های در توالی‌های رسوبی این ناحیه میکراتی و اسپارایت‌اند. کانی‌های کربناتی شامل کلسیت و
دلومیت، اصلی ترین کانی‌های تشکیل‌دهنده سنگ‌های است. انسجام کلیست در این سنگ‌ها به دو شکل اولیه و ثانویه خودنیایی می‌کند. دلومیت بیشتر به صورت کانی ثانویه است. سپس پس از کانی‌های کربناتی، از اهمیت ویژه‌ای برخوردار است و به صورت بلوهای خود شکل و مجموعه‌های پهنایی، از بلوه تا جرت دیده شده‌اند. سپس پس به صورت چرخ خاستگاه شیمیایی دارد و در سنگ‌های آهکی به صورت گریه‌های چرخی و بدون هیچ ساختاری ایجاد شده است.

کانی دریابی سولفید‌های اصلی: بی‌پی‌بست از فراوان‌ترین سولفید‌های است و به صورت بلوهای پراکنده می‌باشد با مشابهتی بافت می‌شود. گردد موجود در سولفید‌ها از اهمیت بسیار مطالعاتی است. فراوان‌ترین سولفیدها، دارای اهمیت مطالعاتی است. فراوان‌ترین سولفیدها، دارای اهمیت مطالعاتی است.

به‌طور کامل در این کانی مطالعه کرد و برای بررسی سولفیدها بسط داد. از این‌ویژگی‌ها انرژی‌های مختلفی در توان از پیام‌های فرایندهای، پیام‌های توان و پیام‌های خودکار نام برد. اسفالنیت در مراحل اولیه یا میانی دیاژنژنی، پس از تشکیل پیریت و پیش از گالن می‌باشد. است. اسفالنیت به صورت گریه‌های از مهم‌ترین اشکال‌های این کانی در این کانی‌ها دیده می‌شود. اسفالنیت به صورت گریداره‌های می‌باشد. اسفالنیت به صورت گریداره‌های در مراحل اولیه دیاژنژنی به صورت نوارهای کانی‌های ریز متبلور شده‌اند و در مراحل بعدی یا پیکره‌های ریز بلوه، مجموعه‌های خودکار در این کانی‌ها می‌باشد. اسفالنیت به صورت گریداره‌های در مراحل اولیه دیاژنژنی به صورت نوارهای کانی‌های ریز متبلور شده‌اند و در مراحل بعدی یا پیکره‌های ریز بلوه، مجموعه‌های خودکار در این کانی‌ها می‌باشد. اسفالنیت به صورت گریداره‌های در مراحل اولیه دیاژنژنی به صورت نوارهای کانی‌های ریز متبلور شده‌اند و در مراحل بعدی یا پیکره‌های ریز بلوه، مجموعه‌های خودکار در این کانی‌ها می‌باشد. اسفالنیت به صورت گریداره‌های در مراحل اولیه دیاژنژنی به صورت نوارهای کانی‌های ریز متبلور شده‌اند و در مراحل بعدی یا پیکره‌های ریز بلوه، مجموعه‌های خودکار در این کانی‌ها می‌باشد. اسفالنیت به صورت گریداره‌های در مراحل اولیه دیاژنژنی به صورت نوارهای کانی‌های ریز متبلور شده‌اند و در مراحل بعدی یا پیکره‌های ریز بلوه، مجموعه‌های خودکار در این کانی‌ها می‌باشد. اسفالنیت به صورت گریداره‌های در مراحل اولیه دیاژنژنی به صورت نوارهای کانی‌های ریز متبلور شده‌اند و در مراحل بعدی یا پیکره‌های ریز بلوه، مجموعه‌های خودکار در این کانی‌ها می‌باشد. اسفالنیت به صورت گریداره‌های در مراحل اولیه دیاژنژنی به صورت نوارهای کانی‌های ریز متبلور شده‌اند و در مراحل بعدی یا پیکره‌های ریز بلوه، مجموعه‌های خودکار در این کانی‌ها می‌باشد. اسفالنیت به صورت گریداره‌های در مراحل اولیه دیاژنژنی به صورت نوارهای کانی‌های ریز متبلور شده‌اند و در مراحل بعدی یا پیکره‌های ریز بلوه، مجموعه‌های خودکار در این کانی‌ها می‌باشد. اسفالنیت به صورت گریداره‌های در مراحل اولیه دیاژنژنی به صورت نوارهای کانی‌های ریز متبلور شده‌اند و در مراحل بعدی یا پیکره‌های ریز بلوه، مجموعه‌های خودکار در این کانی‌ها می‌باشد. اسفالنیت به صورت گریداره‌های در مراحل اولیه دیاژنژنی به صورت نوارهای کانی‌های ریز متبلور شده‌اند و در مراحل بعدی یا پیکره‌های ریز بلوه، مجموعه‌های خودکار در این کانی‌ها می‌باشد. اسفالنیت به صورت گریداره‌های در مراحل اولیه دیاژنژنی به صورت نوارهای کانی‌های ریز متبلور شده‌اند و در
...
عيار متوسط سرب و روی ۹۵ است که درصد روي آن مثل بخش شمالی پایین است.

