Geothermometry and physiochemical condition of Qaleh- Zari Cu-Au ore bearing solution based on chlorite composition and fluid inclusion study

Karimpour, M.H.

Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad

Khin Zaw.

Special center for ore deposit and exploration study,
University of Tasmania, Australia

Keywords: Chlorite, ripidolite, geothermometry, Qaleh Zari.

Abstract: Qaleh-Zari mine is the largest Cu-Au vein type deposit in Iran and is located about 182 km south of Birjand (Khorasan province). The ore grade ranges from Cu = 0.5-8%, Au = 0.5-15 ppm, and Ag = 20-150 ppm. Mineralization concentrated in three major veins. Host rocks are mainly andesite to basaltic andesite (Paleocene-Eocene). The main paragenesis is: quartz, hematite (specularite), chlorite, chalcopyrite, ± pyrite, ± Ag-sulfosalts, and ± gold.

Samples were collected from three veins at depth of -70, -100, -135, and -170 meters. At each level, samples are taken every 10m. Chlorites are mainly Fe-rich ripidolite, however a few samples are brunsvigite and pycnochlorite. Temperature of chlorites formation were calculated based on the Cathelineau and Nieva (1985) equation. The chlorites were formed between 260-300°C. The temperature of chlorite formation is 10-30°C less than temperature measured from fluid inclusion. Using chlorite composition and fluid inclusion data from Qaleh-Zari, new equation is presented for calculation of temperature for chlorite formation. The ore fluid contained

\[\log \text{mH}_2\text{S} = -3 \text{ to } -3.5, \log \text{mH}_2 = -5.5, \log \text{fO}_2 = -30 \text{ to } -29. \]
دیاسنجی و شرایط فیزیکو شیمیایی محلول کانه‌دار بر سوئیت
کلریت و سیالات در گیر در معدن همس - طلای قلعه زری

محمد حسن کرمی پور
گروه زمین شناسی، دانشگاه فردوسی مشهد

خیزن زاویه
مركز ویژه مطالعات وتحقیقات ذخایر و اکتشافات معدنی دانشگاه تاسمانیا، استرالیا

چکیده: معدن همس قلعه‌زهی برگر گیری معدن کانه‌دار ایران، در 168 کیلومتری جنوب
بیرجند واقع شده است. عیار مس بین 50 تا 8 درصد تقریبا 20 تا 150 گرم در تن و طلا بین 0 تا
15 گرم در تن است. کانه سازی عمده‌ای در سه رگه متعدد نشده است. غالب سنگهای در برگیرنده
شامل آندزیت تا آندزیت بازالتی (پاپولوئس - انتوس) است. کانه‌سازی منطقه شامل
کوارتز، همانتیت (اسکولاریت)، کلریت، کالکوپریت، طلا، + کانی‌های خاوه تقریبا و
+ پیروبر است.

نمونه‌نگرفته از همس رگه‌ای در اعماق 150 تا 100 - 15 تا 170- متری صورت گرفته
واز رگه‌ها به فاصله 10 متر از یکدیگر نمونه برداری شد. غالب کلریتها از نوع ریپولدیت غنی از
اهر و قند نمونه پینکلریت. ترموگینیت از دمای تشکیل کلریتها براساس فرمول کالکسیو و
+ نیوا [9] محاسبه و بین C 0.5 تا 200 درجه سالار است. دمای کلریتها 10 تا 30 درجه سالار از دماهای
کلریتها در گیر و نیوا [9] براساس کلریتها قلعه‌زی تغییر می‌کند و فرمول جدید جهت
محاسبه دمای تشکیل کلریتها ارائه می‌شود. در محلول یکسان در قلعه‌زی نتایج به شرح زیرندا
+ logMnH2S < logMnCO3 - 0.5 و logMnH2O2 - 0.5 - 2 - 10

