Genesis of the Jalal Abad Iron Ore Deposit

Khosrowanjam, M. and Shahabpour, J.
Shahid Bahonar University, Kerman, Iran

Key Words: Jalal Abad, Iron ore deposit, geochemistry

Abstract: The Jalal Abad iron ore deposit is one of the seven most important iron ore deposits in the central Iran, with a probable ore reserve of 200.4 million tons of iron ore in which the average grades are estimated as 44.28% Fe, 0.83% S and 0.07% P. In the Jalal Abad deposit two types of orebodies are identified: the orebodies which are concordant with respect to the sedimentary most rocks (Jalal Abad I), and the orebodies which are discordant with respect to their carbonate host rocks (Jalal Abad II). In this deposit the primary ore minerals are magnetite and hematite. Hematite is also formed from the oxidation of magnetite. It is proposed that the deposit was formed in two stages as described below.

1) The principal orebodies were formed contemporaneous with the sedimentation, from the exhalites and precipitates associated with volcanic activity within an intracontinental sources. This part of the deposit is named Jalal Abad I.

2) After formation of the Jalal Abad I orebodies, due to emplacement of the igneous rocks within the ore zone, the meteoric and/or connate water contained in the Jalal Abad I: then iron was redeposited from the upwelling iron bearing solution as replacement orebodies within the carbonate rocks. In this manner Jalal Abad II orebodies were formed.
پیدایش کانسار آهن جلال آباد زرند

محمود خسروانجام و جمشید شهابی پور
دانشگاه شهید بهشتی کرمان، بخش زمین شناسی

چکیده: کانسار آهن جلال آباد زرند یکی از هفت کانسار مهم در ایران می‌باشد. میزان تهیه آن با عبارت متوسط ۶۲/۵/۶٪، و ۱۵/۰٪ گردو و ۱۱/۸٪ فسفر برآورد شده است. در این کانسار دو نوع توده مدفون قابل تشخیص و تشخیص است: توده‌هایی که با سنگهای رسوبی در برنزکنده هم‌شیب (جلال آباد I)، و توده‌هایی که با سنگهای آمکسی ناهم‌شیب قرار دارند (جلال آباد II). در این کانسار، کانسار اوپیه ماگنتیتی است و هم‌تیت به صورت ثانویه از اکسایش ماگنتیت ایجاد شده است. با توجه به غیرقیمت عبارت آهن در سپتیم، کانسار، زئوئیتری نیترات آهین و بافت و موادی که تشکیل‌کننده کانسار، چنه‌نیمی شسد که کانسار در ۲ مرحله جدایگانه به شرح زیر تشکیل شده است:

۱- بخش اصلی کانسار هم‌زمان با رسوب‌گذاری در منطقه و خروج شاره‌های تبخیری حاصل از فعالیت آنتفیشانه‌های موجود در کانسار دو راسته، و یا از منابع قارچ‌های موجود در منطقه تشکیل شده است. این بخش از کانسار، جلال آباد I نامگذاری شده است.

۲- پس از تشکیل کانسار آهن جلال‌آباد I، در تفریز توده‌های آهین در منطقه معدنی، آب‌های فورور با فسیلی موجود در جلال‌آباد I داغ و متحرک شده و پس از شستن آهن از جلال‌آباد I و صعود به بالا، آهن را درون سنگهای کربناتی به صورت جانشینی تهیه کرده است. این بخش از کانسار، جلال‌آباد II نامگذاری شد.

واژه‌های کلیدی: جلال‌آباد، کانسار آهن، زئوئیتری
مقدمه

کانسار آهن جلال آباد زرند در 12 کیلومتری شمال غربی شهر کرمان و 38 کیلومتری شمال غربی شهرستان زرند واقع است. کانسار در عرض جغرافیایی ۳۶° ۰۰ و طول جغرافیایی ۳۴° ۵۵ قرار دارد (شکل 1). ذخیره احتمالی کانسار جلال آباد I و II میلیون تن سنگ آهن به روش شیمیایی به صورت زیر تقسیم می‌شوند:[1]

الف) سنگ آهن پر عیار اکسیده کم گودگرد.
ب) سنگ آهن پر عیار مانتیتی گودگرد دار.
ج) سنگ آهن کم عیار مانتیتی سیلسیس دار.

