Reaction of Nitric Oxide with Cu(111) Single Crystal

Zeini Isfahani, A.
Department of Chemistry, Isfahan University, Isfahan, IRAN.

Roberts, M. W.
School of Chemistry and Applied Chemistry, Cardiff University, Cardiff, England.

Key Words: Adsorption of Nitric Oxide, X-ray photoelectron spectroscopy (XPS), High resolution electron energy loss spectroscopy.

Abstract: The adsorption of nitric oxide on a Cu(111) surface has been studied using X-ray photoelectron (XPS) and high resolution electron energy loss spectroscopies (HREEL) in the temperature range 80-410 K. Nitric oxide had no interaction with surface at room temperature, while it was adsorbed molecularly on unannealed Cu surface and then dissociated to nitrogen and oxygen atoms. Exposure of surface to NO at 80K showed molecular adsorption of NO and N2O. The exposure dependent HREEL spectra of NO at the clean Cu surface at 80K and for subsequent warming up to room temperature showed loss peaks at 344 cm\(^{-1}\), 680 cm\(^{-1}\), 1525 cm\(^{-1}\), 1830 cm\(^{-1}\), and 2140 cm\(^{-1}\). The vibrational mode at 1830 cm\(^{-1}\) was assigned to N-O stretch of NO bonded in a top position, the 1525 cm\(^{-1}\) loss peak was attributed to the N-O stretch of NO bonded in two fold bridge sites, the loss peak at 680 cm\(^{-1}\) was assigned to a bending mode of NO\(_{\text{ads}}\) the loss peak at 2140 cm\(^{-1}\) was due to (N-N) stretching mode of N\(_2\)O formed. The intense feature at 344 cm\(^{-1}\) was identified as the Cu-NO stretching mode.
واکنش اکسید ازت با تک بلور مس (111)

اصغر زینی اصفهانی

اصفهان. دانشگاه اصفهان. بخش شیمی. صندوق پستی 81774

م. و. ر. تر

انگلستان. کاردیف. دانشگاه ولز. دانشکده شیمی و شیمی کاربردی

چکیده: جکونگی جذب اکسید ازت به وسیله سطح (111) یک تک بلور مس با استفاده از روش طیف‌نمایی اکسید نزدیک (XPS) و طیف‌نمایی با قدرت تفکیک بالا از گازهای انرژی الکترون (HREELS) در دمای دماهای از 80 تا 140K مورد مطالعه قرار گرفته است. اکسید ازت با سطح مس هموار در دمای بالای 80K نیاز ندارد، در حالی که سطح مس ناهموار آن را به صورت مولکولی جذب می‌کند و سپس به اتم‌های نیتریژن و اکسیژن در می‌آید. ونتی سطح N₂O و NO مس در دمای 80K در معرض اکسید ازت فرآیند گیرد. گونه‌های 840 در معرض NO از گازهای انرژی الکترون نشان می‌دهد که اگر سطح تخم مس در دمای 80K گیرد، و می‌تواند با جذب مس در دمای اتاق گرم شود، قله‌های کاهشی در 434 و 336 cm⁻¹ و 1118 و 1120 cm⁻¹ مشاهده می‌شود. عدد موجی در 412 cm⁻¹ با مقدار 476 cm⁻¹ عضد موجی در 484 cm⁻¹ ارتباطی با گاهش 9-کششی Cu-NO و عدد موجی در 1525 cm⁻¹ عضد موجی در NO(ads) ارتباطی با سطح NO مشاهده می‌شود. عدد موجی در 184 cm⁻¹ با مقدار 214 cm⁻¹ مس به صورت پل دوتایی Cu-Cu ارتباطی با گاهش 9-کششی NO با نسبت مس به سطح مس ایستاده و عدد موجی در 183 cm⁻¹ با مقدار 214 cm⁻¹ مس به صورت پل دوتایی Cu-Cu ارتباطی با نسبت مس به سطح مس ایستاده و عدد موجی در 183 cm⁻¹ مشاهده می‌شود.