مهنی از کانال تکسیمدای در بخش جنوب غربی و نوک فله و جنوبی پایین (معدن بالایی و جنوبی پایین)، استفاده کرده است و با عبارت سرب پایین درصد سرب و روی آن در مجموع ۳۳.۱ درصد شد.

و جنوب بالا در بال جنوبی و غربی بالا عيار متوسط سرب و روی ۸۶ درصد تعیین شد که شامل ۱۹ سرب و ۵۳۵۰ روی است. در بال شمال شرقی این کوه عيار متوسط این دو کانسپر به ۲۶ درصد می‌رسد که شامل ۹۵.۱ سرب و ۱۲۵۹ روی است.

نحوه: انجیره قدمی در بخش شرقی بال جنوبی انجیره قرار دارد. انجیره جدید (چکاب) غربی تربیت بخش بال جنوبی را شامل می‌شود. در انجیره درصد این کانسپر، ۱۵.۵ درصد شد.

ویرایش زنوسیه‌ای کناره‌های انجیره

ظی کارهای صحراوی، همه مقطع جنگلی سنگی (لنژوستراتووگرافی) برداشت شد، و هم‌مانند آن عناصر ساختاری جنگلی سنگی نمونه‌های انتخابی مورد سنجش قرار گرفتند. از این بررسی‌ها نتایج زیر حاصل شد:

۱) عبارت سرب در سری زیرین نسبت به واحد بایدن دو سرب سرب بالایی بالا ۲) عبارت سرب در سری زیرین نسبت به واحد بایدن یک سرب بالایی

۳) عبارت سرب در سری زیرین نسبت به واحد بایدن یک سرب بالایی

۴) آهنگ تغییر سرب با روی مشابه است. ۵) عبارت سرب در تمامی تویهای سنگی بالاست، و این لاشه در سنگ آهک‌های فسیل‌دار واقع اند فواریاچی فسیل‌های حاولی مرجع می‌تواند بیانگر یک رخساره ۶) رخساره دیفی باشد و حضور

الیت به معنای فعال بودن محیط است و حضور زمینه میکروسکوپی گواهی است بر موقعیت آرام محیط. ۷) عبارت سرب بالایی از مس است. ۸) ارتباط بسیار مشخصی بین سپیلز، آهن، روی، و سرب در جنوب وجود دارد. بنابراین می‌توان به این نتیجه رسید که تغییر

جهنی سنگی، موجب تغییر محصولی در میزان عناصری می‌شود که ارتباط این تغییر رخساره‌ای طبیعت و زایش کناره را نشان می‌دهد.
توزیع عناصر کمیاب

۱) بین عناصر ذو ظرفیتی، جیوه و به‌خصوص کادمیوم در کانساردروم‌های انرژی‌فرآیند‌سازشینی، As و Sb، Sr و بلوک از عناصر کمیاب مقدار نرمال پایین و طلا پایین تر است. ۲) میزان گاما در این ناحیه بالاست و به‌معنای است. ۳) در غرب وجود دارند. نمودار سرب - روی (مکمل ۴) انطباق خاصی به‌های این دو عنصر را نشان می‌دهد. میزان ۱ (شرب انطباق) برای است با ۲ در ۵۰۰ که مقدار متوسطی این دو عنصر در دل‌بیاب نمی‌باشد بر عدم پیوست پیدا می‌کند. از این نخستین دیگر است. ۵ نسبت در کانساردروم‌های Pb - Zn
مشابه نمودار Pb - Zn / (Zn+Pb) = 0.8 در جهان [۴] M.V.T در دو گروه ترسیم شده اند که نسبت روزی به سرب در پیشتر این کانسرب‌ها بالاتر از مقدار متوسط است و در جنوب مسیر یکی تها بخش معدنی مهم دیواست، نسبت کمتر از ۰.۸ است. کانسرب‌های انگلی تری در تهیه مشابهت زیادی با نمودارهای جهانی Zn/Zn+Pb Dارد.