در جدول 1 انواع سنگ معدن به تفکیک آوردید شده‌اند.[1]

زمین‌شناسی منطقه معدنی جلال آباد بیشتر به پیش از دوران پالئوژنیک و پالئوژنیک تحتانی مربوط می‌شود (شکل 1).

در منطقه کانسار، در افق های زیرین یک لاشه ماسه سنگ کوارتز فلدسپاتی و وجود دارد که در سرتاسر افق زیرین کانسار ادامه دارد (شکل 2). میزان آهن در محل برخوردار ماسه سنگ کوارتز فلدسپاتی با سنگ آهن ۱۲٪ است. سنگ آهن کم عیار به صورت لاشه ای به ضخامت کم تا متوسط و عموماً در بخش بالای سنگ آهن پر عیار و به طور متناوب با سنگهای سیلتی قرار گرفته است. توده‌های معدنی با سنگهای سیلتی همچنین متشابه و متناوب قرار گرفته (شکل 2) و کفادگر آهن در سنگهای سیلتی و ماسه سنگی بيش از مقدار آن در سنگهای مشابه است [2] (جدول 2). ماده معدنی محدود به بخش خاصی از ستون چینه سنگی این سنگ و عیار آهن تدريجاً تغییر می‌کند؛ بنابراین از بخش ماسه سنگ کوارتز فلدسپاتی کم عیار به بخش پر عیار و سپس به بخش کم عیار و به طرف بالاتر به سنگهای سیلتی کم عیار تنگاتان می‌شود. تکرار تناوب بخش کم عیار و پر عیار

<table>
<thead>
<tr>
<th>جدول 1</th>
<th>تقسیم بندی سنگ آهن در کانسار آهن جلال آباد I و II</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع سنگ آهن</td>
<td>درصد آهن</td>
</tr>
<tr>
<td>سنگ آهن مانتیتی پر عیار</td>
<td>1/36</td>
</tr>
<tr>
<td>سنگ آهن پر عیار اکسیده</td>
<td>0/17</td>
</tr>
<tr>
<td>سنگ آهن کم عیار</td>
<td>1/18</td>
</tr>
</tbody>
</table>

Downloaded from ijcm.ir at 7:52 +0430 on Wednesday June 30th 2021
شکل 1 نقشه زمین‌شناسی منطقه معدنی جلال آباد.
جدول ۲ مقایسه درصد متوسط آهن در سنگهای جلال آباد با درصد آهن در سنگ‌های مشابه

<table>
<thead>
<tr>
<th>شماره جدول بر اساس (۱۹۸۴)</th>
<th>سنگ آهن</th>
<th>درصد متوسط آهن در سنگهای جلال آباد</th>
<th>نوع سنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beus</td>
<td>۸۷/۸</td>
<td>۴/۵۵</td>
<td>سنگ آهن دولومیتی</td>
</tr>
<tr>
<td></td>
<td>۷/۵۰</td>
<td>۹/۶۳</td>
<td>دیباژ</td>
</tr>
<tr>
<td></td>
<td>۵</td>
<td>۲/۳۳</td>
<td>تالک و کلریت شیست</td>
</tr>
<tr>
<td></td>
<td>۵/۸۸</td>
<td>۲/۴۵</td>
<td>سنگهای سیلیتی</td>
</tr>
<tr>
<td></td>
<td>۲/۸۸</td>
<td>۲/۱۲</td>
<td>ماسه سنگ کوارتز فلدسپاتی</td>
</tr>
</tbody>
</table>

نشان دهنده فعّالیت و توقف فعالیت رسوب‌گذاری آهن در یک محيط رسوب‌گذاری در منطقه است (شکل ۲).

در برخی جنوب شرقی کانسار یک توده بازی همراه با تعدادی دایک وجود دارد که بعضی از آنها لیاوهای حاوی سنگ معدن را قطع کرده است. کانسار آهن جلال آباد I یکی از دارای شکل است و با سنگ‌های دیواری هم‌جمهور قرار گرفته است و در همه حال در زیر آن افق ماسه سنگ کوارتز فلدسپاتی حضور دارد (شکل ۳) ولی کانسار آهن جلال آباد II نامنظم است و نسبت به سنگهای کربناتی هم جوار ناهم‌جهشی قرار دارد.