واژه‌های کلیدی: جذب اکسید نیتریک، روش طیف‌نمایی اکسید نیتریک، پرتو الکترون، طیف‌نمایی با قدرت تفکیک بالا از گازهای انرژی الکترون.
با استفاده از اطلاعات ساختاری از ماهیت الکترون و توان اطلاعات ساختاری از ماهیت الکترون به تعدادی مولکول موجود بر سطح را تعیین کرد [10] و با به کار گیری قاعده گروه مولکولی سطحی می‌توان با استفاده از شکل‌گیری مولکول‌ها در سطح نیز ریختنی داد [13]. مطالعات زیادی در مورد یافته‌های اکسید از با سطح تک بیلزورهای مختلف صورت گرفته و جذب آن به صورت تفکیکی و مولکولی گزارش شده است. مطالعات جذب اکسید از با سطح سطح (111) [6] Pt (111) Ag و Pd (111) [4] که گزارش شده است. در دمای بالا در صورت مولکولی و در دمای بالا [V] Ni (111) [9] ZnK 0.5 و [10] Al نیز گزارش شده است. در این بررسی از هر دو روش دقت HREELS و XPS جذب سطحی اکسید از بوسیله سطح هموار و ناهموار مس استفاده شده است.

آشنایی با وسایل و روش‌کار

dستگاه‌های که در این بررسی به کار برده شدند طیف‌نماهای فوتوالکترون پرتوایکس و ارتعاشی بوده‌اند که با پرینت الکترون‌ها با انرژی‌های بالین نیز تلقیح شده‌اند [11 و 12].

بلور مس قبل از قرار گرفتن در دستگاه به طور مکانیکی با خمیر مایع از قطر 12μm تا 25μm سیبی صدای شد. تریم کردن سطح مس با به‌لامین متوالی آن با یوز آرگون (CV) 5 (20μAcm -2 , 1CV)
در دمای اتاق و ترکم کردن آن تا 400°K تا آنجا که هیچگونه ناخالصی سطحی از جمله کربن و اکسیژن مشاهده نگردید ادامه می‌یافت. درجه خلوص NO مورد استفاده 0.99/99% بوده است که برای خالصتر شدن با پمپ کردن بی‌در پی ازت ما ع آن را منجمد کرده‌م. درجه خلوص تمام گازهای به کار برده شده به وسیله طیف‌سنج جریان Multiquad quadrupole (Ledamass Ltd.) پررسی شدند.

بحث و برداشت

جذب اکسیژن از تپه سطح تک بلور مس در دمای اتاق

شكل 1 نواحی طیفی (O(1s) و N(1s) را هنگامی که سطح هموار مس در دمای اتاق در معرض اکسیژن ازت قرار می‌گیرد نشان می‌دهد. از طرف دیگر دردست که، اکسیژن ازت در دمای اتاق حتی هنگامی که سطح مس در معرض 10 Torr لانگ می‌تواند اکسیژن ازت قرار می‌گیرد هیچگونه جذبی صورت نمی‌گیرد. این مشاهده ما را بر آن داشت تا جذب اکسیژن ازت را به وسیله سطح مس ناهموارا مورد مطالعه قرار دهیم.

O(1s) N(1s)

\[
\begin{align*}
\text{(a)} & \quad \text{(b)} \\
\text{(c)} & \quad \text{(d)}
\end{align*}
\]

انرژی پیوندی (eV)

شکل 1 - نواحی طیفی (O(1s) و N(1s) هنگامی که سطح مس هموار در دمای 350°K (b) و 28°L (a) اتماق در معرض اکسیژن ازت قرار می‌گیرد.
شکل 2- نواحی طیفی O_{18} و N_{18} هنگامی که سطح مس تاهموار در دمای $L_{1/4}$ گرم، به منظور اکسید از قرار می‌گیرد. (a) سطح تمیز، (b) $L_{1/4}$ گرم (c) L_{2} گرم.