واژه‌های کلیدی: کلریت، ریپولدیت، قلعه‌زی، دماسنجی
مقدمه

معند مس قله‌زمی در استان خراسان و در زیر ۱۸۲ کیلومتری جنوب شهرستان برجند واقع شده است. کاسیار قله‌زمی مهمترین و بزرگترین معند مس نوع رگه‌ای ایران است. غالب سنگ‌هایی در برجند در نوع آنفیلی‌سیاه‌بازی‌های با ترکیب آلوده بناهایت تا بازلت است. در مرکز منطقه، شیل و ماسه سنگ‌های انرژی‌رسان دارند. رگه‌های اداری امتداد شمال غرب جنوب شرق و شرق آنها ۸۰ تا ۱۰۰ درجه به سمت شمال شرق است. عرض منطقه کدی سازی بین ۵۰ تا ۱۰۰ متر است. عبارتی مس بین ۵ تا ۸ تای درصد طلا ۶۰ تا ۱۵ تای در تن و نقره سی تا ۲۰۰ تای در تن گزارش شده است [۱]. مجموع میزان ذخیره برداشته شده و بقایی منده در حدود ۱۰ میلیون تن پرآوراند می‌شود.

براساس آثار باقی‌مانده از برداشت رگها در مناطق پر افزایش، قبایل‌ها نسبتاً زیاد و موارد دیگر، بهره‌برداری در این معند از ادوار گذشته (زمان شدید) انجام می‌شده است. مطالعات و بهره‌برداری از سوی دو شرکت ایرانی و رژه‌ی (شرکت لوت و تینتسو زاین) از سال ۱۳۶۹ آغاز و در سال ۱۳۷۱ شرکت ملی صنایع مس ایران به شرکت رژه‌ی را خریداری کرد. در حال حاضر شرکت‌های مبانکان و صنایع مس ایران از این معند بهره‌برداری می‌کنند.

روش مطالعه

به منظور مطالعه کانی‌شناسی (شناسایی کانی‌ها و مطالعه پارازن‌ها)، دماسنجی، و نیز تجزیه کانی‌ها با میکروسکوپ الکترونی، با سه رگه‌ای اصلی نمونه‌برداری شد. نمونه‌برداری از تنولها در اعتیاق ۱۰۰-۲۰۰ متر دیگر اچ (Shaft No.1) در چاه شماره (۱) در هر عمق به عنوان ایستگاه منبع انتخاب شد، و نمونه‌برداری در هر عمق به فاصله ۱۰ متر از یکدیگر در امتداد جنوب شرق و شمال غرب صورت گرفت. نمونه‌هایی برداشت شده از سمت جنوب شرق چاه شماره (۱) با علامت R در محدوده شمال غرب با علامت L نمايش داده شدند. ابتدا مقاطع صیقلی و نازک صیقلی از هم‌نمونه‌ها به شدت کانی‌های فلزی و غیرفلزی آنها به دقت مورد مطالعه قرار گرفتند. در رگه‌های شماره (۲) و (۳) در اعتیاق مختلف، همراه کوارتز، هماتیت و کالکوپیریت، کانی کلریت مشاهده شدند. با استفاده از میکروسکوپ الکترونی، ترکیب کلریت تعمیم شد و برای کنترل دمای به دست آمده از کلریت سیالات در گیر کوارتز نیز مورد مطالعه قرار گرفتند.
زمین شناسی

قلم‌بندی‌های موجود در منطقه زیرخمون دارند شیل و ماسه سنگهای زوراسیک بوده‌اند. این واحدهای جنوب و جنوب شرق رگه‌هایی اصلی واقع شده است. (شکل 1). در ارتفاعات شرق رودهای (شرق رستای قلعه‌زاری)، کنگلومرات قرمز رنگ کریستال تپه‌ای به صورت تابلوسیته رود شیل و ماسه سنگهای زوراسیک قرار دارند [2]. روی کنگلومرا آهک ماسه‌ای به ضخامت 200 متر قرار گرفته که براساس نوع فسیلهای به کرتاسه فوقانی تعلق دارد. در جنوب ارتفاعات دم روباه آهک توده‌ها کرم رنگ با ضخامت 130 متر و با سن بالاترین قرار دارد. فعالیت‌های آتشنشانی در این منطقه بعد از پالئوئوس سنگ‌پوش و در جنوب مرحله تکرار شده است. انواع سنگهای پیروکلاستیکی و گدازه در این منطقه شناسایی شده‌اند (شکل 1).

درزهای و گسل‌های دارای سن روند زیبرن [2]

1- روند شمال غرب- جنوب شرق، 2- روند شمال شرق- جنوب غرب و 3- روند شمالی- جنوبی. روند شمال غرب- جنوب شرق قدمت و بخش اعظم کانی‌یار مس- نفره در این ساختارها تشکیل شده است.