کانی شناسی ماده معدنی

کانی اصلی سنگ آهن جلال آباد I و II ماکنتی است. ویل کانی‌های اولیه در کانسار جلال آباد II ماکنتی است. ویل کانی‌های اولیه در کانسار جلال آباد I ماکنتی و پتروپت تشکیل می‌دهند. هم‌الیاگی کانی ثانویه سنگ آهن در هر دو کانسار را تشکیل می‌دهد و در زون اکسایش متمرکز است و مقدار آن کمتر از ماکنتی است. مارپیچ، الیپتیت و لیموئیت از کانی‌های اکسید فری جلال آباد II هستند. کانی‌های سولفیدی جلال آباد I از مارکاسیت، کورالین، و بورتینیت از کانی‌های غیرفلزی تالک و کلریت در کانسار جلال آباد I به‌ویژه یافت می‌شوند و به مقدار کمتر کانی‌های کلسیت، دولومیت و کوارتز دیده می‌شوند. کانی‌های غیرفلزی موجود در جلال آباد II بیشتر شامل کلسیت و دولومیت است.
شکل 3- مقاطع طولی کانسار زرنده (گولونف و همساران، 1976).

"راهنما"

1- دریچه‌های مزد یا شک Disney 2- سنگ‌های با عیار بالایی 3- تشکیلات آدنین پرتویی 4- سنگ‌های با عیار زیر 5- گزاره 6- دوریت 7- سنگ‌های سنگ‌سنگی و ماسه سنگ‌سنگی 8- سنگ‌های ماسه سنگ‌سنگی 9- سنگ‌های سنگ‌سنگی و ماسه سنگ‌سنگی 10- سنگ‌های ماسه سنگ‌سنگی
زنویعی
روش کار
تعداد ۱۰ نمونه سنگ آهن از اعماق مختلف مغزه‌های حفاری (دالاس آباد I) و ۲ نمونه از
رخنه‌نبهای سنگ آهن در مسجد زمین (دالاس آباد II) برداشت و برای جداسازی
ماکنتیت و همانتیت از مواد باطله و از یکدیگر به آزمایشگاه سازمان زمین شناسی کرمان
ارسال گردید. پس از انجام مراحل خرد‌داشت، یکسان سازی، آمیزاب، سرند و دانه‌بندی
نمونه‌های آسیاب شده، با استفاده از دستگاه هيدروفسیلون و برومورفوم، دو کاتیو
ماکنتیت و همانتیت از مواد باطله جدا شدند.
برای جداسازی مکاتیت و همانتیت از یکدیگر از دستگاه مغناطیسی با روش تور
خشنده استفاده شد. با توجه به اینکه میکروسکوپ و ریزگذاری الکترونی دارای دقت
لازم برای انجام‌های گیری عنصر کمیاب در حدود p.p.m در کاه‌نی نیستند، لذا استفاده گیری
عناصر کمیاب در ماکنتیت و همانتیت موجود در کسان‌های آهن به روش مرطوب انجام
گرفت که در حضور کسان‌های جلال آباد یک نیز همین روش انجام‌های گیری برای عنصر
Cr، Co و Ni، Mn، V، Mo، Pb، Cu

زنویعی عنصر جنی در ماکنتیت و همانتیت کسان‌های جلال آباد I و II
جایگزینی عنصر جنی در کانی‌ها، تحت تأثیر عوامل متعددی است که گرما، فشار،
خواص فیزیکی عنصر، و محیط شیمیایی از جمله مهم‌ترین آنها هستند.
مقدار و نسبت‌های عنصر جنی موجود در ماکنتیت و همانتیت کسان‌های آهن جلال
آباد I و II با مقادیر و نسبت‌های عنصر جنی مربوط به بیش از ۹۰ کسان‌های آهن معروف
دنیا با تهیه‌ای مختلف که از گردشات [۲] استخراج شده بودند، با هم مقایسه
شدند (جدول ۳ و ۴). برای یک بردنه به موارد شاهد کسان‌های جلال آباد I و II
کسان‌های آهن، شاهد نمایندگانی که انتخاب شده و برای انتخاب خاص شاهد
دانست، ۴ امتیاز در صورتی که به دو مورد شاهد داشت، ۳ امتیاز، به تعادل موارد
شاهد به ۳ نوع کسان‌های ۲ امتیاز و به دو از ۳ نوع، یک امتیاز در نظر گرفته شد. از
مجموع امتیازات می‌توان گفت که از نظر مقدار عنصر جنی، کسان‌های آهن جلال آباد
پیشتر به کسان‌های نوع آتش‌شناختی - رسوبی (رسوبی - بیشتر) و کسان‌های آهن جلال
آباد I، به کسان‌های نوع جنایت‌زینی (متسووماتیک) شاهد دارند.
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Column A: Alphabet
- Column B: Numbers
- Column C: Symbols
- Columns D to H: Additional data
جدول ۴: مقادیر عناصر جزئی و نسبت آنها در کاسنار آهن جلالآباد II و موارد شباهت هر کدام با دیگر تیپ‌های کاسنار آهن در دنیا نمونه برداشت شده از محل برعی کاسنار آهن با آهنکهای دولومیتی در سطح بوده است.
پیش‌بینی سنجش آهن جلال‌آباد زرند