دهیم و به یاد آوریم آیا یک سطح تاهموار مس به جذب اکسید از دمای L_{2} سطح مس را به $L_{1/4}$ کاهش می‌دهد؟

شکل 2 نواحی طیفی O_{18} و N_{18} را برای آزمایش مشابه شکل 1 بر روی یک سطح تاهموار مس نشان می‌دهد. در این آزمایش سطح مس را به مدت 20 دقیقه در دمای اتاق با گاز اکسیژن به دمای کوبیم و سپس بدون هموار کردن سطح آن را در با اکسید از دمای $L_{1/4}$ گرم داده و هنگامی که سطح مس با L_{2} گرم کار گرفت در ناحیه طیفی O_{18} یک قله مشخص با اثر اکسیژن N_{18} مشاهده شدند. این قله کاملاً مشخص بودند و به اتمهای اکسیژن و از جذب شده به صورت شیمیایی نسبت داده می‌شدند. [17 و 18] تخمین پوشش سطحی اتمهای جذب شده نشان داد که نسبت قله‌های
ناتیج 1: ازت نه اکسید ازت بطور سطح ناهموار مس نشان می‌دهد که در این اتاق NO نمی‌تواند به‌صورت N2O یا 2 NO جذب شود ولی به‌صورت N2O به‌وسیله سطح جذب شده و سپس به اتم‌های ازت و اکسید تیتانیک در این فرآیند توانسته سطح ناهموار مس درای اتم‌های سطحی با عدد هماهنگ پایین بوده، که محل‌های فعال جذب به‌وسیله سطح را به وجود می‌آورد.

جذب اکسید ازت به‌وسیله سطح تک بلور مس در دمای 80K

نواحی طبیعی (N1s) و (O1s) به‌دست آمده از تیف سنگی فتوکاترون پرتون X نگهداری که سطح تمیز مس در دمای 80K در تیم را نشان می‌دهد. نگهداری که سطح مس در اتاق 1L اکسید ازت قرار داده شد، بکری طیف بهینه (18) O1s شمای دوم حلقه با انرژی جای پیوندی 531/5 و 536/5 ژورین شدند. طیف (N1s) هم‌خوان آن نزدیک به‌صورت یک طیف بهینه دو قله با انرژی پیوندی 536/5 و 531/5 ژورین شدند. قله‌های (O1s) با انرژی‌های پیوندی 400 و 240 آن‌ها قله‌ها ناشی از بودن NO به‌صورت مولکولی و نشان داده می‌شوند که با اطلاعات موجود در مشابه موافقت دارد [8] و قله‌های (N1s) با انرژی‌های پیوندی 536/5 و 531/5 ژورین را به‌صورت N2O تشکیل شده از مولکول NO می‌توان نسبت داد. گرم کردن لایه جذب شده تا 210K منجر به ظهور یک قله در ناحیه طبیعی (18) O1s با انرژی پیوندی 539/5 ژورین که این قله به اکسید جذب شده به‌وسیله سطحی به‌طور کمی اثر در دمای افتد آوریت بر سطح مشاهده نمی‌شود.
برای اکسید ازت با تک بلور مس (111)

شکل 3- نواحی طیفی گرم (18 O و N(1s) هنگامی که سطح مس در دمای 800 K معرض اکسید ازت قرار می‌گیرد و سپس لایه جذب شده تا دمای آتاق گرم می‌شود: (a) موضع اکسید ازت قرار می‌گیرد و سپس لایه جذب شده تا دمای آتاق گرم می‌شود: (a) K (b) 110 K (c) 210 K

