Application of Oxygen and Carbon Isotopes in Separation of Low and High Temperature Dolomites in Northeast of Iran

Mahboudi, A.

Department of Geology, Faculty of Science, Ferdowsi University, Mashhad

Moussavi-Harami, R.

Department of Geology, Faculty of Science, Ferdowsi University, Mashhad and Department of Geoscience, University of Iowa, Iowa city

Lasemi, V.

Department of Geology, Faculty of Science, Tarbiat Moalem University, Tehran

Rahimpoor Bonab, H.

Department of Geology, Faculty of Science, Tehran University, Tehran

Keywords: Dolomites, Kopet-Dagh, Carbon and Oxygen isotopes, Chehel-Kaman Formation

Abstract: This study is focused on dolomites of the Chehel-Kaman Formation (Upper Paleocene) that is located in NE Iran. Field and petrographic studies lead to distinguish d_1 and d_2 dolomites. d_1 is fine crystals (less than 10 micron) and is associated with evaporative sediments, and d_2 in addition to fine crystals, contains coarser crystals (50-80 micron) without evaporative sediments. Also, oxygen isotope of d_1 is heavier than -2.5 $\%_o$ PDB and oxygen isotope of d_2 is lighter than -6.5 $\%_o$ PDB. Carbon isotope in these dolomites ranges between +1.8 $\%_o$ to +3.5 $\%_o$ PDB. These data along with CL observation show that d_1 dolomites are formed in lower temperature (calculated temperature is 26°C) within supratidal environment, while d_2 dolomites are formed in higher temperature (calculated temperature is more than 72°C) during burial stage.
کاربرد ایزوتوپهای اکسیژن و کربن در تفکیک دولومیتهای دمای پایین و بالا در شمال شرق ایران

اسدلاله محویی
دانشگاه فردوسی مشهد - دانشکده علوم - گروه زمین شناسی
رضای موسوی حرمتی
دانشگاه فردوسی مشهد - دانشکده علوم - گروه زمین شناسی و گروه زمین شناسی دانشگاه آوا
یعقوب لاسمی
دانشگاه تربیت معلم تهران - دانشکده علوم، گروه زمین شناسی
حسن رحمانی پورتین
دانشگاه تهران - دانشکده علوم - گروه زمین شناسی

چکیده: دولومیتهای مورد بررسی بخشی از واحدهای سنگی سازنده چهل کمان (با سن بالشنسن فوقانی) است که در شمال شرق ایران قرار دارد. مطالعات صحرایی و پتروگرافیک (سنگ به سنگانشی) منجر به تشخیص دو نوع دولومیت که d1 و d2 شده است. دولومیتهای d1 همراه تنفسهای تبخیری و حاوی بلوهای ریزند (کمتر از 10 میکرون)، و دولومیتهای d2 علاوه بر بلوهای ریز، دارای بلوهای درشت ترند (50 تا 80 میکرون) با نشانه‌های تبخیری همرود و PDB نیستند. دولومیتهای d1 دارای ایزوتوپ اکسیژن سنگین تر از 2، و d2 دارای ایزوتوپ اکسیژن سنگین تر از 5/6. در هزاره PDB است، مقدار ایزوتوپ کربن این دو نوع دولومیت تیز بین 7/1 تا 9/5+ در هزاره از 18 تا 24 در تغییر است. این اطلاعات به همراه مطالعه دولومیتهای توسط میکروسکوب کاتودولومینسانس در بالا است که دولومیتهای d1 در دمای پایین و در محلولهای بالای جزر و ماتی (کشندی) (دامای محاسبه شده حدود 26 به شکل 2/8) و دولومیتهای d2 در دمای بالا و در مرحله تصفیه (دامای محاسبه شده بیش از 128) شکل شده‌اند.

واژه های کلیدی: دولومیت، ایزوتوپهای کربن و اکسیژن، کوه داغ، سازنده چهل کمان
کاربرد ایزوتوپ‌های اکسیژن و کربن در تفکیک دولومیتهای ...

معقدمه

چگونگی تشکیل دولومیت به عنوان یکی از کانی‌های دیازنتیک سالنهای زیادی است که مورد توجه بسیاری از زمین‌شناسان و سنج شناسان کربناته بوده است. تاکنون مطالعات زیاد وگسترده‌ای در ارتباط با نحوه تشکیل دولومیت انجام گرفته است که در دو دهه اخیر آنها علاوه بر اطلاعات پتروگرافیکی (سنج شناختی) هاوی داده‌های زئوسیمیایی و ایروتوپی نیز بوده‌اند (1، 2، 3).

