Structure Studies of YBa$_2$Cu$_3$O$_{7-\delta}$/Ag by XRD and SEM

Zargar Shoushtari, M. and Amini Ghanavati, S.
Faculty of Science, Department of Physics
University of Shahid Chamran (Ahwaz)

Key Words: YBa$_2$Cu$_3$O$_{7-\delta}$ Superconductor, Silver, XRD and SEM

Abstract: The YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO) superconductor ceramic has low critical current density (J_c) because of weak links between its grains. There have been a lot of efforts to increase J_c. One of the methods to increase J_c is to dope YBCO with other materials such as silver (Ag). In this paper, the effect of adding silver to YBCO with the weight ratio of 0%, 10%, 15%, 20%, and 30% on its microstructure have been investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) diagrams of samples have been obtained and studied. The study of XRD patterns shows that Ag is appears as a separate phase in the samples and the position of YBCO peaks do not considerable changes. The study of SEM of samples reveals that the Ag added to YBCO does not present in its microstructure and does not change the lattice constants of YBCO by considerable amount, and also the Ag grains remain among YBCO grains and provide the better intergranular contact. The percentage of silver for optimizing the physical properties of YBCO superconductors is almost 20.
بررسی ساختار بالشی YBaCu₄O₇−x/Ag

مرتضی زرگر شوشتری و سعید امینی قنواتی
گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران، اهواز

چکیده: ابررسانای سرامیکی YBaCu₄O₇−x (ایکو) به دلیل اتصال‌های J₀ (یو) کم است. برای افزایش تحکیم بسیاری صورت گرفته است. یکی از روش‌های افزایش آن ال‌ای‌سی‌ای ایکو به موارد دیگر از جمله ترکیب است. در این مقاله آثار افزایش ترکیب بر نسبت‌های وزنی 10/15 و 20/30 درصد به ایکو برزیسختار آن بررسی شده است. مطالعه الگوهای پراش برتو X نمونه‌ها، قله‌های ترکیب را در فازی چدگانه نشان می‌دهد و موقعیت قله‌های ایکو تغییر قابل ملاحظه‌ای نشان می‌دهد. همچنین تصویب میکروسکوپ الکترونی روبشی نشان می‌دهد که دانه‌های ایکو فازی ترکیب در میان دانه‌های ایکو قرار می‌گیرند. از نتایج به دست آمده چندین انتخاب می‌شود که می‌تواند ترکیب در برزیسختار ابررسانای ایکو وارد نشده است. اما بیان رشد دانه‌های آن می‌شود. از سوی دیگر ترکیب گرفتن دانه‌های ترکیب بین دانه‌های ایکو باعث بهبود اتصال آنها می‌شود. درصد ترکیب باید به هنگام کردن فیزیکی ابررسانای ایکو حدود 25% بدهد آمده است.

SEM و XRD با YBaCu₄O₇−x/Ag

مقدمه

پروکسی ساختار

بررسی‌ها از دو ابعاد برخی از سرامیک‌های ابررساناها با توجه به ساختار دانه‌ای و اتصال‌های ضعیف بین دانه‌ای خود، دارای چگالی جریان بحرانی (Jc) پایین می‌باشند [۳۲]. پایین بودن Jc استفاده از این نوع ابررساناها را در صنعت با مشکل مواجه می‌سازد. تحقیقات بسیاری برای ساخت ابررساناها با Jc بالا انجام شده است. از جمله این بروزهای می‌توان آلیائیدن ایبیکو به مواد تاها آزمایش، مثل نقره که دارای رساندگی بسیار خوبی هستند [۴۶] و روشنی‌های مختلف ساخت [۶۷ و ۷۰] را نام برد.

YBa₂Cu₃Oₓ، CuO، YBa₂Cu₃Oₓ برای تأخیر قابل ملاحظه‌ای نمی‌کند و لی‌گچالی جریان بحرانی و خواص مغناطیسی و مکانیکی آن تحت تأثیر قرار می‌گیرند [۶۸ تا ۷۱]. تغییرات چگالی جریان بحرانی و تغییرات دمای بحرانی بر حسب درصد نقره افزوده به ابررسانا ایبیکو در شکل ۱ نشان داده شده‌اند [۷۱]. از شکل ۱ بی‌واسطه که با آلیائیدن ایبیکو به حداکثر ۲۰ درصد نقره، Jc در حدود ۱۸ برای افزایش می‌یابد و در دما تغییر قابل ملاحظه‌ای صورت نمی‌گیرد.

