Crystal Structure and Synthesis of Cis - Bis -
{(Endo - 3 - diphenylphosphino - (1R) (+) Camphor)}
Dichloro Iridium(I)

Habibi, M. H. and Alavi, M.
Chemistry Department, University of Esfahan, Iran

Key Words: Crystal Structure, Synthesis of Iridium Complexes

Abstract: In this research endo-3-diphenylphosphino -(1R)-(+) camphor as a ligand was synthesised. 1.3 mmol of IrCl2(NCPh)2 was added to the solution of 2.7 mmol ligand in 15 ml dichloromethane, and after one hour it was evaporated at reduced pressure. By addition of methanol microcrystals of yellow complex of Iridium(I) with 78% yield was obtained. Crystal structure of the above complex are orthorhombic, space group P212121, with a = 380.3(2), b = 1785.1(3), c = 19.228(4) Å and z =4, R = 0.0453 for 4438 observed reflections. The structure shows that PPh2 groups are endo and phosphines in cis position.
پژوهشی

ساختار بلور و سنترز کمپلکس سیس-بیس {اینندو-3-دی فنل فسفینو- (IR)-(+)-کامفور} دی کلرو ایریدیوم (I)

محمد حسین حیبی، مهدی علیوی

گروه شیمی دانشگاه اصفهان

چکیده: در این کار پژوهشی نخست لیگاند اندو-3-دی فنل فسفینو-(IR)-(+)-کامفور a سنترز گردید. سپس با افزودن 1/3 میلی مول [IrCl₃(NCPh)₂] به محلول حاوی 1/7 میلی مول اندو-فسفین 1a در 15 دقیقه لیتری دی کلرومتان به آن، محلول پس از یک ساعت در فشار کم تبخر شد. پس از افزودن مسئول ریزرکستنال‌های زرد رنگ کمپلکس سیس-بیس اندو-3-دی فنل فسفینو-(IR)-(+)-کامفور b از دست آمد. ساختار بلوری کمپلکس b راستگوشه، گروه فضایی (4R, 2S, 2')P₂, [2, 2, 2]- بازده 75/7/7 به دست آمد. ساختار بلوری کمپلکس سیس-بیس اندو (endo) و PPh₂ (cis) تعبیه گردید. در ساختار کمپلکس فضای گروه‌های اندو و PPh₂ نیمه همسان a پژوهشی مقدار می‌گیرد.

واژه‌های کلیدی: ساختار بلور، سنترز کمپلکس ایریدیوم

مقدمه:

تکیه (IR)-(+)-کامفور (بیوران 2-اون) دی مسیل هیدرات آرین با بوتیل لیتیم و متناوب PPhCl را با آراشی Z ایجاد می‌کند [8-1]. مشتقات گروه 6 فلزات و استاسکنترن که در آن PPh₂ به صورت exo باقی می‌ماند، اما گروه E می‌تواند آراشی C=NNMe به حلقه کلیت ۵ تایی (حلقه کلیت ۵ تایی) داشته باشد. کمپلکس‌های
دانه‌ها به روش کمپلکس 2، C_{3}H_{10}N_{2}PIr.2CHCl_{2}C_{2}H_{5}CHCl_{2}، را رسیگن‌ششی نشان می‌دهد. در گردوی فلزاتی 11، P_{2}12_{1}2_{1}، a = 1168/5، b = 1723/5، c = 1326 (20) (5) (pm) و c = 3/2، Z = 4، V = 1/5 تلفن (nm)، که عناوین گروه‌های فلزی به غیرین ساخت و با تفاوت SHELX 149/5 (pm) است. آزمایش‌های انجام شده

1- تهیه کمپلکس [IrCl_{3}(PPh_{3}C_{1}, H_{15}N NMe)]

محلولی از exo-فسپین 1/3 میلی مول (15 میلی لیتر) دی کلرومیت را به یک محلول حاوی 2/3 میلی مول [IrCl_{3}(NCPh)_3] محلول زرد رنگی را به محلول 2/3 میلی لیتر اتیلن به محلول زرد رنگ، محلول 2/3 درصد صورت بلورها در نتیجه 95/0% بود.