در این پژوهش، دولومیتهای شمالشرق ایران با استفاده از داده‌های ایروتوپی کربن و اکسیژن و تلفیق آن با اطلاعات پتروگرافی و کاندلومینانس مورد بررسی قرار گرفته و از نظر پتروگرافی تشکیل از یکدیگر تفکیک شده‌اند.

این دولومیتهای با سن بالینوف نفوذی بخشی از واحدهای سنجگی کربناته و آواری سازنده چهل کمان هستند که در حوضهٔ رسوبی که داغ در شمال شرق ایران قرار دارد (شکل 1). این سازنده با روند شمال غربی–جنوب شرقی درنقشهٔ زمین شناسی سرخ و درگز (با مقیاس ۱/۵۰۰۰۰۰۰) و نهایتاً در این اثر در انسربک آشفته بوده که در حوضه در ۶ ناحیه پس کمرو، جکوکر، تنگ نیزار، چهل کمان (نقاط تیب)، چهجه و درگز (شکل 1) نموده برداری وی به طور دقتی از نظر زمین شناسی مطالعه شده است.

شکل 1 موقعیت جغرافیایی ناحیه مورد مطالعه، اعداد نشان‌دهنده مقاطع زمین شناسی برداشت شده است (۱: بس کمرو، ۲: جکوکر، ۳: تنگ نیزار، ۴: چهل کمان (نقاط تیب)، ۵: چهجه و درگز).
روش تحقیق
در این تحقیق پس از بررسی أولیه زمینشناسی و مطالعه انواع مختلف سنجگاه‌ها در صحرا، در حدود 45 مقطع نازک تهیه و با میکروسکوپ پلارایزر (قطیعی) بررسی شدند. نتیجه‌ای بررسی منجر به تشخیص دولومیت از سنگ آهک شده است. برای اطمینان از نحوه جدا سازی دولومیت از کلسیت، مقاطع نازک رنگ آمیزی شدند [4]. در این روش محلول آلیازین سرخ و برای تشخیص دولومیت از کلسیت، محلول قلوسیانید پتاسیم برای تشخیص دولومیت الهام دار از دولومیت بدون آهن مورد استفاده قرار گرفتند. در مطالعات میکروسکوپی دولومیت‌ها، قطر بلورها محاسبه و جگونگی نافتا آن بررسی شد. علاوه بر آن، 11 نمونه از انواع دولومیت‌های موجود به سیستم اسپیکوپارکو-جرسو (بیتین سنج چرم) از نظر ایزوتوپ‌های کربن واکسین تجزیه شدند. تجزیه نمونه‌ها در انجام گرفت. داده‌های ایزوتوپی به صورت نمودار در مقاله یکدیگر ترسیم و تفسیر شدند. علاوه بر این، مقاطع دولومیتی به وسیله میکروسکوپ کاندلوسیمیسنس نیز بررسی شدند. مدل این TECHNOSYN COLD CL میکروسکوپ (Torr) و نمونه‌ها در سربیکت خلاه 15/10 جریان 185 میلی آمپر و ولتاژ 12 کیلو ولت مطالعه شدند. نمونه‌ها دمای تشکیل دولومیت نیز با استفاده از معادله فردمن و آنیل [5] محاسبه شده است.

بحث
در مطالعات گسترده زمینشناسی که روی واحد‌های سنگی سازندن جهرکمان (با سن بالوهای فوقانی) در شمال شرق ایران انجام گرفت، لیا‌های دولومیتی از سنگ آهک، شیل و ماسه سنگ تفکیک شدند. لیا‌های دولومیتی در نمونه‌های دستی بیشتر ریز بلور و با رنگ‌های نخودی، زرد و کرم رختمون دارند. شواهد صحرایی نشان داد که این واحدها در توالی‌های رسوبی مورد مطالعه، اگرچه از نظر ظاهری شباهت زیادی با هم دارند، اما به دلیل ابعاد برخی از آنها دارای کانی‌های تبخیری از جمله زیپس و انلریدر و برخی دیگر فاقد این کانی‌ها هستند، احتمالاً منشأ آنها بایستی متفاوت باشد. بررسی‌های دقیق پتروگرافیک دولومیت‌ها نشان داد که بلورها از نظر اندازه و بافت با یکدیگر اختلاف دارند. دولومیت‌های همرنگ با رسوبی‌های تبخیری بیشتر ریز بلور (کمتر از 10
شکل ۲ نمودار پراکندگی ایزوتوپ‌های کربن و اکسیژن دومین‌دانیه‌های ناحیه مورد مطالعه. داده‌ها بر حسب فصمت در هزار PDB است.