کانی‌یار و دگرگونی

کانسار قلعه‌زاری از نوع رگه‌های است. به‌هر برداری از سه رگه شمارة (1)، (2) و (3) و در ابعاد بیش از 200 متری در حال انجام است (شکل 1). طول رگه (1) بیش از 3 کیلومتر است و به‌هر برداری در طول کمتر از 2 کیلومتر انجام شده است. طول رگه (1) 650 متر و طول رگه (2) کمتر از 500 متر است. عرض رگه‌ها بین 90 تا 7 متر تغییر می‌کند. در
جدول ۱ - عیار کانی‌گیری مس قلعه‌زری [۱]

<table>
<thead>
<tr>
<th>Ag (ppm)</th>
<th>Au (ppm)</th>
<th>% Cu</th>
<th>عرض ریگ</th>
<th>عمق</th>
<th>چاه</th>
<th>ریگه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۶۴۰</td>
<td>۰.۳۳</td>
<td>۸.۹۱</td>
<td>۳</td>
<td>۷۰</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۶۸۰۰</td>
<td>۰.۹۷</td>
<td>۸.۸۲</td>
<td>۷۲</td>
<td>۱۰۰</td>
<td>۲</td>
<td>۳</td>
</tr>
<tr>
<td>۸۵۵۵۰</td>
<td>۱۸.۳۲</td>
<td>۷.۲۹</td>
<td>۹۸.۲۲</td>
<td>۱۰۰</td>
<td>۱</td>
<td>۱۷</td>
</tr>
</tbody>
</table>

محل تلاقی گسل‌ها و زرنگ‌های بازشدنی، عرض ریگ‌ها بيشتر می‌شود. سه ریگ مهم که در آن به‌هم برداری انجم می‌شود دارای امتداد شمال غرب-جنوب شرقی بوده و شیب آنها بیش از ۸۰ درجه و به سمت شمال شرقی است. عیار مس، طلا و سایر عناصر کانی‌گیری قلعه‌زری در ریگ‌های (۲) و (۳) در بخش‌هایی که در گذاشته‌شده برداشت‌می‌شده در جدول (۱) آمده است.

عبار طالا فقط در ریگ (۳) بالاست، اما در ریگ‌های (۱) و (۲) عیار آن پایین است.

بافت از نوع پر کننده فضای خالی است. حالت‌های پری و شاهانی نیز دیده می‌شود.

بلورهای کوارتز نوع شفاف در اندازه‌های بیش از ۱ سانتی‌متر بافت می‌شوند.

خلاصه بازاری گنجایشی اولیه در کانی‌گیری قلعه‌زری به شرح زیر است:

- هماواتیت (اسپکولاریت)، کلریت و کوارتز از اولین کانی‌های متبلور شده است.
- ادامه بکر، کالکورنیت و کانی‌های حاوی نقره و طلا تشکیل شده‌اند.
- پیریت در دمای پایین تر تشکیل شده است.
- دگرگونی گنجایشی از نوع پر کننده است. کانی‌های سنگ‌پوش به‌طور کامل به‌ایدیت و کلریت درگذشته‌اند. ایدیت علوفه‌بر می‌شوند، در سطح دریا و شکستن‌ها نیز تشکیل شده است. شعاع گسترش منطقه‌بروپتی نسبتاً زیاد است. منطقه آژیلیتی
نسبتاً محدود و در اطراف رگه‌ها تشکیل شده است. منطقه سیلیسی شامل منطقه‌ی
کانی سازی و بخشی از سنگ‌های دیواره است.