در این مقاله تأثیر آزمایش نقره با درصد‌های مختلف بر ساختار ابررسانا YBa₂Cu₃Oₓ با پراش پوستی برتو (XRD) XRC روش الکترونی (SEM) مورد بررسی قرار گرفته است.

روش ساخت نمونه‌ها

برای ساخت نمونه‌ها از پوسترها Ag₂O و Y₂O₃، BaO، CuO با خلقت بالا ساخت و از روش واکنش حالت جامد استفاده شده است. نخست مقادیر استوکومتری لازم برای تهیه ابررساناها انتخاب شده. با ضرورت ایبیکو YBa₂Cu₃Oₓ مس و باریک با ترازی کوبیک در حساسیت ۱/۰ میلی گرم بهداشت و با مقداری از پوسترها اکسید نقره با توجه به درصد وزنی مورد نیاز برای آلیائیدن ایبیکو های مختلف مخلوط و آسیاب کردن. با استفاده از بالاتر استوانه‌ای شکل، از پوسترها حاصل قرصهایی به قطر حدود ۱۴/۵ میلی‌متر با فشار ۲۳۰ kg/cm² ساخته شد. قرصهای را در کوره الکترونی قابل بردن ریزی مدل ۱۴۰۰ ساخت RHF قرار داده و آهنگ آزمایش و کاهش دما را به قرار زیر انجام دادیم: از دمای اتاق تا ۹۰۰ درجه
شکل 1- تغییرات دمای بحرانی (بالا) و تغییرات چگالی جریان بحرانی (پایین)

بر حسب درصد نفره افزوده به اپراتور ایبیکو.

سانتی‌گراد با آهنگ ۱/۵ C/min دمای کوره افزایش یافته و در درجه C به مدت دماعت ثابت نگه داشته شد. سپس کوره با آهنگ آرام ۱/۵ C/min تا دمای انتقال سرد شد.

اندازه‌گیری‌ها و نتایج

آنچه در اولین نگاه به نموده‌های ساخته شده مشاهده شد تفاوت رنگ آنها بود. با افزایش درصد ناخالصی نفره نموده‌ها، نقره‌ای‌تر به نظر می‌رسیدند، به طوری که برای
ایکو خالص، نمونه سیاه رنگ و برای ایبیکو با 20 درصد آلائش، نقره‌ای رنگ بود.

برای مشاهده اثر مایستری، نمونه مورد نظر را در نیتروژن مایع که دما آن کلین است قرار داده و پس از بروز آوردن آن از مایع، آهنرایی کوچکی بر روی آن قرار دادیم که به صورت معلق تا زمانی که نمونه گرم می‌شد باقی ماند. تمام نمونه‌ها اثر مایستری را نشان دادند و بهرین آن در دمای 70 درصد آلائش مشاهده شد و برای نمونه 30 درصد این اثر نسبت به سایر نمونه‌ها تضعیف شده بود. این نتیجه با تابعی به دست آمده از اندازه‌گیری پدیده‌های مغناطیسی نمونه‌ها سازگار است [11].

با افزایش درصد نقره استحکام نمونه‌ها افزایش یافته به طوری که در نمونه 30/٪ شکستن با ضربه چکش با پر می‌کنند. اثر XRD از آنجا که الگوهای X-ray در هر حجم به ساختار آن بستگی دارند، برای بررسی اثر افزایش نقره بر ساختار ابرسانات ایبیکو از دستگاه برای پاک شدن پودری پرتو X ساخت PHILIPS PW 1840 با آند مس استفاده شد. الگوهای برای پرتو X نمونه‌های ابرسانات ایبیکو خالص و 20 درصد نقره در شکل 2 نشان داده شده‌اند.

