Molecular Structure determination of Trimethy [α-(benzoylmethyl)] benzyl Silane

Taeb. A.*, Bolourchian, M.** and Tadjarodi, A.*
*Iran University of Science & Technology, Tehran, Iran
**Chemistry & Chemical Engineering Research Center, Tehran, Iran

Keywords: benzoyl methyl, benzyl, Silane, Crystal Structure

Abstract: The Crystal Structure of [α- (benzoylmethyl) benzyl] Silane (CH₃)₃ Si CH (C₆H₅)CH₂ COC₆H₅ has been determined by direct method (SIR). The dimensions of used crystal were 0.7 × 0.3 × 0.2 mm. The molecular structure has been determined by MolEN program. This compound crystallizes in monoclinic space group P2₁/n (14) with four molecules per unit cell. Lattice parameters of this compound are:

\[a = 6.0938 \, \text{Å}, \quad b = 22.8465 \, \text{Å}, \quad c = 12.0533 \, \text{Å}, \quad \beta = 92.0605^\circ \]

After least squares refinement cycle, the final R and \(R_w\) values are 0.087 and 0.093, respectively.
تعیین ساختار مولکولی تری متیل بنزول [متیل] سیلان

عباس طالب
محمد بلورچیان

دانشکده مهندسی شیمی و مهندسی شیمی ایران

چکیده: ساختار بلورین ترکیب سنگز شده جدید تری متیل بنزول [متیل] سیلان ((CH₃)₃SiCH(C₆H₅)CH₂COCH₃) به روش پراش سنجی پرتراکس ترمین شده است. بلورهای این ترکیب در سیستم بلوری تک پیک با گروه P2₁/nm با چهار مولکول در بااخته‌یکه متلبور می‌شود. پارامترهای بااخته‌یکه عبارتند از:

\[
a = 93.8 \text{ Å}, \quad b = 22.345 \text{ Å}, \quad c = 12.056 \text{ Å} = 6/3.06, \quad \beta = 96/62, \quad \gamma = 52\degree
\]

ساختار بلور با روش سر (Sir) استفاده از مجموعه برنامه کامپیوتری MolEn (MolEN) ترمین شده است و تابعه Ṙ به ترتیب 20/87 و 20/0/0/0/0 کاهش یافته‌اند.

واژه‌های کلیدی: بنزول متیل، بنزول، سیلان، ساختار بلورین
تعمیم‌ساختار مولکولی

در این مقاله تعمیم‌ساختار مولکولی این ترکیب مورد بررسی قرار می‌گیرد.

تعمیم ساختار مولکولی

بلور مناسبی از نمونه، به ابعاد 2/3\(\times\)2/3\(\times\)0/7\(\times\)0/0\(\times\)0/0 میلی‌متر انتخاب شد و در دستگاه براش سنج تک بلور پرتویکس از نوع 4-Enraf-Nonious CAD-4 تحت تابش پرتویکس قرار گرفت. Mo-K\(\alpha\)

روی اطلاعات به دست آمده، با استفاده از کامپیوتر VAX 3100 و برنامه MolEN کامپیوتری محاسبات انجام شد.

پرسه با ابعاد آن و سایر اطلاعات به دست آمده در جدول گرماپی، ضراپ بگرماپی، فاصله پویانده، زاویه های پیوندی در جدول‌های ۴، ۵ و ۶ مشاهده می‌شوند. بلور در طول مدت جمع‌آوری داده‌های بدست آمده با استفاده از کامپیوترهای جذب‌کننده لورنس، قطبش و خاموشی انجام گرفتند. ضراپ پراکندگی انتی مورد استفاده از این مدل بولر شناسی استفاده شد و کلیه اطلاعات (به استثنای هیدروژنها) نخست به صورت هم‌انگرد و سپس ناهملانگرد تصحیح شدند.
جدول 1 پارامترها و داده‌های تجربی

| فرمول شیمیایی: |
| SiC۱۸O۱۲H۲۲ |
| جرم مولکولی: | 282/281 |
| a = 8/1.938 (1) Å |
| b = 27/8465 (1) Å |
| c = 12/633 (1) Å |
| β = 92/6.5 (15)° |
| V = 1678/10 (1/1) Å³ |

سیستم بلوری: P2₁/n (14)
گروه فضایی: 4
تعداد مولکول‌ها در تاپتهای یکه: 4
چگالی محاسبه شده: 1/12. mg/m³
ابعاد بلور: 0.72 x 0.3 x 0.3 mm³
داما: K
محدوده جمع آوری داده‌ها: -14 ≤ θ ≤ 14