میکروژ و دومین‌دانیه‌های فاقد رسوب‌های تبخیری، علاوه بر داشتن دبیژه‌های ریز، در ارای بلوارهای درشت تر (بین ۵۰ تا ۸۵ میکرون) نیز هستند. این تابع منجر به تفکیک دو نوع دومین‌دانیه‌های دیگر (شکل ۳ و ۴) می‌گردد. جون داده‌های ایزوتوپی اطلاعات دقیقی درخصوص مشاء دومین‌دانیه‌ها در اختیار می‌گذارند، دراین تحقیق ۲۱ نمونه دومین‌دانیه (C13، C15) با بیننده سنگ چرم از نظر ایزوتوپ‌های کربن و اکسیژن تجزیه شدند (جدول ۱). نتایج این تجزیه نشان می‌دهد که مقدار ایزوتوپ اکسیژن بین ۳۹/۵ تا ۴۰/۶ در تغییر PDB است. با رسم این داده‌ها نسبت به هم، یک بکی از روش‌های معمول در بررسی‌های ایزوتوپی است [4، 27، ۴۴]. می‌توان نمونه پراکندگی و نیز تغییرات آنها را بررسی کرد و مورد تفسیر قرار داد (شکل ۳). این نمودار نشان می‌دهد که مقادیر ایزوتوپ کربن از پراکندگی زیادی برخوردار نیست، اما مقادیر ایزوتوپ اکسیژن تغییرات زیادی را نشان می‌دهند. در واقع دومین‌دانیه از ایزوتوپ‌های سنتگی اکسیژن (مقدار منفی کمتر) تا ایزوتوپ‌های سبکتر اکسیژن (مقدار منفی بیشتر) در تغییر و نوسان می‌کنند. بررسی کارهای انجام شده در سایر نقاط جهان از جمله در حوضه‌های خلیج فارس و میشیگان در آمریکا [۱۲، ۱۳] نشان داد که نسبت اکسیژن خودی‌باً بین نتایج به دست آمده در ناحیه مورد مطالعه در شمال شرق ایران و این حوضه‌ها وجود دارد. براساس داده‌های
جدول ۱ نتایج تجزیه ۲۱ نمونه دولومیت از ناحیه مورد مطالعه در شمال شرق ایران PDB (واحد ایزوتوپی کربن و اکسیژن قسمت در هزار است).

<table>
<thead>
<tr>
<th>ایزوتوپ اکسیژن</th>
<th>ایزوتوپ کربن</th>
<th>شماره نمونه</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>-۰.۰۵۹</td>
<td>+۱/۸۲</td>
<td>۱۰۴</td>
<td>۱</td>
</tr>
<tr>
<td>-۰.۰۷۲</td>
<td>+۲/۴۱</td>
<td>۲۲۴</td>
<td>۲</td>
</tr>
<tr>
<td>-۰.۰۷۳</td>
<td>+۱/۸۱</td>
<td>۲۰۴</td>
<td>۳</td>
</tr>
<tr>
<td>-۰.۰۴۸</td>
<td>+۱/۹۲</td>
<td>۲۰۵</td>
<td>۴</td>
</tr>
<tr>
<td>+۰.۰۹۲</td>
<td>+۲/۳۸</td>
<td>۲۱۱</td>
<td>۵</td>
</tr>
<tr>
<td>-۰.۰۷۷</td>
<td>+۲/۲۸</td>
<td>۲۱۱</td>
<td>۶</td>
</tr>
<tr>
<td>-۰.۰۵۵</td>
<td>+۲/۱۴</td>
<td>۲۷۰</td>
<td>۷</td>
</tr>
<tr>
<td>-۰.۰۷۲</td>
<td>+۲/۵۵</td>
<td>۲۷۳</td>
<td>۸</td>
</tr>
<tr>
<td>-۰.۰۶۴</td>
<td>+۲/۰۵</td>
<td>۲۷۴</td>
<td>۹</td>
</tr>
<tr>
<td>-۰.۰۶۵</td>
<td>+۱/۸۰</td>
<td>۲۸۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>-۰.۰۵۵</td>
<td>+۱/۳۴</td>
<td>۲۸۵/A</td>
<td>۱۱</td>
</tr>
<tr>
<td>-۰.۰۴۵</td>
<td>+۲/۲</td>
<td>۲۸۵</td>
<td>۱۲</td>
</tr>
<tr>
<td>-۰.۰۵۰</td>
<td>+۲/۹</td>
<td>۲۹۱</td>
<td>۱۳</td>
</tr>
<tr>
<td>-۰.۰۷۸</td>
<td>+۲/۷۴</td>
<td>۳۰۴</td>
<td>۱۴</td>
</tr>
<tr>
<td>-۰.۰۳۷</td>
<td>+۲/۵</td>
<td>۳۳۱</td>
<td>۱۵</td>
</tr>
<tr>
<td>-۰.۰۸۱</td>
<td>+۱/۱۸</td>
<td>۷۰۱</td>
<td>۱۶</td>
</tr>
<tr>
<td>-۰.۰۷۱</td>
<td>+۲/۶۴</td>
<td>۷۱۰/B</td>
<td>۱۷</td>
</tr>
<tr>
<td>-۰.۰۲۵</td>
<td>+۲/۱۹</td>
<td>۸۰۶</td>
<td>۱۸</td>
</tr>
<tr>
<td>-۰.۰۸۵</td>
<td>+۲/۴۹</td>
<td>۱۰۴ (2A)</td>
<td>۲۰</td>
</tr>
<tr>
<td>-۰.۰۹۹</td>
<td>+۱/۸۸</td>
<td>۱۰۵۷</td>
<td>۲۱</td>
</tr>
</tbody>
</table>

