A Study of Corrosion on Discovered Iron Objects of Bukan Excavation

Bahadory, R.
Research Center for Conservation of Cultural Relics,
Iranian Cultural Heritage Organization, Tehran

Ahmadi, S. H.
Chemistry & Chemical Engineering Research Center Of Iran

Key Words: Iron Corrosion Products, Discovered objects, Bukan excavation

Abstract: During the excavations of Tappeh Ghalaychi near the city of Bukan in west Azerbaijan province, a number of iron and bronze objects were found that are belonged to the 8th century B.C. The corrosion of iron objects were studied after chemical analysis. As these objects have a very high cultural value, chemical analysis by using destructive methods is not possible, therefore scanning electron microscope with energy dispersive X-ray microanalysis (SEM-EDX), which allows analysis without any damaging the objects, was used. Likewise for analyzing the corrosion area of the metal objects, Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) were also used. The results of this research showed that a layer of magnetite which is covered with a layer of hematite exists at the surface of the iron objects. In addition, wuestite and goethite were identified in the corrosion products layers.
بررسی خورداری یک شیء آهنی کشف شده از حفاری بوکان

رویا بهادری
پژوهشکده حفاظت و مرمت آثار تاریخی-فرهنگی، سازمان میراث فرهنگی کشور

سید حمید احمدی
مرکز پژوهش‌های شیمی و مهندسی شیمی ایران

چکیده: در حفاری‌های باستانی شناسی تپه قلاچی در شهر بوکان از استان آذربایجان غربی، تعدادی اشیاء آهنی و برنزی به دست آمده که اشیاء آمنی یک پس از تجزیه شیمیایی از نظر خورداری مورد بررسی قرار گرفتند. این اشیاء از نظر تاریخی بسیار با ارزش بودند و بنابراین امکان تجزیه شیمیایی آنها با روشهای تعریفی وجود نداشت. به همین دلیل از روش‌های مایع‌سکوپی پیما و شیمیایی همراه با تجزیه شیمیایی با‌شناسی انتخاب شد. برای اینکه قابلیت تجزیه ناتخیری نکته‌ای در اجسام را دارد و برای بررسی خورداری از پراش (FT-IR) و طیف‌سنج فیوز بررسی شد. نتایج حاصل از این بررسی نشان داد که بعضی از اشیاء آهنی غالباً از هماینی از امکان وجود دارند که خود با لایه‌هایی از هماینی بوسیله شده است. علاوه بر این وجود وسیع و قابلیت توزیع لایه‌های خورداری ثابت شده است.

واژه‌های کلیدی: محصولات خورداری آهن، اشیاء مکشوفه، حفاری بوکان
مقدمه

اولین گزارش استفاده انسان از آهن در مصر، آسیا صغری، آشور، چین و هند بوده است که به دو هزار سال پیش از میلاد مسیح بازمی‌گردد. آهن مورد استفاده در نخستین کاربردها از سنگ‌های آسمانی به دست آمده بود. آهن استخراج شده برای نخستین بار در سال ۱۳۰۰ قبل از میلاد مسیح تولید شد و چینی به نظر می‌رسد که این آهن استخراجی به طور تصادفی و به عنوان محصول آتش بسیار داغ ایجاد شده در بالای صخره‌ها یا خاک‌های حاوی آهن، به دست آمده باشد. صخورهای آهنی، در اثر گرمای و در حضور زغال سنگ داغ و در غیاب هوای، به آهن کاهش می‌یافته. آهن اسفنلی کاهش یافته در حالت گدازه بخشی کاری شده و به این ترتیب پیش تلفه‌ها از فاز خارج می‌شود. این فرآیند که چکش کاری و کاری که روی آهن انگیزه می‌شود آهن را به آهن کار شده (1) تبدیل می‌کند. آهن‌های کاری شده، با نا خاصیت‌هایی تیز و نقره‌آهن، سیلیسیم، مس‌گر، و کربن پس از بالایش مکانیکی، قابلیت چکش کاری، شکل‌پذیری، و جوش کاری کافی را دارا می‌باشند (2). آشیان‌های آهنی تا ۱۵۰۰ سال پیش از میلاد مسیح تا حدود این رژیم تهیه شدند که دمای لازم برای این احیای در حدود ۱۲۰۰ درجه سانتی‌گراد بوده است. از آن جا که این دما زیر نقطه ذوب آهن خالص است، آهن هرگز به فاز تاپیسم رفته و مستقیماً در فاز جامد از سنگ معدن به فاز کاهش می‌یافته. جنون نواحی مختلف فاز در دماهای مختلف احیای می‌شود و در فشار شرایط جوی متغیر فاز نیز، نقطه مختلف احیای می‌شود و با مقادیر مختلف، کربن را جذب و از دست می‌دهد. همچنین از آن جا که این فرآیند در فاز مایع انگیزه می‌شود، میزان عناصر در تمامی فاز‌های سنگ تمایل از آهن کربن نبوده. بنابراین آهن کار شده کم و بیش خالص، ولی بسیار ناهمگن بوده و میزان کربن در نقاط مختلف آن متغیر و به طور متوسط کمتر از ۱/۰٪ بوده است (۱-۲). سرعت تجریب این آهن در خاک بسیار زیاد است و محصولات خودرکی معمولی لاپ‌های ضخیم را تشکیل می‌دهند. وجود کریستال آهن در محاسبات جذب رطوبت و تشکیل محلول اسیدی می‌شود. این اسید با فاز کلرید آهن بیشتری ایجاد می‌کند و بدین ترتیب فرانکی تخریب ادامه می‌یابد. به همین دلیل بیش از هر عمل مرموزی نخست باید جسم آهنی را نرم کرده کرد (۸-۵).
در حفاری‌های باستانی شناسی تبه قلاعیچی در شهر بورکان از استان آذربایجان غربی تعداد زیادی شیء آسیه و برنزی به دست آمده. تبه قلاعیچی به طبقه‌بندی همان ایزورتی‌ها و ایزورتی‌ها بازیافت‌هایی که ما از میان بخش‌های ۸۰۰ سال پیش از میلاد مسیح بوده است، جزء از مجموعه‌ای یافته‌ها و شواهد حاکی از وجود یک روش قلاعیچی در غرب ایران و در جنوب دریاچه ارومیه است. با وجود زمان کوتاه و وسعت کم حفاری، تعداد قابل مروری از اشیا آسیه و برنزی از قبیل چاقو، تیغه خنجر، زین و لگام اسب، گل‌میخ، دستبند، و سربیشکان به دست آمده‌اند که بین آنها شیء آسیه که دارای مغز فلزی بودن برای مطالعه انتخاب شدند.