شکل 2 الگوهای پرتو X پودر ایبیکو خالص و ایبیکو با 20/٪ نقره.
جدول 1 مقادیر \(d \) و \(\theta \) برای 6 قله اصلی گروه نمونه‌ها

<table>
<thead>
<tr>
<th>قله</th>
<th>نمونه با درصد قطره (نمایه خالص)</th>
<th>مقادیر (d) و (\theta) (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۳۳/۸۵۵ ۳۳/۷۷ ۳۳/۶۷۹ ۳۳/۶۷۵ ۳۳/۷۷۵ ۳۳/۶۷۵</td>
<td>۱۰۰/۷۷ ۱۰۰/۷۷ ۱۰۰/۷۷ ۱۰۰/۷۷ ۱۰۰/۷۷ ۱۰۰/۷۷</td>
</tr>
<tr>
<td>۲</td>
<td>۲/۷۶۳ ۲/۷۶۳ ۲/۷۶۳ ۲/۷۶۳ ۲/۷۶۳ ۲/۷۶۳</td>
<td>۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲</td>
</tr>
<tr>
<td>۳</td>
<td>۸۸/۳۸۰ ۸۸/۳۸۰ ۸۸/۳۸۰ ۸۸/۳۸۰ ۸۸/۳۸۰ ۸۸/۳۸۰</td>
<td>۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲</td>
</tr>
<tr>
<td>۴</td>
<td>۴۷/۲۰۵ ۴۷/۲۰۵ ۴۷/۲۰۵ ۴۷/۲۰۵ ۴۷/۲۰۵ ۴۷/۲۰۵</td>
<td>۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲</td>
</tr>
<tr>
<td>۵</td>
<td>۰/۷۶۳ ۰/۷۶۳ ۰/۷۶۳ ۰/۷۶۳ ۰/۷۶۳ ۰/۷۶۳</td>
<td>۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲</td>
</tr>
<tr>
<td>۶</td>
<td>۲/۷۶۳ ۲/۷۶۳ ۲/۷۶۳ ۲/۷۶۳ ۲/۷۶۳ ۲/۷۶۳</td>
<td>۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲ ۶۷/۲۲</td>
</tr>
</tbody>
</table>

مقادیر \(d \) و \(\theta \) برای 6 قله اصلی گروه نمونه‌ها در جدول 1 نوشته شده‌اند.

همان‌طور که از جدول 1 ملاحظه می‌شود، با افزایش ایبکو به نقره در مقادیر \(d \) و \(\theta \) قله‌های اصلی گروه نمونه‌ها تغییر قابل ملاحظه‌ای صورت نگرفت است. به عبارت دیگر افزودن نقره، ساختار ایبرسانات ایبکو را تغییر نداده است. ظهور قله‌های مربوط به نقره در گروه‌ها نمونه‌های آلاینده و افزایش شدت این قله‌ها با افزایش درصد نقره بدون این که جابجایی قابل ملاحظه‌ای داشته باشند، این نکته را می‌تواند که اضافه‌شده در ساختار ایبرسانات ایبکو شرکت نکرده است و به عنوان فاز جدایگانه‌ای در نمونه ظاهر می‌شود.

برای مشخص شدن محل استقرار نقره در نمونه‌های تهیه شده و چگونگی رشد دانه‌های ایبکو از میکروسکوپ الکترونی روبشی استفاده شد. شکل ۳ عکس‌های
شکل 3 تصاویر نمونه ۵٪ (ایبیکو خالص) و نمونه‌های آلاتیبه شده ۱۰/۰٪، ۲۰٪، ۲۵٪ و ۳۰٪ به نقره

نمونه ایبیکو خالص و نمونه‌های آلاتیبه شده به نقره را نشان می‌دهد. SEM

همان طور که از عکس‌های SEM پیداست دانه‌های ایبیکو با افزودن نقره رشد می‌کنند. وجود نقره در فرازند کل‌خسازی، سطوح دانه‌های ایبیکو را تمیز می‌کند و باعث بهبود رشد دانه‌ها هنگام ذوب جزئی می‌شود [۵ و ۱۲]. نتایج به دست آمده نشان داد که بیشترین رشد برای دانه‌های ایبیکو با آلاتیبه حدود ۲۰ درصد به دست می‌آید.