دیده‌های تجزیه شیمیایی نمونه‌های سنجش‌های سیلیسی در بذرک‌نده کانسار جلال‌آباد 1 با
SiO_2 + $\text{Al}_2\text{O}_3/\text{FeO} + \text{Fe}_2\text{O}_3$

برنده شده (شکل 4). همان‌طور که در شکل مذکور نشان

می‌دهد، افزایش عیار آهن سنجش به‌صورت نمودار دوتنایی

پس از عیار و سنجش معدن آهن تدریجی است. چنین روندی در طول ستون

چنین صنعتی حاصل از حضور آهن‌های بالا نیز قابل مشاهده است. این تغییرات را می‌توان

به تناوب افزایش مقدار آهن نسبت به رسوبات، ضمن رسوب‌گذاری در یک حوزه

روسوبی نسبت داد.

شکل 4: تغییرات مقدار آهن از سنجش‌های سیلیسی معمولی (ST) به سمت سنجش‌های سیلیسی کاندار

RM (هدرهای سیلیسی کم عیار)، PM (هدرهای سیلیسی کم عیار) و

MS (هدرهای سیلیسی کم عیار)
زئوئیتی توده‌های نفوذی

بافت کانسار

بافت کانسی ماگنیتی در نمونه‌های جلال آباد 1 بیشتر انتشار با تراکم متوسط تا زیاد است (شکل 7 تصویر نفت). در جلال آباد I عمل مارکینه‌سازی در زون اکسیده بیشتر در درون شکافها، اطراف دانه‌ها، و در انتهای رسید منطقه‌ای ماگنیتی انجام شده است (تصویر ج). بافت کانسی ماگنیتی در نمونه‌هایی که از محل برخورد سنگ آهن با سنگ آهک دولومیتی در سطح زمین برداشت شده است (جلال آباد II) بیشتر بهصورت جانشینی است (تصویرهای B و D).
شکل ۱ نمودار نسبت TiO₂ به K₂O (تربی ۱۹۸۷) که در آن گستره سنگهای آتش‌نشانی فرورانشی (A) و گستره سنگهای آتش‌نشانی کافتنی درون قاره‌ای (B) مشخص شده است. با توجه به نمودار، نمونه‌های توده‌های نفوذی جلال‌آباد در گستره کافتنی درون قاره‌ای قرار می‌گیرند.

مدل منشی

با توجه به شواهد حاصل از بررسی‌های چینه شناسی، شکل هندسی کانسار، روش‌های جبر و ماتریس‌های توده‌های آذرین، و با فاصله ماده معدنی در مورد نحوه تشکیل کانسار جلال‌آباد، را می‌توان به‌طوری زیر استدلال کرد:

۱) لاebraي بودن توده‌های آهن در جلال‌آباد، به‌میزانی که همه‌پیمان با لاebraي رسوی ماسه سنگی سیلیتی، توافت و تواف قرار گرفته‌اند، نشانگر تهیه‌شده‌اند لاebraي آهن و لاebraي رسوی و آتش‌نشانی در یک محدوده کم‌عمق درون قاره‌ای است.