تکیه شیمیایی و نوع کلریت
نمونه‌های برداشت شده از اعماق 70-300، 100-170 و 170-215 در طول رگه‌های (1)،
(2) و (3) برای ارزیابی کانی‌های فلزی و غیرفلزی به دقت مورد مطالعه قرار گرفتند.
نمونه‌هایی که حاوی کلریت و هماتیت + کوارتز + کالکوپیریت ± پیریت بودند، برای
مطالعه انتخاب شدند. کانی کلریت غالباً همراه با هماتیت و کوارتز متغیر شده است.
клریت‌ها با استفاده از میکروسکوپ الکترونی نوع
اندازه‌گیری (CSP) دانشگاه تاسمانیا (استرالیا) تجزیه شدند. در جدول (2) ترکیب کلریت‌ها
گزارش شده است. توزیع کانی‌های متغیر کلریت براساس 28 اکسیان (بدون O2 H2O)
یا براساس (O, OH) 34 محاسبه شده است که در جدول (2) [5] آمده‌اند.
با استفاده از دمودرهای استاندارد، [6] نوع کلریت‌ها مشخص شدند. کلریت‌های رنگ
(1) از نوع ریبدولیت (غنی از آهن) است (شکل 2-الف). کلریت‌های رنگ (2) بیشتر از
نوع ریبدولیت و دو نمونه در محدوده پینوکلریت - برانزوریجت واقع شده‌اند (شکل
2-ب). کلریت‌های رنگ (3) بیشتر از نوع ریبدولیت است و دو نمونه در محدوده برانزوریجت
و اکسیان (شکل 2-ب). در مجموع، کلریت‌های سه رنگ از نوع غنی از آهن بوده و
تشکیل آنها به همراهی این موضوعات با تالسیس می‌گردند.

تعیین دمای تشکیل کانی‌های قلب‌مندی با استفاده از ترکیب کلریت
استفاده از ترکیب کلریت به‌طور منظم دماسنجی از سوی دانشمندان مختلف از
ترکیبات آژامیگاهی و انتقال‌های غیرفلزی مالکی در مناطق جسم‌های آبکرم فعال
انجام شده است [7], [8] و [9]. مطالعات دماسنجی در مناطق با جسم‌های آبکرم فعال
(مکزیک) و تجزیه کلریت‌های تشکیل شده در این مناطق توسط کاتالیتو و نیروها
انجام داده‌اند. تغییرات خلیج خریزی بین تغییرات دمای آب و میزان
AIV در منطقه کلریت برقرار است. در این خصوص رابطه

\[T = \frac{AIV}{0.826 + AIV} \]

به منظور تعیین دمایی تشکیل کلریت ارائه گردیده است [9].

میزان AIV در این معادله براساس محاسبه فرول کلریت بر مبنای 12 اکسیان است.
جدول 1- ترکیب شیمیایی کلرنهای معدن فله‌ی زری و محاسبه فرمول آن براساس 128 کسیون

<table>
<thead>
<tr>
<th>نمونه</th>
<th>1-17، L-100</th>
<th>1-100، R-100</th>
<th>1-125، L-200</th>
<th>1-125، R-100</th>
<th>1-175، L-200</th>
<th>1-175، R-100</th>
<th>1-200، L-100</th>
<th>1-200، R-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>22/8</td>
<td>22/10</td>
<td>22/10</td>
<td>22/10</td>
<td>22/10</td>
<td>22/10</td>
<td>22/10</td>
<td>22/10</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
</tr>
<tr>
<td>TFeO</td>
<td>30/10</td>
<td>30/10</td>
<td>30/10</td>
<td>30/10</td>
<td>30/10</td>
<td>30/10</td>
<td>30/10</td>
<td>30/10</td>
</tr>
<tr>
<td>MnO</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
</tr>
<tr>
<td>MgO</td>
<td>18/10</td>
<td>18/10</td>
<td>18/10</td>
<td>18/10</td>
<td>18/10</td>
<td>18/10</td>
<td>18/10</td>
<td>18/10</td>
</tr>
<tr>
<td>CaO</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
</tr>
<tr>
<td>H₂O</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
<td>19/10</td>
</tr>
<tr>
<td>جمع</td>
<td>98/10</td>
<td>98/10</td>
<td>98/10</td>
<td>98/10</td>
<td>98/10</td>
<td>98/10</td>
<td>98/10</td>
<td>98/10</td>
</tr>
</tbody>
</table>

Si: 0/80 AlIV: 1/10 AlVI: 1/10 Mg: 18/10 TFe: 30/10 Ca: 1/10 Mn: 1/10 Ti: 1/10

جمع کاتیونها: 21/10 تعداد تجزیه

TFe\(^{3+}\) = Fe\(^3+\), TFeO = FeO + Fe₂O₃

به‌روش نمودار پردازی مرحله محاسبه شود و داده‌های R و L به‌روش داده می‌باشد.