جدول ۲ ابعاد دانه‌های ایبیکو و نقره را با درصد‌های مختلف آلاتیبه نشان می‌دهد.
جدول ۲ مشخصات دانه‌های نمونه‌ها با درصد مختلف نقره

<table>
<thead>
<tr>
<th>درصد نقره</th>
<th>طول (m)</th>
<th>عرض (m)</th>
<th>مساحت (μm²)</th>
<th>دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۲/۶</td>
<td>۰/۵</td>
<td>۲۶/۷</td>
<td>ایبکو</td>
</tr>
<tr>
<td>۱۰</td>
<td>۲</td>
<td>۲/۲</td>
<td>۲۸/۵</td>
<td>ایبکو</td>
</tr>
<tr>
<td>۱۵</td>
<td>۲/۷</td>
<td>۰/۷</td>
<td>۳۸/۱</td>
<td>ایبکو</td>
</tr>
<tr>
<td>۲۰</td>
<td>۲</td>
<td>۰/۷</td>
<td>۳۸/۱</td>
<td>ایبکو</td>
</tr>
<tr>
<td>۲۵</td>
<td>۲/۷</td>
<td>۰/۷</td>
<td>۵۸/۲</td>
<td>ایبکو</td>
</tr>
</tbody>
</table>

نمایش دانش‌های SEM نشان داد که نقره بین دانه‌های ایبکو قرار می‌گیرد و باعث بهبود اتصال‌های بین آنها می‌شود. این نتیجه با اندازه‌گیری‌های مقاومت ویژه الکتریکی نمونه‌ها در حالت عادی و چگالی جریان بحرانی که مقدار بهبود آنها برای نمونه‌ها با افزایش دانه‌های ایبکو قرار دارد و EDS استفاده شد. شکل ۴ نمودارهای دانه نقره که بین دانه‌های ایبکو قرار دارد و EDS دانه‌های ایبکو را نشان می‌دهد.

بایان شناسایی دانه‌ها و آنالیز ترکیب شیمیایی آنها از طیف سنجی باشندگی انرژی استفاده شد. توضیح ۴ نمودارهای دانه نقره که بین دانه‌های ایبکو قرار دارد و EDS دانه‌های ایبکو را نشان می‌دهد.

همان طور که از روش‌های برآورتری نتایج گرفته شد، تقره وارد ساختار دانه‌های ایبکو نشده و به صورت فازی جداگانه (دانه‌های محور) در نمونه ظاهر می‌شود. این مطلب را EDS مورد تایید فراهم می‌دهد.

بررسی تصاویر میکروسکوب الکترونی روبش و میکروسکوب نوری و الگوهای برداشت برتو X وجود موادی غیر از ایبکو و نقره مثل فاز ۲۱ ایبکو را به مقادار تا در بعضی از نمونه‌های تهیه شده نشان می‌دهد. با توجه به نتایج به دست آمده از الگوهای EDS و نمودارهای SEM توصیف گرفته می‌شود که در نمونه‌های تهیه
شکل ۱ نمودارهای EDS (الف) دانه نقره و (ب) دانه ایبکو

شده، با افزایش نقره تا حدود ۲۰ درصد دانه‌های ایبکو از گذشته و افزودن نقره به‌اش و در مقدار باعث جلوگیری از رشد دانه‌های می‌گردد. همچنین نقره در درون دانه‌های ایبکو وارد شده و ساختار آن را تغییر نمی‌دهد و به صورت دانه‌هایی بین آنها قرار می‌گیرد.

مراجع

 Appl. Phys. Lett. 52, 2066.

 Supercond. Sci. Technol. 9, 1015.

 No. 4, 802.

10. زرگر شوشتري، م، ومنيعي، ع، مجله علم، دانشگاه شهيد Chamran، 77، 1376 ، 4، 57

11. سپهری، س، و زرگر شوشتري، م، مجله پژوهش فیزیک ایران، 77، 1376، 5، 296

 commun. 71, 407.