2- تهیه کمپلکس [IrBr_{3}(PPh_{3}C_{1}, H_{15}N NMe)]

یک محلول از کمپلکس دی کلرو (2/3) 26 میلی مول) با مقدار اضافی لیتیم برومبید (2/7 میلی مول) در 12 میلی لیتر استون به مدت 14 ساعت نگهداری شد. پس از تبخیر آن تاد خشک شدند، محلول با استفاده از حلول دی کلرومیت استخراج گردید. سپس با استفاده از حلول دی کلرومیت-استون محلول به صورت بلورها زرد 25 در نهایت.

3- تحلیل کمپلکس با استفاده از پراش پرت-17

همه‌اندازه‌گیری‌های بلورشناوری در دمای 295K و با استفاده از براش سنج Mo-Kα-X و با طول موج 60\(\mu m\) و با اننماج Nicolet-P3/F شدند.
بحث و برداشت

واکنش فسفر انیمین Z-exo با [IrCl₃(NCPh)₃] موجب کمپلکس [IrCl₃(PPh₃C₁H₁₅NNMe₂)] رد شد. کمپلکس با استفاده از IR (جدول 1)، نوار جذبی (C=O) در 1700 cm⁻¹ و نوار جذبی (Ir=Cl) در 220 و 2175 cm⁻¹ تعلق دارد.

ساختمان بلور کمپلکس [IrCl₃(PPh₃C₁H₁₅NNMe₂)]

ساختمان بلور این کمپلکس در شکل 1 و طول پیوند و زاویه پیوندان در جدول 2 و مختصات اتم ها در جدول 3 نشان داده شده است. ساختمان نشان می‌دهد که کرومها exo و اپییدم به نیتروژن‌های NMe₂ در موقعیت PPh₃ هم آراییده شده‌اند. آراشی نیم‌رو Z تغییر شد. آراشی هندسی در اطراف Ir به صورت Z C=N حول پیوند به صورت مربع مسطح به دست آمد.
جدول 1 - داده‌های NMR و IR

<table>
<thead>
<tr>
<th>جدول 1</th>
<th>داده‌های NMR و IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν(Ir-Cl)</td>
<td>ν(C=N)</td>
</tr>
<tr>
<td>—</td>
<td>1600</td>
</tr>
<tr>
<td>—</td>
<td>1600</td>
</tr>
<tr>
<td>330</td>
<td>1680</td>
</tr>
<tr>
<td>—</td>
<td>1680</td>
</tr>
<tr>
<td>—</td>
<td>1680</td>
</tr>
<tr>
<td>340</td>
<td>1670</td>
</tr>
<tr>
<td>—</td>
<td>1670</td>
</tr>
<tr>
<td>340</td>
<td>1670</td>
</tr>
<tr>
<td>—</td>
<td>1650</td>
</tr>
<tr>
<td>330</td>
<td>1690</td>
</tr>
<tr>
<td>330</td>
<td>1690</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>330</td>
<td>1620</td>
</tr>
</tbody>
</table>

δ= ppm $/^{185}H_3PO_4$ (1) نسبت به 3 همکت

CDCl$_3$ (2) جهت νI (3) بر حسب 1J(IrP) (3) بر حسب Hz ν (4) بر حسب cm$^{-1}$ (4) بسیاری بر حسب ν (4) بر حسب Hz ν (4) بر حسب cm$^{-1}$ (4)
جدول ۲ - داده‌های پروتون NMR