شکل 4- طیف‌های با قدرت تفکیک بالا از کاهش انرژی الکترون را برای هنگامی که سطح تبیز مس در دمای 800 K در معرض مقادیر مختلف NO قرار می‌گیرد نشان می‌دهد. پس از آن که سطح مس در معرض 6L اکسید ازت قرار گرفت، قله‌های کاهشی در 210cm⁻¹، 1830cm⁻¹، 1545cm⁻¹، 620cm⁻¹، 344cm⁻¹ مشاهده شدند. هنگامی که سطح مس در معرض مقادیر بیشتر NO قرار گرفت، هیچ جابجاً در موقعیت قله‌های ارتقا‌زای مشاهده نشد.
این طیف‌ها نشان می‌دهند، هنگامی که سطح مس در دماي $800\,\text{K}$ در معرض NO قرار می‌گیرد، NO به صورت مولکولی جذب می‌شود. زیرا، نوارهای ارتعاشی مربوط به NO مشاهده نمی‌شوند. نوارهای سورد انتظار برای جذب NO به صورت مولکولی، عبارت است از مُدهای کششی و خمیده مولکول NO جذب شده و مُد کششی مولکول NO با ماده جاذب در مقایسه با مراجع موجود[19 و 20] عدد
واکنش اکسید ازت با نیک بلو در (111)

موجبی 1830 cm\(^{-1}\) به مقدار ارتعاشی کنشی NO جذب شده در رحاالی که نسبت به مسطح O

\[\text{Cu} \to O \]

\[\text{Cu} \to \text{NO} \]

\[\text{Cu} \to \text{NO} \]

مس در وضعیت قائم Cu قرار می‌گیرد، قلله کاهشی ناحیه 1525 cm\(^{-1}\) به مقدار ارتعاهی \(N \to O \)

کنشی NO در حالتی که با مسطح مس به صورت پل دوتانی Cu-Cu قرار می‌گیرد، قلله Cu-NO

کاهش شدید ناحیه 344 cm\(^{-1}\) به مقدار ارتعاهی \(N \to O \)

کاهشی دیگر در Cu به مقدار 580 cm\(^{-1}\) نسبت داده می‌شوند. به‌عنوان قاعده گرین لیست مولکول NO که به صورت خصیص با سطح بیوند دارد نبایستی دارای مقدار خمیده باشد، ولی حضور مقدار خمیده در 880 cm\(^{-1}\) پیشنهاد می‌کند که مولکول خمیده است. سو میکروانالیز [21] این مقدار را به مقدار خمیده مولکول خمیده در وضعیت N\(_2\)O اشاره می‌کند. اطلاعات حاصل از XPS HREELS داده‌های را در مورد NO-NO تشکیل شده از طریق تهیکی جرثی NO یا از طریق برهم‌کنش NO-NO تأیید می‌کند. نشان دهنده خانه انتزاع الکترون را هنگامی که مسطح مس در دمای 85 K در قرار گرفته و سپس تا دمای اتاق گرم شده است را نشان می‌دهد. در دمای NO معرض 110 K 110 cm\(^{-1}\) به‌طور کامل تابی شدن. در دمای 10 K 210 cm\(^{-1}\) آتش‌گرد نشده که این قله به مقدار کاهشی در حالت قائم نسبت داده می‌شود [22 و 23 و 24] و در دمای اتاق هیچ قله نشان می‌شود. مقدار NO در حالت قائم نسبت داده می‌شود [22 و 23 و 24] و در دمای اتاق هیچ قله نشان می‌شود. حضور قله (1s) با انرژی پیوندی (531/537 ev) (شکل 3) و قله (5-1) 362 cm\(^{-1}\) در دمای K 210 مربوط به بیداده قله کاهشی شدید در 1 cm\(^{-1}\) جذب آب موجود در دستگاه است. حضور آب به سئولی چگونگی بیداده قله‌ در ناحیه طیفی 531/537 ev در دمای K 210 را پاسخ می‌دهد. پیشنهاد می‌آید است که قله 5-1 به هر دوگونه NO مولکولی و هیدروکسیل مربوط است. همچنین، NO مولکولی در دمای K 21 و وجود ندارد (شکل 5-b).
تشکر و قدیمانی
از وزارت فرهنگ و آموزش عالی و دانشگاه اصفهان به خاطر حمایت‌های مالی تقدیر و
سیاست‌گذاری می‌شود.
20. Herzberg, G. (1945) Molecular Spectra and Molecular Structure II