۲) ترسیم سنگهای باری موجود در منطقه معدنی در گستره کافتنی درون قاره‌ای به‌صورت نمودار TiO₂/K₂O است. به‌اصورت منشی توده‌های جلال‌آباد، افزایش تدریجی عیار آهن از سنگهای سیلیتی معمولی موجود در منطقه معدنی به‌سنت سنگهای سیلیتی کم عیار و بر عیار و بالاخره سنگ معدن بر عیار، نشان‌گر افزایش تدریجی مقدار آهن ضمن رسوی‌گذاری در یک حوضه رسولی است.

تصویر ب: جانشینی کلسیت به وسیله بلورهای ماگنتیت. کانسار آهن جلال‌آباد، مقطع صیقلی، نور عادی، بزرگ‌نمایی ×50.

تصویر ج: تبدیل ماگنتیت به هماستیت در اراضی بدون سطح‌های اولیه ماگنتیت. کانسار‌های جلال‌آباد، نور عادی، بزرگ‌نمایی ×125.

تصویر د: جانشینی سنگ آهک به وسیله ماگنتیت و هماستیت. تصویر از نمونه‌های معدن‌های جلال‌آباد، سنگ آهک = C، ماگنتیت = M، هماستیت = H.
پیدایش کانسار آهن جلال آباد زرند

(4) حضور سنگهای آتشسفرانی آذرآوری در ستوان جنوبی شناسي منطقه معدنی جلال آباد، نشانگر فعالیت‌های آتشسفرانی در منطقه است.

(5) نتیجه‌گیری جانشینی در لایه‌های آهن‌دار جلال‌آباد، که بطور هم‌تاریخ با سنگهای دیواره‌ای قرار دارند و هم‌بندی بودن توده‌های معدنی با سنگهای رسوبی دیواره‌ای، امکان تشکیل کانسار آهن جلال‌آباد ۱ از طریق جانشینی را می‌کند.

(6) مقایسه نتایج حاصل از تجزیه شیمیایی ماکنیت و هم‌بندی جلال‌آباد ۲، با ماکنیت و هم‌بندی انواع مشهور کانسارهای آهن دیدا نشانگر آن‌ست که کانسار آهن جلال‌آباد ۱ با کانسارهای آتشسفرانی منصوب‌های بیشترین شتاب‌های را دارد.

(7) از نکات ۱ الی ۶ می‌توان به این رسمید که کانسار آهن جلال‌آباد ۱، در نتیجه خروج شاره‌های تبخیری ناشی از فعالیت آتشسفرانی موجود در کاشف درون قاره‌ای و نیز از منابع قاره‌ای موجود در منطقه معدنی تشکیل شده است. در مورد نحوه تشکیل کانسار آهن جلال‌آباد ۲، با توجه به مطالعات بافت سنگ معدن، زئوشیمی ماکنیت و هم‌بندی، و شکل هندسی کانسار، چنین استدلال می‌شود:

1. مطالعات بافت و ساخت در کانسار جلال‌آباد ۲، نشانگر آن‌ست که سنگ معدن به صورت جانشینی در درون سنگهای آهن تشکیل شده است.

2. مقایسه نتایج حاصل از تجزیه شیمیایی ماکنیت و هم‌بندی جلال‌آباد ۲، با ماکنیت و هم‌بندی انواع مشهور کانسارهای آهن دیدا، نشانگر منشی‌نشین جانشینی برای جلال‌آباد ۲ است.

(3) توده‌های معدنی در کانسار جلال‌آباد ۲، دارای شکلی نامتظم است و در خلاف جلال‌آباد ۱، نسبت به سنگهای در بر گیرنده‌های فرمی بود.

(4) از نکات ۱ الی ۳ نتیجه‌گیری می‌شود که کانسار جلال‌آباد ۲ در نتیجه جانشینی آهن در سنگهای آهن دوموئیسی حاصل شده است. با توجه به عدم وجود کانی‌های اسکلار در سنگهای آهن دوموئیسی می‌توان به این نتیجه رسید که احتمالاً در اثر جایگزینی توده‌های آذرآوری که بعد از تشکیل جلال‌آباد ۱ در منطقه معدنی روی داده‌است، آب‌های فرور و یا آب‌های فیزیکی موجود در جلال‌آباد ۲، داغ و محور شدیداند و پس از شستن آهن از درون سنگهای آهن‌دار و صعود به بالا آهن را در درون سنگهای آهن دوموئیسی به صورت جانشینی تنشین نموده‌اند.