نمودار روی - کادمیوم (شکل ۶)، ضرب انطباق پسیار بالایی ۹۳ درصد دو عنصر را نشان می‌دهد که به معنای وجود یکسان آنهاست. براساس مطالعات انجام شده، کاهش دما نسبت افزایش کادمیوم نسبت به روزی می‌شود و بالا بودن درصد روی M.V.T در این کانسرب‌ها می‌باشد. پسیاری در کلی مانند سرب و روی مهون‌ترین منابع اقتصادی تهیه کادمیوم در جهان است. نمودار سرب - طریقه (شکل ۷)، نسبت Zn - Cd مشابه نمودار Pb نسبت به Ag مشابه Zn - Cd موجب افزایش فروندی تا آنجا پیش می‌رود که بالاتر از دمای نقره به صورت سولفید در می‌آید، و ضرب انطباق دو عنصر نقره و سرب پایین می‌آید. اصولاً مقدار نقره در این کانسرب‌های پایین است، از این رو ضرب انطباق بالایی را نشان می‌دهد. نتیجه اینکه، این کانسرب‌ها در دمای پایینی تشکیل شده‌اند.
شکل ۶ نمودار سرب - کادمیوم در کانسارهای انجه‌ر.

$\begin{align*}
\text{ر} &= 0.93 \\
\text{X} &= 0.07 \\
\text{Y} &= 19.4
\end{align*}$

شکل ۷ نمودار سرب - نقره در کانسارهای انجه‌ر.

$\begin{align*}
\text{ر} &= 0.73 \\
\text{X} &= 34.7 \\
\text{Y} &= 6.4
\end{align*}$
شکل ۸ (الف) نمودار مثلثی \(\text{Cu-Pb-Zn}\) در کانسارهای انجره (ب) مقایسه با کانسارهای M.V.T در جهان [۵].

در نمودار مثلثی \(\text{Cu-Pb-Zn}\) (شکل ۸) تمرکز نقطه‌ها نزدیک به خط مینای \(\text{Pb-Zn}\) (شکل ۸) است. در شکل ۸ ب سه گروه از کانسارهای سرب و روی جهان آورده شده‌اند و نشان می‌دهد که مس در این سه گروه به خصوص از نوع دره می‌سیبی بسیار فقیر است. از مقایسه نمودارها می‌توان به شباهت بالایی بین کانسارهای سرب و روی انجره با نمودارهای جهانی بپردازد.

کلیه فسله‌های موجود در مقاطع این کانسارها نام گذاری و تعیین سن شده‌اند. مجموعه‌های میکروفسیلی توالی‌های رسوبی، میان کرتاسه زیرین بعنی آلیسین-آبیسین است.
نتیجه

ناحیه معدنی انجره، به‌خوبی از حوضه رسوی‌های نشانه‌هایی سرب و روی زون سنگ‌داد - سردرگاه است. این حوضه متعلق به توالی‌های رسوی‌های کرتاسه زیرین (آلبین - آسین) است که در نتیجه فازهای کوه‌زایی آلپی شکل گرفته است. کانسارهای انجره، به‌شیوه به کانسارهای سرب و روی جهان برکاندار از نوع دره می‌سی‌بین است. توالی‌های رسوی‌های همسان کرتاسه زیرین (آلبین - آسین) در این ناحیه از رخسارهای کم عمق پر انرژی، تا محيطه‌ای نسبتاً آرام تشکیل شده است. این کانسارها از نظر ریخت‌شناسی شامل دسته‌های هم‌شیبی با لایه‌بندی، و رگ‌های کاهن‌دار زمین ساخته است. کانسی‌های فلزی اصلی شامل اسفالت‌های غنی از کادمیوم، گالن کم نقره‌پی، و به مقدار کم کالکوتروپت است. کانسی‌های کادمیوم سرب و روی نیز به فراوانی مشاهده شده‌اند. باطله‌های کانسی‌های راکنانه کربناتی (کلسبت و کمتر دولومیت) و سیلیس تشکیل می‌دهند. بررسی مقاطع میکروسکوپی، ناشی چشم‌گیر فرایندی دیازنناتیکی در تکمیل این کانسارها را نشان می‌دهد. این مطالعات، نشان داد که بین ساخت و بافت کانسی‌های سنگ‌رسوی‌های ارتباطی وجود دارد. بافت‌های رسوبی مثل زنویتال و ساختارهای وزنی در مراحل اولیه تشکیل ماده معدنی و در مراحل تکمیل دیازنناتیکی ایجاد گردیده اند. این کانسارها از لحاظ عناصر کادمیوم و جیوه غنی و از نظر عناصر طلا و نقره قیف‌بردند.

مراجع