Omega/Theta Scan

| نسبت تعداد بازتاب‌های استاندارد به تعادل اندازه‌گیری آنها: |
| 57/200 |
| تعداد بازتاب‌هایی اندازه‌گیری شده. |
| بازتاب‌های مستقل: |
| \(F_0 > 2\sigma[|F_0|] \) |
| مکشوف: Mo-κα |
| بر روی: 1/7 |
| ضریب جداب (cm⁻¹): |
| 1/311123 x 10⁻⁷ |
| ضریب خاموشی (استحکام): |
| International Tables (1974) |
| ضریب‌های پراکندری اتم‌ها: |
| پارامترهای حداقل مربوط به: |
| ثابت‌های درستی ساختار: |

| \(R = \Sigma |F_o - F_c| / \Sigma |F_o| = 0.0426 \) |
| \(R_w = \left(\Sigma W(|F_o| - |F_c|)^2 / \Sigma |F_o|^2 \right)^{1/2} = 0.041 \) |

نرخ وزن: 31/151 / \(\sigma^2 |F_o| \)

قلم بیشینه در اخیرین نقصه اختلاف فوریه: (e.A⁻³)
جدول ۲ پارامترهای مکانی و انحراف معیار تقیبین آنها

<table>
<thead>
<tr>
<th>B(A2)</th>
<th>Z</th>
<th>Y</th>
<th>X</th>
<th>اتم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴/۴۴(۲)</td>
<td>٠/٧۳۵۷(۳)</td>
<td>٠/٥۴۱ (۱)</td>
<td>٠/٣۶۲ (۵)</td>
<td>Si</td>
</tr>
<tr>
<td>٢/۰(۲)</td>
<td>٠/٩۱۶۰(۵)</td>
<td>٠/٣۸۴۵(۲)</td>
<td>٠/٦۱۶ (۱)</td>
<td>C۱</td>
</tr>
<tr>
<td>۳/۶(۳)</td>
<td>٠/٧۶۸۸(۵)</td>
<td>٠/٣۱۷۱(۴)</td>
<td>٠/#۱۳ (۲)</td>
<td>C۳</td>
</tr>
<tr>
<td>۳/۹(۳)</td>
<td>٠/#۲۲۶(۵)</td>
<td>٠/#١۹۰ (۴)</td>
<td>٠/#۱۳۱ (۲)</td>
<td>C۷</td>
</tr>
<tr>
<td>٥/۸ (۲)</td>
<td>٠/#۳۴۴ (۵)</td>
<td>٠/#۳۹۱ (۳)</td>
<td>٠/#۸۸۴ (۱)</td>
<td>O</td>
</tr>
<tr>
<td>۷/۵(۳)</td>
<td>٠/#۶۶۸۸(۵)</td>
<td>٠/#۳۰۹۳(۴)</td>
<td>٠/#۴۷۰ (۱)</td>
<td>C۱۳</td>
</tr>
<tr>
<td>۵/۱ (۳)</td>
<td>٠/#۱۰۰۳(۵)</td>
<td>٠/#۳۱۳۰ (۴)</td>
<td>٠/#۴۷۰ (۱)</td>
<td>C۱۱</td>
</tr>
<tr>
<td>۵/۶ (۴)</td>
<td>٠/#۱۹۸۰(۵)</td>
<td>٠/#۳۸۳۰ (۴)</td>
<td>٠/#۴۰۳ (۲)</td>
<td>C۹</td>
</tr>
<tr>
<td>۲/۰ (۴)</td>
<td>٠/#۶۸۸۸(۵)</td>
<td>٠/#۳۷۱۹ (۴)</td>
<td>٠/#۵۰۹ (۳)</td>
<td>C۱۴</td>
</tr>
<tr>
<td>۶/۵ (۴)</td>
<td>٠/#۴۹۶۰(۵)</td>
<td>٠/#۴۳۵۰ (۵)</td>
<td>٠/#۷۸۲ (۲)</td>
<td>C۹</td>
</tr>
<tr>
<td>۴/۴ (۴)</td>
<td>٠/#۶۸۸۸(۵)</td>
<td>٠/#۴۴۴۴ (۴)</td>
<td>٠/#۱۲۵ (۲)</td>
<td>C۹</td>
</tr>
<tr>
<td>۲/۰ (۴)</td>
<td>٠/#۳۸۹۳ (۵)</td>
<td>٠/#۲۴۷۳ (۴)</td>
<td>٠/#۱۹۶ (۲)</td>
<td>C۹</td>
</tr>
<tr>
<td>۷/۱ (۴)</td>
<td>٠/#۸۹۵۱ (۵)</td>
<td>٠/#۱۸۰۲ (۴)</td>
<td>٠/#۱۳۲ (۲)</td>
<td>C۹</td>
</tr>
<tr>
<td>۵/۰ (۴)</td>
<td>٠/#۵۸۴۸ (۴)</td>
<td>٠/#۴۰۳۸ (۴)</td>
<td>٠/#۵۸۸ (۲)</td>
<td>C۱۲</td>
</tr>
<tr>
<td>۹/۲ (۴)</td>
<td>٠/#۴۹۶۲ (۵)</td>
<td>٠/#۴۱۰۰ (۵)</td>
<td>٠/#۴۸۳ (۲)</td>
<td>C۱۵</td>
</tr>
<tr>
<td>۵/۴ (۴)</td>
<td>٠/#۱۲۹۱ (۱)</td>
<td>٠/#۲۵۱۷ (۴)</td>
<td>٠/#۰۸۸ (۲)</td>
<td>C۵</td>
</tr>
<tr>
<td>۶/۰ (۴)</td>
<td>٠/#۶۵۰ (۵)</td>
<td>٠/#۴۱۳۳ (۴)</td>
<td>٠/#۱۳۳ (۲)</td>
<td>C۱۷</td>
</tr>
<tr>
<td>۵/۶ (۴)</td>
<td>٠/#۵۹۳۳ (۴)</td>
<td>٠/#۱۱۸۲ (۵)</td>
<td>٠/#۴۵۲ (۲)</td>
<td>C۴</td>
</tr>
</tbody>
</table>