ایزوتوپی در این جدول محدوده‌های محدوده هموگرفتی از یک‌صد نمونه شفافی سه‌تایی که در این‌جا از سه‌تایی PDB ایزوتوپ سه‌تایی کربن تراز ۴-۰ در هزار، ایزوتوپ اکسیژن تراز ۴-۰ در هزار و دیگر محدوده‌های بین این دو که شرایط حداقل را دارد، در محدودهٔ اول PDB (سنگین تراز ۲-۰ در هزار) دومین این‌جا معیاری رایزنی برای میزان کربن که بهتر در محدوده‌ای
کاربرد ایزوتوپ‌های اکسیژن و کربن در تفکیک دولومیتهای...
های دفنی و در دماهای بالای مواردی که در دمای بالای پیکر گیرنده، نمودار قرار دارند، نشان می‌دهند که در دمای بالای پیکر گیرنده، نمودار قرار دارند. نشان می‌دهد که در دمای بالای پیکر گیرنده، نمودار CCL یکی از روشهای تحقیکی شناخته شده‌ای است که در بخش‌های مختلف زمین لر حکایت دارد. در این روشهای تحقیکی، یک طیف گسترده‌ای از روشهای تحقیکی استفاده می‌شود که شامل بازیابی نمونه‌ها، استفاده از نرم‌افزارهای مختلف، استفاده از روش‌های آماری، استفاده از روش‌های ریاضی، استفاده از روش‌های فیزیکی، استفاده از روش‌های شیمیایی، استفاده از روش‌های الکترونیکی، استفاده از روش‌های الکتریکی، استفاده از روش‌های متغیری، استفاده از روش‌های انجام داده می‌شود. نتایج نشان می‌دهد که در هر یک از این روش‌ها، نتایج مطلوب به دست می‌آید.
دانش و جویده دارد [13]. بنابراین نتایج بدست آمده از مطالعه مقاطع نازک با میکروسکوپ کاندوزومینوساس نیز مؤثر تشکیل این دولومیت‌ها در شرایط متفاوت است.

دما و تشکیل دولومیت

در مواردی که مقدار ایزوتروپ اکسیژن در دولومیت و نیز مقدار آن در سیال سازنده دولومیت در دسترس باشد، با استفاده از معادله (1) می‌توان دما و تشکیل دولومیت را محاسبه کرد.

\[\delta O^{18}_D - \delta O^{18}_W = (3.2 \times 10^6 \times T^{-2})^{1.5} \]

در این معادله \(\delta O^{18}_D \) مقدار ایزوتروپ اکسیژن دولومیت، \(\delta O^{18}_W \) مقدار ایزوتروپ اکسیژن سیال سازنده و \(T \) دما مورد نظر است.

مشکل اصلی در استفاده از این معادله برای سنگهای قدیمی، عدم دسترسی به مقدار ایزوتروپ اکسیژن آب است که دولومیت را تشکیل داده است. برای حل این مشکل می‌توان به پیشنهاد شده است (16): تغییر مقدار ایزوتروپ در سنگ‌های قدیمی گردنال نشده آن زمان و (2) مقایسه با دولومیتهایی که قبلًا بطور دقیق مطالعه شده و شرایط مشابهی با دولومیتهای های مورد نظر دارند.