\[x = \frac{[(Fe+Mn)/(Fe+Mn+Mg)] \times 100}{TFe^{3+}+Fe^{2+}} \]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>3/1/1</td>
<td>2/0/4</td>
<td>3/0/4</td>
<td>3/0/4</td>
<td>2/0/4</td>
<td>2/0/4</td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
<td>.0/.1</td>
<td>.0/.1</td>
<td>.0/.1</td>
<td>.0/.1</td>
<td>.0/.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>TFeO</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>MnO</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>MgO</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>CaO</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>H₂O</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>جمع</td>
<td>3/1/1</td>
<td>2/0/4</td>
<td>3/0/4</td>
<td>3/0/4</td>
<td>2/0/4</td>
<td>2/0/4</td>
</tr>
<tr>
<td>Si</td>
<td>0/1/1</td>
<td>0/1/1</td>
<td>0/1/1</td>
<td>0/1/1</td>
<td>0/1/1</td>
<td>0/1/1</td>
</tr>
<tr>
<td>Al⁴⁺</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>Al⁶⁺</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>Mg</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>TFe</td>
<td>0/1/1</td>
<td>0/1/1</td>
<td>0/1/1</td>
<td>0/1/1</td>
<td>0/1/1</td>
<td>0/1/1</td>
</tr>
<tr>
<td>Ca</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>Mn</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>Ti</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>جمع کل و</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
<td>1/1/1</td>
</tr>
<tr>
<td>2/0/4 ×</td>
<td>3/0/4</td>
<td>2/0/4</td>
<td>2/0/4</td>
<td>2/0/4</td>
<td>2/0/4</td>
<td>2/0/4</td>
</tr>
</tbody>
</table>

توجهات:

- TFe = Fe⁹⁺ + Fe⁺²
- TFeO = Fe₂O + Fe₂O₃
- \(\times = \frac{(Fe + Mn)/(Fe + Mn + Mg)}{100} \)
شکل ۳- نمایش دماهی تشکیل کلریت‌های رکه (۱) (۲) و (۳)
اعماق ۰-۱، ۱۰۰-۱۳۵، و ۱۷۰-۱۷۰ متری معدن قلعه‌زی
جدول 3- دماه تشکیل کلریتهای فلزه زری

