Structure Studies of $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$/Ag by XRD and SEM

Zargar Shoushtari, M. and Amini Ghanavati, S.

Faculty of Science, Department of Physics
University of Shahid Chamran (Ahwaz)

Key Words: $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ Superconductor, Silver, XRD and SEM

Abstract: The $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ (YBCO) superconductor ceramic has low critical current density (J_c) because of weak links between its grains. There have been a lot of efforts to increase J_c. One of the methods to increase J_c is to dope YBCO with other materials such as silver (Ag). In this paper, the effect of adding silver to YBCO with the weight ratio of 0%, 10%, 15%, 20% and 30% on its microstructure have been investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) diagrams of samples have been obtained and studied. The study of XRD patterns shows that Ag is appears as a separate phase in the samples and the position of YBCO peaks do not considerable changes. The study of SEM of samples reveals that the Ag added to YBCO does not present in its microstructure and does not change the lattice constants of YBCO by considerable amount, and also the Ag grains remain among YBCO grains and provide the better intergranular contact. The percentage of silver for optimizing the physical properties of YBCO superconductores is almost 20.
پژوهشی

بررسی ساختار SEM و XRD با YBa$_2$Cu$_3$O$_{y}$-Ag

مرتضی زرگر شوشتی و سعید امینی قنواتی

گروه فیزیک، دانشکده علوم دانشگاه شهید چمران، اهواز

چکیده: ابررسانای سرامیکی YBa$_2$Cu$_3$O$_{y}$ (ایبیکو) به دلیل انتقال‌های J$_0$ ضعیف بین دانه‌ها، دارای چگالی چرخان بحرانی (J$_c$) کم است. برای افزایش تحقیقات بسیاری صورت گرفته است. یکی از روش‌های افزایش آن آنتی‌دیگر ایبیکو به مواد دیگر از جمله تقریح است. در این مقاله آثار افزایش تقریح با استفاده وزنه 20، 15 و 30 درصد به ایبیکو بر ریزساختار آن بررسی شده است. مطالعه الگوهای پراش پرتون X نمونه‌ها، قلله‌های تقریح را در فازی جداگانه نشان می‌دهد و موفقیت قله‌های ایبیکو تغییر قابل ملاحظه‌ای نسبی کند. همچنین تصاویر میکروسکوپ الکترونی رویشی نشان می‌دهند که با استفاده از ساختار به دست آمده آنتی‌دیگر ایبیکو وارد نشده است اما باعث رشد دانه‌های آن می‌شود. از سوی دیگر قرار گرفتن دانه‌های تقریح بین دانه‌های ایبیکو باعث بهبود انتقال آنها می‌شود. درصد تقریح برای بهبود خواص فیزیکی ابررسانای ایبیکو حدود ۲۰٪ به دست آمده است.

SEM و XRD، و YBa$_2$Cu$_3$O$_{y}$ تقریح و YBa$_2$Cu$_3$O$_{y}$

مقدمه

چند ماه پس از کشف ابررسانه‌های دمای بالا توسط بلدنورز و مولر (1) و همکارانش [2] موفق به کشف ابررسانه‌ای در سیستم YBCO (Y-Ba-Cu-O) با دمای ۹۰ K گذار شدند. چگالی جرمیان بحرانی یکی از پارامترهای اساسی
بررسی ساختار

یکسانه‌ای سرامیکی با توجه به ساختار دانه‌ای و اتصال‌های
ضعیف بین دانه‌ای خود، دارای چگالی جریان بحرانی (J_c) بایین می‌باشند [3]. با همین
بودن J_c استفاده از این نوع یکسانه‌ای J_c را در صنعت با مشکل مواجه می‌سازد.
تحقیقات بسیاری برای ساخت ابرسانه‌ای با J_c با انجام شده است. از جمله این پژوهش‌ها
می‌توان آلیانس ایبیکو به مواد یون‌تکسی متشکل از ترکیب K_x در اول و
V_x را نام برد.

افزودن نقره با اکسید نقره با درصد‌های مختلف با ابرسانه‌ای

یکسانه‌ای سرامیکی تغییر قابل توجهی در تغییرات چگالی جریان بحرانی و تغییرات دمای بحرانی می‌کند و لی چگالی
جریان بحرانی و خواص مغناطیسی و مکانیکی آن تحت تأثیر قرار می‌گیرند [8 تا 11].

تغییرات چگالی جریان بحرانی و تغییرات دمای بحرانی بر حسب درصد نقره‌ای نفوذ به
ابرسانه‌ای ایبیکو در شکل 1 نشان داده شده‌اند [12]. از شکل 1 برای نمونه که با آلیانس
ایبیکو به حدود 20 درصد نقره J_c در حدود 18 برای افتراشیس می‌باشد ولی در دمای
بحرانی تغییر قابل توجهی صورت نمی‌گیرد.