در این پرورشی به دلیل داشتن داده‌های ایزوتروپی سنگهای آهنک سازنده چهلم کمان، از روش اول استفاده شده است. در این روش با استنی از نمونه‌های سنگ آهنک با سنگیترین ایزوتروپ اکسیژن، که نشان‌دهنده کمترین درگیری دارد استفاده شده است. این مقدار نزدیکترین مقدار به ایزوتروپ اکسیژن آب آن زمان خواهد بود. داده‌های ایزوتروپی PDB سیمان های کریستال سازنده چهلم کمان (اسال سنگیترین نمونه 7/2) در هزار تا ده هزار می‌دهد. بنابراین اگر این مقدار را معادل ایزوتروپ اکسیژن آب دریای باله‌پسند با توجه به سیستم داده‌های نیز در بهره بگیریم و مقادیر کمترین و بیشترین ایزوتروپ اکسیژن دولومیت را در معادله (1) جایگزین کنیم، دما کمینه 460° در باله‌پسندی در دقیقه 24 در باله‌پسندی در دقیقه 24 و برای دولومیت‌های نازک بالا به دقت می‌آید. همچنین به نظر می‌رسد که رشد جغیرافاصله حدوداً 30 درجه شمالی قرار داشته است. در این شرایط مقدار دما متوسط
در حدود 28 تا 30 درجه سانتی‌گراد است که تقریباً معادل دمای محاسبه شده برای دولومیتهای نوع 1 است. از طرفی در مطالعه زئوهوستوری (تاریخ زمین) خودش که به داع عمق دفن برای سازند جهلم کمی در حدود 1500 تا 1500 متر محاسبه شده است/15/7 که با احتساب شیب زمین گرمانی (به ازای هر 100 متر، 1.39/34 کلومی متراً دما) دمای این عمق به 24 تا 35 درجه سانتی‌گراد می‌رسد که با نظر گرفتن دمای سطحی (حدود 4°C) به عدد 0.15 خواهیم رسید که تقریباً معادل دمای محاسبه شده برای دولومیتهای 2 است.

برداشت
دولومیتهای کامی های دیازنتیکی هستند که در شرایت مختلف تشکیل شده. مطالعه دولومیتهای سازند جهلم با سین باللومینسن فوئانی در شمال شرق ایران نشان داده است که می‌توان آنها را براساس خصوصیات متفاوت صحرایی، برادرگرافیکی (مسک شناختی)، ایزوئوتوپی و کاندومیناسیون به دو نوع d1 و d2 تقسیم کرد. دولومیتهای d1 در صحرای با کانی‌های تبخیری همواره وروز به روند می‌پردازند و نیز مقدار ایزوئوتوپ اکسیژن آنها سنگین تر از 2/5 - در هزار PDB است. دولومیتهای d2 بدون کانی تبخیری بوده و علاوه بر بالورهای ریز حاوی بالورهای شدید تری نیز هستند که مقدار ایزوئوتوپ اکسیژن آنها به سبکتر از 5/6 - در هزار PDB است. مقدار ایزوئوتوپ کربن دراین دولومیت ها بین 1/18 تا 3/15 + تا 5/7 است که تغییرات زیادی در آنها دیده نمی‌شود. این ویژگی‌ها در منشا مختلف تشکیل دولومیت را نشان می‌دهد. دولومیت d1 در دماهای پایین (در حدود 24°C) و دولومیت d2 در دماهای بالا (به شیب از 8:7 تا 15:8) تشکیل شده‌اند. همچنین بالورهای دولومیت d1 فاقد لومینسانس هستند که نشان‌دهنده شرایط اکسیدی و محیط های سطحی نظیر بالای حد جزر و مد (کش correctamenteی) است و بالورهای درشت دولومیت d2 دارای لومینسانس تاریخی است که مؤید شرایط احیای و تشکیل در محیط تدفین است.
تشکر و قدردانی

بدرقه سیلابی از مرکز خانم غلامی به خاطر اسکن تصاویر، از مسئولین آزمایشگاه الیوتون دانشگاه آدلاید استرالیا به خاطر آتانژ نمونه‌ها و همچنین از داوران محرر مجله بلورشناسی و کمی شناسی که با برنامه‌های ارزش‌آمیز خود باعث بهتر شدن این مقاله شدند کمال سیاسگزاری را داریم.

مراجع