اعداد درون پرانتز، انحراف معیارهای تقیبین با کمترین ارقام با معنی هستند.
نتایج
ساختار مولکولی تری متیل [α-(بندزول متیل) بسیل] سیلان
"(CH₃)₃SiCH(C₆H₅)CH₂COC₆H₅" در شکل 1 نشان داده شده است. بلورهای
این ترکیب در بسیاری از پیک میل (مونوکلننیک) و گروه فضایی
Me₂P₂/n پیک شده و برای Rₓ و Rₓ 2 مقدارهای 953 و 913/0/0 است. تعداد مولکولهای در بافت میل جهار است که در شکل 2
عرضه شده است. براساس داده‌های جدول‌های 3 و 4 اتم Si
ساختار چهاروجهی دارد. [8] ولی در این ترکیب به دلیل اتصال
Me₃SiH
طول پیوند 1/873 Å = 1/873 Å است. [9] طول پیوند Si-C
بر اساس داده‌های جدول‌های 3 و 4 اتم Si
بزرگ به اتم Si
در ترکیب تری متیل سیلیل مانند مشاهده می‌شود با حجم
ماده‌پذیری در شکل 2 نشان داده شده است. [9]
در مولکول تری متیل [α-(بندزول متیل) بسیل] سیلان، حلقه‌های بنزینی تا
حدی از حالات مسطح خارج شده‌اند و زاویه صفحه‌های این دو حلقه 99/8/8 Å است.

جدول 3 فاصله پیوندها بر حسب انگستروم.

<table>
<thead>
<tr>
<th>فاصله</th>
<th>اتم 1</th>
<th>اتم 2</th>
<th>درک (⁄)</th>
<th>اتم 1</th>
<th>اتم 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/9/5 (9)</td>
<td>C₃</td>
<td>Si</td>
<td>()</td>
<td>C₁₄</td>
<td>C₁₃</td>
</tr>
<tr>
<td>1/9/0 (3)</td>
<td>C₆</td>
<td>Si</td>
<td>1/381</td>
<td>C₁₈</td>
<td>C₁₃</td>
</tr>
<tr>
<td>1/8/7 (7)</td>
<td>C₅</td>
<td>Si</td>
<td>1/410 (⁄)</td>
<td>C₁₀</td>
<td>C₁₁</td>
</tr>
<tr>
<td>1/8/9 (3)</td>
<td>C₄</td>
<td>Si</td>
<td>1/381 (⁄)</td>
<td>C₁₂</td>
<td>C₁₁</td>
</tr>
<tr>
<td>1/4/9 (0)</td>
<td>C₇</td>
<td>C₁</td>
<td>1/42 (⁄)</td>
<td>C₉</td>
<td>C₈</td>
</tr>
<tr>
<td>1/2/0 (5)</td>
<td>O</td>
<td>C₁</td>
<td>1/437 (9)</td>
<td>C₉</td>
<td>C₁₀</td>
</tr>
<tr>
<td>1/0/9 (0)</td>
<td>C₂</td>
<td>C₁</td>
<td>1/400 (⁄)</td>
<td>C₁₅</td>
<td>C₁₄</td>
</tr>
<tr>
<td>1/0/1 (8)</td>
<td>C₁₃</td>
<td>C₁</td>
<td>1/400 (⁄)</td>
<td>C₁₅</td>
<td>C₁₄</td>
</tr>
<tr>
<td>1/0/9 (3)</td>
<td>C₂</td>
<td>C₃</td>
<td>1/400 (⁄)</td>
<td>C₁₇</td>
<td>C₁₆</td>
</tr>
<tr>
<td>1/3/6 (1)</td>
<td>C₈</td>
<td>C₇</td>
<td>1/383 (⁄)</td>
<td>C₁₇</td>
<td>C₁₈</td>
</tr>
<tr>
<td>1/4/9 (0)</td>
<td>C₁₂</td>
<td>C₇</td>
<td>1/446 (⁄)</td>
<td>C₁₈</td>
<td>C₁₈</td>
</tr>
</tbody>
</table>