<table>
<thead>
<tr>
<th>(Fe+Mn)100 (Fe+Mn+Mg)</th>
<th>MgO</th>
<th>FeO</th>
<th>AlIV</th>
<th>T°C</th>
<th>عمق</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.50</td>
<td>0.20</td>
<td>4.20</td>
<td>4.13</td>
<td>8.00</td>
<td>L-300-70</td>
<td>1</td>
</tr>
<tr>
<td>70.12</td>
<td>0.22</td>
<td>3.22</td>
<td>3.29</td>
<td>7.00</td>
<td>L-200-70</td>
<td>1</td>
</tr>
<tr>
<td>72.12</td>
<td>0.12</td>
<td>3.62</td>
<td>4.25</td>
<td>8.00</td>
<td>L-100-100</td>
<td>1</td>
</tr>
<tr>
<td>59.25</td>
<td>0.29</td>
<td>2.26</td>
<td>3.80</td>
<td>7.00</td>
<td>L-200-100</td>
<td>1</td>
</tr>
<tr>
<td>59.50</td>
<td>0.09</td>
<td>3.26</td>
<td>4.13</td>
<td>8.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>58.11</td>
<td>0.17</td>
<td>3.12</td>
<td>4.13</td>
<td>8.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>68.54</td>
<td>0.02</td>
<td>3.60</td>
<td>4.25</td>
<td>8.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>64.20</td>
<td>0.22</td>
<td>3.22</td>
<td>3.29</td>
<td>7.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>59.92</td>
<td>0.32</td>
<td>3.62</td>
<td>4.25</td>
<td>8.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>60.32</td>
<td>0.00</td>
<td>3.00</td>
<td>3.00</td>
<td>7.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>70.70</td>
<td>0.10</td>
<td>3.10</td>
<td>4.10</td>
<td>8.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>60.15</td>
<td>0.15</td>
<td>2.15</td>
<td>1.15</td>
<td>1.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>61.94</td>
<td>0.21</td>
<td>1.21</td>
<td>1.21</td>
<td>1.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>61.11</td>
<td>0.01</td>
<td>3.01</td>
<td>3.01</td>
<td>7.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>62.91</td>
<td>0.19</td>
<td>3.19</td>
<td>3.19</td>
<td>7.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>60.24</td>
<td>0.14</td>
<td>2.14</td>
<td>2.14</td>
<td>2.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>60.50</td>
<td>0.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>52.70</td>
<td>1.11</td>
<td>3.11</td>
<td>3.11</td>
<td>7.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>59.17</td>
<td>0.18</td>
<td>2.18</td>
<td>2.18</td>
<td>2.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>51.30</td>
<td>1.14</td>
<td>3.14</td>
<td>3.14</td>
<td>7.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>59.80</td>
<td>0.17</td>
<td>2.17</td>
<td>2.17</td>
<td>2.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>52.32</td>
<td>1.07</td>
<td>3.07</td>
<td>3.07</td>
<td>7.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>61.00</td>
<td>1.12</td>
<td>3.12</td>
<td>3.12</td>
<td>7.00</td>
<td>L-200-130</td>
<td>1</td>
</tr>
<tr>
<td>(Fe+Mn)100</td>
<td>MgO</td>
<td>FeO</td>
<td>AlIV</td>
<td>T°C</td>
<td>عمق</td>
<td>رنگ</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>(Fe+Mn+Mg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58,66</td>
<td>1,23</td>
<td>32,32</td>
<td>1,350</td>
<td>283</td>
<td>L-5</td>
<td>100</td>
</tr>
<tr>
<td>56,74</td>
<td>1,22</td>
<td>32,42</td>
<td>1,345</td>
<td>282</td>
<td>L-5</td>
<td>100</td>
</tr>
<tr>
<td>54,70</td>
<td>1,23</td>
<td>32,52</td>
<td>1,346</td>
<td>283</td>
<td>L-5</td>
<td>100</td>
</tr>
<tr>
<td>58,84</td>
<td>1,22</td>
<td>32,42</td>
<td>1,345</td>
<td>282</td>
<td>L-5</td>
<td>100</td>
</tr>
<tr>
<td>53,84</td>
<td>1,28</td>
<td>32,62</td>
<td>1,350</td>
<td>283</td>
<td>L-5</td>
<td>100</td>
</tr>
<tr>
<td>56,74</td>
<td>1,22</td>
<td>32,42</td>
<td>1,345</td>
<td>282</td>
<td>L-5</td>
<td>100</td>
</tr>
<tr>
<td>54,70</td>
<td>1,23</td>
<td>32,52</td>
<td>1,346</td>
<td>283</td>
<td>L-5</td>
<td>100</td>
</tr>
<tr>
<td>58,84</td>
<td>1,22</td>
<td>32,42</td>
<td>1,345</td>
<td>282</td>
<td>L-5</td>
<td>100</td>
</tr>
</tbody>
</table>

توجه داشته باشید، تمامی نمونه‌ها به روشی مشخص و به‌صورت مناسب بودند. با استفاده از فرمول کانیلیو و نیوا (9) محاسبه شد. در حالت (3)، دمای تغییرات این کلریت‌ها و میزان تغییرات در درجه (4) بین 100°C تا 27°C است (شکل 1). اختلاف دمای قابل توجهی بین عمق‌ها و متری در این رنگ دیده نمی‌شود (شکل 2). دامنه تغییرات دما در رنگ (2) بین 100°C تا 27°C است (شکل 3). در این رنگ اختلاف دما بین عمق‌ها و متری مشاهده نمی‌شود. دمای نمونه‌های عمق 70-100 متری به سمت جنوب غرب 15°C تا 10°C کمتر است. اختلاف دما بین سطح و عمق 100-170 متری در رنگ (3) مشاهده نمی‌شود (شکل 3). مقایسه دمای سیالات در گری با کلریت دمای سیالات در گری موجود در بلورهای کوارتز می‌تواند به‌کار گرفته شود که گری‌های آن‌ها همچنین با کلریت بوده است در رنگ‌های (1)، (2) و (3) اندازه‌گیری شدند (جدول 4). سیالات در گری اندازه‌گیری شده در سه رنگ از نوع غنی از محلول‌نتان. دمای اندازه‌گیری شده در این سیالات در تمامی رنگ‌ها بیش از دمای محاسبه شده براساس ترکیب کلریت است.
فرمول محاسبه دمای تشکیل کلریت که توسط کاتلینو و نیوا [9] ارائه شده است براساس دمای محدوده 0°C تا 60°C بوده است. از آنجا که کلریتهای قلبه زری در