<table>
<thead>
<tr>
<th>NMe₃</th>
<th>متیل‌های کامفور</th>
<th>ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/89(6H, s)</td>
<td>0/V3(s), 1/05(s), 1/0V(s)</td>
<td>1a</td>
</tr>
<tr>
<td>1/81(6H, s)</td>
<td>0/V3(s), 0/911(s), 1/0V(s)</td>
<td>1b</td>
</tr>
<tr>
<td>3/01(s), 3/55(s)</td>
<td>0/24(s), 0/V3(s), 0/12(s)</td>
<td>1a</td>
</tr>
<tr>
<td>3/0V(s), 3/76(s)</td>
<td>0/24(s), 0/V4(s), 0/53(s)</td>
<td>1b</td>
</tr>
<tr>
<td>3/09(s), 3/83(s)</td>
<td>0/23(s), 0/V4(s), 0/12(s)</td>
<td>1c</td>
</tr>
<tr>
<td>³/12(s)</td>
<td>0/11(s), 0/V4(s), 0/11(s)</td>
<td>1d</td>
</tr>
<tr>
<td>³/23(s)</td>
<td>0/1V(s), 0/V4(s), 0/90(s)</td>
<td>1e</td>
</tr>
<tr>
<td>³/94(s)</td>
<td>0/03(s), 0/V4(s), 0/94(s)</td>
<td>1f</td>
</tr>
<tr>
<td>³/32(s)</td>
<td>0/09(s), 0/44(s), 0/99(s)</td>
<td>1g</td>
</tr>
<tr>
<td>³/33(s)</td>
<td>0/VQ(s), 0/92(s), 1/00(s)</td>
<td>1a</td>
</tr>
<tr>
<td>³/12(s)</td>
<td>0/3V(s), 0/V6(s), 0/95(s)</td>
<td>1b</td>
</tr>
<tr>
<td>³/69(s)</td>
<td>0/3V(s), 0/V6(s), 1/11(s)</td>
<td>1c</td>
</tr>
<tr>
<td>³/94(s)</td>
<td>0/12(s), 0/V4(s), 1/12(s)</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>PPh₃</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>1a</td>
<td>H</td>
<td>PPh₃</td>
</tr>
<tr>
<td>1b</td>
<td>Br</td>
<td>Br</td>
</tr>
<tr>
<td>1c</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>1d</td>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>1e</td>
<td>Br</td>
<td>Br</td>
</tr>
<tr>
<td>1f</td>
<td>Cl</td>
<td>ONO₃</td>
</tr>
<tr>
<td>1g</td>
<td>Me</td>
<td>Me</td>
</tr>
<tr>
<td>1a</td>
<td>Pt</td>
<td>Cl</td>
</tr>
<tr>
<td>1b</td>
<td>Ir</td>
<td>Cl</td>
</tr>
<tr>
<td>1c</td>
<td>Ir</td>
<td>Me</td>
</tr>
</tbody>
</table>
جدول ۳ - مختصات اتم (۱۰۴) ترکیب ۲a

<table>
<thead>
<tr>
<th>اتم</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir</td>
<td>-۱۶۰۷</td>
<td>-۰۲۴۰۸</td>
<td>-۸۹۷۰۳</td>
</tr>
<tr>
<td>P</td>
<td>-۱۰۰۲۴</td>
<td>-۱۸۰۹۲</td>
<td>-۱۰۸۷۰</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>-۲۹۸۲۳</td>
<td>-۰۰۷۸۲</td>
<td>-۲۱۱۱۸</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>-۲۱۰۷۲</td>
<td>-۰۱۰۷۸</td>
<td>-۲۰۸۹۲</td>
</tr>
<tr>
<td>C(1)</td>
<td>-۲۴۱۸۲</td>
<td>-۰۲۱۲۷</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(2)</td>
<td>-۲۰۰۹۲</td>
<td>-۱۸۰۷۸</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(3)</td>
<td>-۲۱۰۷۲</td>
<td>-۱۸۰۷۸</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(4)</td>
<td>-۲۰۰۹۲</td>
<td>-۱۸۰۷۸</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(5)</td>
<td>-۲۴۱۸۲</td>
<td>-۱۸۰۷۸</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(6)</td>
<td>-۲۰۰۹۲</td>
<td>-۱۸۰۷۸</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(7)</td>
<td>-۲۴۱۸۲</td>
<td>-۱۸۰۷۸</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(8)</td>
<td>-۲۰۰۹۲</td>
<td>-۱۸۰۷۸</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(9)</td>
<td>-۲۴۱۸۲</td>
<td>-۱۸۰۷۸</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(10)</td>
<td>-۲۰۰۹۲</td>
<td>-۱۸۰۷۸</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>N(1)</td>
<td>-۱۲۹۸۲</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>N(2)</td>
<td>-۱۲۹۸۲</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(11)</td>
<td>-۲۹۴۸۲</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(12)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(13)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(14)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(15)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(16)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(17)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(18)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(19)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(20)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(21)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(22)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(23)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
<tr>
<td>C(24)</td>
<td>-۴۰۸۲۷</td>
<td>-۲۴۱۸۲</td>
<td>-۲۴۱۸۲</td>
</tr>
</tbody>
</table>
جدول ۲ - طول بیوندها (pm) و زاویای بیوندی برای ترکیب ۲a با مقادیر انحراف استاندارد تخمینی (e.s.d.s) در داخل پراتلز.