در این مقاله تأثیر افزایش نقره با درصد‌های مختلف بر ساختار ابرسانه‌ای
سرامیکی $Y_{1−x}Cu_xO$ با بررسی پودری پرونده بر روی (XRD) X و میکروسکوپ الکترونی
(SEM) مورد بررسی قرار گرفته است.

روش ساخت نمونه‌ها

برای ساخت نمونه‌ها از پودرهای Ag_2O و Y_2O_3، BaO_2، CuO با خلوص بالا ساخت

و از روش واکنش حالت جامد استفاده شده است. نخست مقادیر
MERCK استوکومتری لازم برای تهیه ابرسانه‌ای اینتریم،
را از پودر اکسیدهای اینتریم، $Y_{1−x}Cu_xO$ مس و باریک با ترگرام الکترونیکی با حساب‌سازی 1/2 میلی گرم برداشتی و با مقادیر لازم از
پودر بکار برده که با توجه به درصد وزنی مورد نیاز برای ایالی نمونه‌های مختلف
محلول آسیاب کرده. با استفاده از قابل استوانه‌ای شکل، از پودرهای حاصل
قرص‌هایی به قطر حداکثر 12/5 میلی‌متر با فشار 1400 kg/cm2 ساخت

قرص‌ها را در کوره الکتریکی قابل برنامه‌ریزی مدل 1400 RHF ساخت

آهنگ افزایش و کاهش دما را به قراری زیر انجام دادیم: از دمای افت اتاق تا 900 درجه
شکل 1: تغییرات دما برای (بالا) و تغییرات چگالی جریان برای (پایین)

بر حسب درصد نقره افزوده به اپروسانای ایپکر.

سانتیگراد با آهنگ $\frac{1}{5}$ درجه سانتی‌گراد در هر دقیقه دما افزایش یافته و در $950^\circ C$ به مدت حداکثر 90 دقیقه است. سپس کوره با آهنگ آرام $\frac{1}{5}$ درجه سانتی‌گراد در هر دقیقه دما افزایش یافته و در $950^\circ C$ به مدت حداکثر 90 دقیقه است.

اندازه‌گیری‌ها و نتایج

آنچه در اولین نگاه به نمونه‌های ساخته شده مشاهده شد، کاهش در اثر رنگ آنها بود. با افزایش درصد ناخالصی نقره نمونه‌ها، نقره‌ایت به نظر می‌رسیدند، به طوری که برای
ایبیکو خالص، نمونه سیاه رنگ و برای ایبیکو با 30 درصد آلائش، نقره‌ای رنگ بود. برای مشاهده اثر مایستر، نمونهٔ مورد نظر را در نیتروژن سوخته کرده و تایم‌هاي مختلف کلیوین است. قرار داده و پس از بیرون آوردن آن از ماپ، آهوری‌ها کوچکی بر روی آن قرار داده شد و به صورت مطلق تا زمانی که نمونه گرم می‌شده قرار داده شد. تمام نمونه‌ها اثر مایستر را نشان دادند و بهره‌مندی اثر در نمونه 30 درصد آلائشی مشاهده شد و برای نمونه 30 درصد این اثر نسبت به سایر نمونه‌ها تضعیف شده بود. این نتیجه با تابع به دست آمده از اندازه‌گیری پدیده‌های مغناطیسی نمونه‌ها سازگار است [11].

با افزایش درصد نقره استحکام نمونه‌های افراش‌پردازی، عمق یافته به طوری که در نمونه 30٪ افزایش یافت. شکستن با ضربه چکش یا برخ با اثر امکان‌پذیر بود. از آنجا که الگوهای XRD هر جسم به ساختار آن بستگی دارد، برای بررسی اثر افراش‌پردازی بر ساختار ابرسانای ایبیکو از دستگاه پاک‌پرداز سنج پودری برتو X مدله brute PHILIPS PW 1840 ساخته شد (نمونه‌های ابرسانای ایبیکو خالص و 20 درصد نقره در شکل 2 نشان داده شده است.

شکل2 الگوهای پاک‌پرداز برتو X پودر ایبیکو خالص و ایبیکو با 20٪ نقره.