جدول ۴ - مقایسه دمای سیالات درگیر کوارتز با دمای کلریت در معدن قلمه زری

<table>
<thead>
<tr>
<th>AlIV</th>
<th>دمای کلریت (سانتی‌گراد)</th>
<th>دمای سیال درگیر میانگین (سانتی‌گراد)</th>
<th>عمق</th>
<th>رگه شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۶۶</td>
<td>285</td>
<td>255</td>
<td>۲۰۰</td>
<td>-۲۵ و ۱۷۰</td>
</tr>
<tr>
<td>۱/۶۵</td>
<td>280</td>
<td>210</td>
<td>۱۷۰</td>
<td>-۵ و ۱۷۰</td>
</tr>
<tr>
<td>۱/۹۵</td>
<td>270</td>
<td>245</td>
<td>۱۰۰</td>
<td>-۷ و ۱۰۰</td>
</tr>
<tr>
<td>۱/۴۵</td>
<td>482</td>
<td>315</td>
<td>۶۰۰</td>
<td>-۱۰۰ و ۵۰۰</td>
</tr>
<tr>
<td>۱/۲۵</td>
<td>487</td>
<td>610</td>
<td>۱۲۵</td>
<td>-۱۰۰ و ۵۰۰</td>
</tr>
</tbody>
</table>

شکل ۳ - نمایش بررسی میزان تغییرات (IV) Al و دما در کلریتهای قلبه زری و کاتلینو و نیوا [5] و ارائه معادله جدید جهت محاسبه دمای تشکیل کلریت

\[
y = 0.0039x + 0.0756 \\
R^2 = 0.9353
\]
دمای بالاتر از ۲۴۰ درجه سانتی‌گراد تشکیل شده‌اند. دمای محاسبه شده براساس معادله کالوری تگرگی شده به روش
سیالات درج گیری است.

به منظور اصلاح این معادله و کاربرد آن برای دمای بالاتر، اطلاعات دماسنجی براساس سیالات درج گیری کلریت و کورانتزی و بهره‌برداری از نمونه‌های صورت‌گرفته در معدن قلمه‌زمیای اقیانوسی شده توسط کالریت و نیوان
[۹] در نمونه (شکل ۴) ترکیب شده‌اند. با استفاده از این اطلاعات بهترین خط ترسیم
شده (شکل ۴). معادله‌ای که براساس این نمونه به دست آمده به قرار زیر است.

\[
T = \frac{A_{IV}}{Al_{IV}} = \frac{0.75}{0.39}
\]

فرمول کلریت بر مبنای ۱۴ اکسیژن است.

تیمین شرایط فیزیکوchemیایی محلول
برای پایایی مطالعات تجاری - آزمایشگاهی بریندیس و اسکات [۱۰] معلوم شد که رابطه
نزدیکی بین Si در موجودیت تراهرداران نسبت
(Fe)/(Fe+Mn+Mg) در کلریت و نوع اکسیدهای آهن برقرار است. تغییرات در نسبت
(Fe)/(Fe+Mn+Mg) در کلریت و ارتباط آن با نوع پارازن سولفیدهای آهن (پیروت و پیروتی) و اکسیدهای آهن (مگنتیت
و هماهنگ) از سویی دانشمندان مختلف مطالعه و بررسی شده است [۱۱ - ۱۳]. جان و آلک [۱۲ و ۱۳] مطالعات زیادی برای کریت انگام داده است و با استفاده
از معادلاتی که ارائه داد و با در دست داشتن ترکیب کلریت، می‌توان دمای
log fO2 محلول را محاسبه کرد. ترکیب چند کلریت معدن قلمه‌زمی‌ی در اختیار آن قرار
داده شده که بس از محاسبات لازم دمای این نمونه‌ها ۱۰۵°C ۱۰۰°C تا
log fO2=۲۹-۱۰ تا
و تشکیل کلریت‌ها قلمه‌زمی‌ی با همانیت شرایط
log fO2=۲۹-۱۰ تا
بنا توجه به
ور پوشیدن محلول گرماپی‌بوده است.