اعداد درون پرانتز، انحراف معیارهای تقریبی با کمترین ارقام با معنی هستند.
تعیین ساختار مولکولی تری مetyl α-(بِنزوتیل مetyl) بنزیل] سیلان

شکل ۱ تصویر ORTEP ترکیب تری مetyl α-(بِنزوتیل مetyl) بنزیل] سیلان

شکل ۲ تصویر پاکتیکی به ترکیب تری مetyl α-(بِنزوتیل مetyl) بنزیل] سیلان که چهار مولکول را در بر می‌گیرد.
جدول 3: اعداد میزان تغییرات در دو اتصال نسبت به میزان تغییرات در اتصال نخستین

<table>
<thead>
<tr>
<th>زاویه</th>
<th>اتصال 1</th>
<th>اتصال 2</th>
<th>اتصال 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>117/1(3)</td>
<td>C_6</td>
<td>Si</td>
<td>C_3</td>
</tr>
<tr>
<td>117/1(3)</td>
<td>C_5</td>
<td>Si</td>
<td>C_3</td>
</tr>
<tr>
<td>105/5(3)</td>
<td>C_4</td>
<td>Si</td>
<td>C_3</td>
</tr>
<tr>
<td>105/3(1)</td>
<td>C_4</td>
<td>Si</td>
<td>C_3</td>
</tr>
<tr>
<td>105/1(1)</td>
<td>C_4</td>
<td>Si</td>
<td>C_3</td>
</tr>
<tr>
<td>119/3(3)</td>
<td>O</td>
<td>C_1</td>
<td>C_7</td>
</tr>
<tr>
<td>119/1(0)</td>
<td>C_2</td>
<td>C_1</td>
<td>C_7</td>
</tr>
<tr>
<td>120/1(2)</td>
<td>C_2</td>
<td>C_1</td>
<td>O</td>
</tr>
<tr>
<td>111/1(5)</td>
<td>C_{13}</td>
<td>C_3</td>
<td>Si</td>
</tr>
<tr>
<td>111/8(5)</td>
<td>C_2</td>
<td>C_3</td>
<td>C_{13}</td>
</tr>
<tr>
<td>111/5(5)</td>
<td>C_2</td>
<td>C_3</td>
<td>C_{13}</td>
</tr>
<tr>
<td>111/5(4)</td>
<td>C_8</td>
<td>C_7</td>
<td>C_1</td>
</tr>
<tr>
<td>111/4(3)</td>
<td>C_{12}</td>
<td>C_7</td>
<td>C_1</td>
</tr>
<tr>
<td>111/4(3)</td>
<td>C_{12}</td>
<td>C_7</td>
<td>C_1</td>
</tr>
</tbody>
</table>

افزایش در هر اتصال نسبت به اتصال نخستین ارقام با معنی هستند.
تشنین ساختار سولکولی و نیکول [α (بنزوئید متیل) بنزیل] سیلان

جدول ۵ پارامترهای جانبی عمومی - U

<table>
<thead>
<tr>
<th>انبساط</th>
<th>U(1)</th>
<th>U(2)</th>
<th>U(3)</th>
<th>U(1)</th>
<th>U(2)</th>
<th>U(3)</th>
<th>U(1)</th>
<th>U(2)</th>
<th>U(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>C₁</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>C₂</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>C₃</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>C₄</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>C₅</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>C₆</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>C₇</td>
<td>0.21</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>C₈</td>
<td>0.22</td>
<td>0.21</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>C₉</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>C₁₀</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>C₁₁</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>C₁₂</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>C₁₃</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td>C₁₄</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
<td>0.20</td>
</tr>
<tr>
<td>C₁₅</td>
<td>0.29</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>C₁₆</td>
<td>0.30</td>
<td>0.29</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>C₁₇</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>C₁₈</td>
<td>0.32</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td>C₁₉</td>
<td>0.33</td>
<td>0.32</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>C₂₀</td>
<td>0.34</td>
<td>0.33</td>
<td>0.32</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
</tr>
</tbody>
</table>