علامت‌های بازتاب‌های نقره را مشاهده می‌دهند.
جدول 1 مقادیر d و θ برای 6 قله اصلی گروه پراش نمونه‌ها

<table>
<thead>
<tr>
<th>نمونه با درصد قله</th>
<th>d (A)</th>
<th>θ (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰</td>
<td>۳۳/۸۲۵</td>
<td>۳۰/۲۸۰</td>
</tr>
<tr>
<td>۲۷/۳۸۷</td>
<td>۲۷/۷۳۷</td>
<td>۲۷/۳۱۰</td>
</tr>
<tr>
<td>۵۸/۱۸۰</td>
<td>۵۸/۱۹۵</td>
<td>۵۸/۱۷۰</td>
</tr>
<tr>
<td>۱/۶۰۸۲</td>
<td>۱/۶۰۸۳</td>
<td>۱/۶۰۶۱</td>
</tr>
<tr>
<td>۲۶/۲۳۵</td>
<td>۲۶/۹۶۲</td>
<td>۳۶/۰۱۵</td>
</tr>
<tr>
<td>۱/۶۲۸۵</td>
<td>۱/۶۲۸۶</td>
<td>۱/۶۲۸۱</td>
</tr>
<tr>
<td>۳۶/۵۷۱</td>
<td>۳۶/۲۱۵</td>
<td>۳۶/۵۷۱</td>
</tr>
<tr>
<td>۱/۳۸۶۲</td>
<td>۱/۳۸۶۳</td>
<td>۱/۳۸۶۱</td>
</tr>
<tr>
<td>۲۶/۷۸۰</td>
<td>۲۶/۷۸۰</td>
<td>۲۶/۵۵۵</td>
</tr>
<tr>
<td>۱/۲۳۳۲</td>
<td>۱/۲۳۳۲</td>
<td>۱/۲۳۳۲</td>
</tr>
<tr>
<td>۵۸/۳۸۰</td>
<td>۵۸/۳۸۰</td>
<td>۵۸/۳۸۰</td>
</tr>
<tr>
<td>۱/۳۶۶۲</td>
<td>۱/۳۶۶۲</td>
<td>۱/۳۶۶۲</td>
</tr>
<tr>
<td>۳۸/۱۵۰</td>
<td>۳۸/۱۵۰</td>
<td>۳۸/۱۵۰</td>
</tr>
<tr>
<td>۱/۲۳۳۲</td>
<td>۱/۲۳۳۲</td>
<td>۱/۲۳۳۲</td>
</tr>
</tbody>
</table>

مقادیر d و θ برای 6 قله اصلی گروه پراش نمونه‌ها در جدول 1 نوشته شده‌اند. همان‌طور که از جدول 1 ملاحظه می‌شود، با افزایش ایبیکو به نقره در مقادیر d و θ قله‌های اصلی گروه پراش نمونه‌ها تغییر قابل ملاحظه‌ای صورت نگرفته است. به عبارت دیگر افزودن قله ساختار ابرسانان ایبیکو را تغییر نداده است. ظهور قله‌های مرتبه به نقره در گروه‌های پراش نمونه‌های آلیپیده و افزایش شدت این قله‌ها با افزایش درصد نقره بدون این که جابجایی قابل ملاحظه‌ای داشته باشد، این نکته را باید می‌کند که نقره اضافه شده در ساختار ابرسانان ایبیکو شرکت نکرده است و به عنوان فاز جداگانه‌ای در نمونه ظاهر می‌شود.

برای مشخص شدن محل استقرار نقره در نمونه‌های تهیه شده و چگونگی رشد دانه‌های ایبیکو از میکروسکوپ الکترونی روبشی استفاده شد. شکل 3 عکس‌های
شکل ۳ تصاویر نمونه‌های (ایبیکو خالص) و نمونه‌های آلاتیبه شده ۰/۱۰،۰/۲۰ و ۰/۳۰ به نقره.

نمونه ایبیکو خالص و نمونه‌های آلاتیبه شده به نقره را نشان می‌دهد.

SEM همان طور که از عکس‌های SEM پیداست دانه‌های ایبیکو با افزودن نقره رشد می‌کنند. وجود نقره در فرآیند کلرایه‌سازی، سطوح دانه‌های ایبیکو را تعمیق می‌کند و باعث بهبود رشد دانه‌ها هنگام ذوب جزئی می‌شود [۵ و ۱۲]. نتایج به دست آمده نشان داد که بیشترین رشد برای دانه‌های ایبیکو با آلایش حدود ۲۰ درصد به دست می‌آید.