فوق اکسیدان محلول گرماپی بوده است.

نسبت (Fe+Mg)/(Fe+Mn+Mg) نسبت
تشکیل آنها دارد. در دمای
۲۷۰°C ۱۴۳ تا نسبت
۵۹ به
کاهش می‌یابد (جدول ۲).

\[
Si = \frac{(Fe+Mg)/(Fe+Mn+Mg)}{\text{نسبت}} = \frac{5}{6}
\]

جهان‌ریزی رابطه عکس دارد. در حالت ۲۴ این نسبت Si=۵/۶۴ و در شرایط

شکل ۵ - نمایش بررسی نحوه تغییرات FeO و دما در کلرتهای قله به زره
شکل ۶- نمایش ترکیب ناحیه تیترات MgO و دما در گرایه‌های قلبی زری
شکل ٢- نمایش بررسی نرخه‌نگاری $\log m_S^2$ و $\log m_H^2$.

این نسبت به ٧٠٥ افزایش می‌یابد.

میزان FeO با دمای تشکیل کلریتهای قلهمزی رابطه مستقیم دارد، در دمای ٢٩٥٠\circC میزان FeO حدود ٢٩/٢ در دمای ٢٩٥٠\circC کلریتهای فلزی در FeO کمتری به‌روزدارند (شکل ٥). کلریتهای FeO که در دمای بالاتر تشکیل می‌شوند از FeO بیشتر و آنها از FeO کمتری به‌روزدارند.

میزان MgO با دمای تشکیل کلریتهای قلهمزی نسبت عکس دارد، در دمای ٢٩٥٠\circC میزان MgO حدود ٧/٨ در دمای ٢٩٥٠\circC افزایش می‌یابد (شکل ٥). میزان فراوانی کلریتها، کمتری عکس MgO است. کلریتهای دمای بالا FeO کمتر و دمای پایین حاوی MgO بیشترند. (شکل ٥)

با استفاده از نمودار شکل (٧) و با نظر گرفتن کانی‌هایی که هم‌زمان با کلریتها، هم‌زمان با کالکوپیریت (هم‌زمان با کالکوپیریت) در رگه‌های معدن قلعه‌زی تشکیل شده‌اند معلوم شده‌که ٥/٥ با محصول $\log m_S^2$ و $\log m_H^2$ پرده‌است.
نتیجه
کلریتها معنیقله‌زی که در منطقه کانی سازی مس همزمان با هماهنگ، کوارتز وکالکوپرت تشکیل شده‌اند از نوع ریبدولیت غنی از آهن و جند نمونه آن از نوع پیتکوپرت - برانزوروژیاند. محلول گرمابی حالت فوق اکسیدان داشته‌است. دمای تشکیل کلریتها قلمزایی با استفاده از فرمول کاتالینو و نیوا (9) محاسبه شد و با دمای سیالات درگیر داخل بلورهای کوارتز مورد مقایسه قرار گرفت. دمای کلریتها در حدود 100°C 180°C کمتر از دمای سیالات درگیر است. فرمول کاتالینو و نیوا براساس ترکیب کلریتها که در دمای کمتر از 180°C قابل تشکیل شده‌اند به دست آمده است. با استفاده از ترکیب کلوتیه قلمزایی و کلریتها مطالعه شده توسط کاتالینو و نیوا (9) نمونه‌های جدید ترمیم و در این خصوص فرمول جدید زیر برای محاسبه دمای تشکیل کلریتها تا دمای 200°C ارائه شد:

\[
T = \frac{A_{11}^{IV} - 0.78}{0.39}
\]

مراجع
2. دیم، محمد، 1322، بررسی زمین‌شناسی کانی‌شناسی، زمین‌شناسی، زونومگرافی و زون کانتر مس قلعه‌زری، پایان‌نامه کارشناسی ارشد زمین‌شناسی اقتصادی دانشگاه تربیت مدرس، ص. 133.