<table>
<thead>
<tr>
<th></th>
<th>Cl(1)-Ir</th>
<th>N(2)-Ir</th>
<th>229/7 (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Ir</td>
<td>220/5 (3)</td>
<td>N(2)-Ir</td>
<td>210/7 (5)</td>
</tr>
<tr>
<td>Cl(2)-Ir</td>
<td>239/6 (4)</td>
<td>C(13)-P</td>
<td>179/8 (5)</td>
</tr>
<tr>
<td>C(3)-P</td>
<td>183/6 (8)</td>
<td>C(2)-C(1)</td>
<td>143/9 (10)</td>
</tr>
<tr>
<td>C(10)-P</td>
<td>181/2 (3)</td>
<td>C(5)-C(1)</td>
<td>144/1 (11)</td>
</tr>
<tr>
<td>C(6)-C(1)</td>
<td>156/9 (11)</td>
<td>C(3)-C(2)</td>
<td>151/9 (1)</td>
</tr>
<tr>
<td>N(1)-C(2)</td>
<td>127/9 (9)</td>
<td>C(4)-C(3)</td>
<td>105/9 (9)</td>
</tr>
<tr>
<td>C(5)-C(4)</td>
<td>154/5 (10)</td>
<td>C(5)-C(4)</td>
<td>108/4 (9)</td>
</tr>
<tr>
<td>C(6)-C(5)</td>
<td>154/8 (11)</td>
<td>C(5)-C(5)</td>
<td>154/0 (1)</td>
</tr>
<tr>
<td>C(9)-C(6)</td>
<td>150/5 (11)</td>
<td>N(2)-N(1)</td>
<td>147/9 (8)</td>
</tr>
<tr>
<td>C(11)-N(12)</td>
<td>150/1 (10)</td>
<td>C(12)-C(2)</td>
<td>149/0 (1)</td>
</tr>
<tr>
<td>Cl(1)-Ir-P</td>
<td>85/3 (2)</td>
<td>Cl(3)-Ir-P</td>
<td>154/2 (4)</td>
</tr>
<tr>
<td>Cl(2)-Ir-Cl(1)</td>
<td>89/6 (2)</td>
<td>N(2)-Ir-P</td>
<td>96/1 (2)</td>
</tr>
<tr>
<td>N(2)-Ir-Cl(1)</td>
<td>172/1 (2)</td>
<td>N(2)-Ir-Cl(2)</td>
<td>91/0 (2)</td>
</tr>
<tr>
<td>C(3)-P-Ir</td>
<td>108/5 (3)</td>
<td>C(13)-P-Ir</td>
<td>117/8 (3)</td>
</tr>
<tr>
<td>C(13)-P-C(3)</td>
<td>110/8 (3)</td>
<td>C(13)-P-Ir</td>
<td>108/2 (3)</td>
</tr>
<tr>
<td>C(13)-P-C(3)</td>
<td>103/5 (3)</td>
<td>C(19)-P-C(13)</td>
<td>109/8 (3)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(2)</td>
<td>104/5 (3)</td>
<td>C(5)-C(1)-C(2)</td>
<td>101/5 (8)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(6)</td>
<td>104/5 (3)</td>
<td>C(5)-C(1)-C(6)</td>
<td>119/7 (8)</td>
</tr>
<tr>
<td>C(10)-C(1)-C(6)</td>
<td>112/8 (8)</td>
<td>N(1)-C(2)-C(1)</td>
<td>120/2 (8)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>107/2 (8)</td>
<td>C(3)-C(2)-C(1)</td>
<td>117/3 (8)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(3)</td>
<td>103/9 (8)</td>
<td>C(3)-C(4)-C(3)</td>
<td>103/9 (8)</td>
</tr>
</tbody>
</table>

5. ORTEP C.K., Johnson, ORTEP II, Report ORNL-3794 (1971) Oak Ridge National Laboratory, TN.