جدول ۲ ابعاد دانه‌های ایبیکو و نقره را با درصد‌های مختلف آلایش نشان می‌دهد.
جدول ۲ مشخصات دانه‌های نمونه‌ها با درصد مختلف نقره

<table>
<thead>
<tr>
<th>درصد نقره</th>
<th>طول (nm)</th>
<th>عرض (nm)</th>
<th>مساحت (μm²)</th>
<th>دانه‌ها</th>
<th>ایبکو</th>
<th>نقره</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۶/۷</td>
<td>۶/۶</td>
<td>۳/۶</td>
<td>۲۶/۷</td>
<td>ایبکو</td>
<td>ایبکو</td>
<td>نقره</td>
</tr>
<tr>
<td>۰</td>
<td>۲</td>
<td>۰</td>
<td>۰</td>
<td>ایبکو</td>
<td>ایبکو</td>
<td>نقره</td>
</tr>
<tr>
<td>۲۸/۵</td>
<td>۵/۳</td>
<td>۲۸/۵</td>
<td>۲۸/۵</td>
<td>ایبکو</td>
<td>ایبکو</td>
<td>نقره</td>
</tr>
<tr>
<td>۷</td>
<td>۶/۸</td>
<td>۷</td>
<td>۶/۸</td>
<td>ایبکو</td>
<td>ایبکو</td>
<td>نقره</td>
</tr>
<tr>
<td>۵۸/۷</td>
<td>۶/۷</td>
<td>۵۸/۷</td>
<td>۵۸/۷</td>
<td>ایبکو</td>
<td>ایبکو</td>
<td>نقره</td>
</tr>
<tr>
<td>۱۶</td>
<td>۷/۵</td>
<td>۱۶</td>
<td>۱۶</td>
<td>ایبکو</td>
<td>ایبکو</td>
<td>نقره</td>
</tr>
<tr>
<td>۱۳/۲</td>
<td>۱۳/۲</td>
<td>۱۳/۲</td>
<td>۱۳/۲</td>
<td>ایبکو</td>
<td>ایبکو</td>
<td>نقره</td>
</tr>
<tr>
<td>۱۵</td>
<td>۵</td>
<td>۱五官</td>
<td>۵五官</td>
<td>ایبکو</td>
<td>ایبکو</td>
<td>نقره</td>
</tr>
<tr>
<td>۸۲/۳</td>
<td>۳/۸</td>
<td>۸۲/۳</td>
<td>۸۲/۳</td>
<td>ایبکو</td>
<td>ایبکو</td>
<td>نقره</td>
</tr>
<tr>
<td>۲۶</td>
<td>۳/۷</td>
<td>۲۶</td>
<td>۲۶</td>
<td>ایبکو</td>
<td>ایبکو</td>
<td>نقره</td>
</tr>
</tbody>
</table>

همچنین عکس‌های SEM نشان داد که تقره بین دانه‌های ایبکو قرار می‌گیرد و باعث بهبود اتصال‌هایی بین آنها می‌شود. این نتیجه با اندازه‌گیری‌های مقاومت ویژه الکتریکی نمونه‌ها در حالت عادی و چگالی جریان بحرانی که مقدار بهینه آنها برای نمونه نیاز به ایبکو دارد.

۲۰ درصد به دست آمده است سازگار است [۱۰]. برای شناسایی دانه‌ها و آنالیز تركیب شیمیایی آنها از طیف سنجی باشندگی انرژی EDS استفاده شد. شکل ۴ نمودارهای دانه تقره که بین دانه‌های ایبکو قرار دارد و دانه‌های ایبکو را نشان می‌دهد.

همان طور که از نمونه‌های پراش نتیجه‌گیری شده، تقره وارد ساختار دانه‌های ایبکو نشده و به صورت قازی جدایی (دانه‌های عنبی) در نمونه ظاهر می‌شود. این مطلب را نمودارهای EDS مورد تایید قرار می‌دهد.

بررسی تصاویر میکروسکوپ الکترونی روشنی و میکروسکوپ نوری و الگوهای پراش برتو X وجود موادی غیر از ایبکو و تقره مثل فاز ۱۱ ایبکو را به مقدار کم در بعضی از نمونه‌های تنهای تیپ شده نشان می‌دهد. با توجه به نتایج به دست آمده از الگوهای EDS، نتیجه‌گیری می‌شود که در نمونه‌های تنهای تیپ SEM، تصاویر XRD.
شکل ۳ نمودارهای EDS (الف) دانه نقره و (ب) دانه ایبکو

شده، با افزایش تقره تا حدود ۱۰ درصد دانه‌های ایبکو بزگتر می‌شوند و افزودن تقره بینش از این مقدار باعث جذورگیری از رشد دانه‌ها می‌گردد. همچنین تقره در درون دانه‌های ایبکو وارد شده و ساختار آن را تغییر دهنده و به صورت دانه‌هایی می‌گردد.
10. زرگر شوستری، م. و منیعی، ع. مجله علوم دانشگاه شهید جهرمیان، 1373، 1، 37
11. سیاهی، س. و زرگر شوستری، م. مجله پژوهش فیزیک ایران، 1377، 5، 295