روش‌گار

به منظور بررسی خوردنگی اشیاء آسیه تاریخی، نخست تعدادی از اشیاء آسیه به دست آمده از حفاری‌های قلاعیچی در بورکان جمع آوری شدند. برای تشخیص لایه‌ها و تجزیه شیمیایی از میکروسکوپ الکترونی بیمایشی همراه با تجزیه شیمیایی باشندگی انرژی SEM/SEM-EDX از روش‌هایی استفاده شد. برای آماده سازی نمونه‌ها برای SEM/SEM-EDX برای بررسی در سطح و سپس این قرص‌ها به طریق مکانیکی صیقل داده شدند. علاوه بر این، از روش پراش سنجی برتو ایکس (FT-IR) و طیف سنجی تبیندی فوریه (XRD) و طیف سنجی فرورسخ جریان جریان (SIMENS 5000 200 mesh) به‌کار گرفته شد. نمونه‌ها به صورت بودر ۲۰۰ تله با دستگاه پراش سنج برتو ایکس ۵۰۰۰ ساخته شدند. در طیف سنجی FT-IR از نمونه‌ها قرص صورت گرفت.

بحث و برداشت

برخی از اشیاء آسیه به دست آمده از حفاری، کاملاً خورده و به ترکیبات معدنی تبدیل شده‌اند. اما در شیء آسیه آن‌ها هنوز مغز فلزی وجود داشت. نتایج تجزیه شیمیایی از این شیء نمونه‌ای از آن‌ها روزاً نمونه‌های آهن انتخاب شده بود. نشان می‌دهد که اشیاء آسیه آن‌ها از قلیان کم چرب ساخته و ناهمگن کربنیزه شده‌اند [۹].
جدول ۱ نتایج تجزیه شیمیایی و گسترش درصد عناصر در شش نمونه از آشیاء آهنی به روش EDX

<table>
<thead>
<tr>
<th>عنصر</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>99/3-99/8</td>
</tr>
<tr>
<td>Si</td>
<td>0/02-0/08</td>
</tr>
<tr>
<td>P</td>
<td>0/01-0/02</td>
</tr>
<tr>
<td>S</td>
<td>0/01-0/05</td>
</tr>
<tr>
<td>Ni</td>
<td>0/01-0/03</td>
</tr>
<tr>
<td>Sb</td>
<td>0/04-0/18</td>
</tr>
<tr>
<td>Cl</td>
<td>0/01-0/18</td>
</tr>
</tbody>
</table>

بررسی مسیرالات خوردارگی با XRD (جدول ۲) وجود هماییت قرمز رنگی Fe₂O₃ وجود ندارد. رنگ سیاهی Fe₃O₄ سیاه رنگ را به صورت آنیا شکاف و تركهایی وجود دارد که درون آنها پودر قرمز قهوهای رنگی دیده می‌شود که مربوط به زئوشیت است. در آنها مگنتیت مقدار کمی و سیاهی FeO سیاه رنگ نیز دیده شد. اگر برای برخی از محصولات خوردارگی سیاه رنگ در شکل ۱ نشان داده شده است. برای تشخیص لاشه خوردارگی به رنگ قرمز قهوهای در سطح شیء و لاشه خوردارگی قهوهای رنگ که بین لاشه‌های مگنتیت وجود دارد از هر دو نمونه طیف FT-IR گرفته شد. شکل ۲ طیف‌های این دو نمونه را نشان می‌دهد که در ناحیه ۷۰۰–۹۰۰ cm⁻¹ با یکدیگر متفاوت و در نواحی دیگر یکسانند [5].

برای بررسی دقت و تشخیص تعداد لاشه‌های خوردارگی از استفاده شد. تصاویر میکروسکوپی SEM از لاشه‌های خوردارگی در شکل ۳ و ۴ دیده می‌شود. در

<table>
<thead>
<tr>
<th>XRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>شناسایی</td>
</tr>
<tr>
<td>هماییت</td>
</tr>
<tr>
<td>مکتیت، زئوشیت، وسیتنا</td>
</tr>
</tbody>
</table>
شکل 1. الگو پراش پرتو X محصول خوردارگی سیاه رنگ، شامل مگنتیت، زئوتیت و وستیت.

شکل 2. طیف FT-IR دو نمونه از محصولات خوردارگی فرم فهروار، هماتیت و زئوتیت.
بررسی خوردگی اشیاء آهنی کشف شده از حفاری بوکان

شکل 3 سه لایه خاکستری روش، خاکستری تیره و سفید دیده می‌شوند که لایه خاکستری روش مغز فلزی، لایه خاکستری تیره محصولات خوردگی (عندتا مگنتیت) و لایه سفید رنگ خاک جسمیده به شیء است. شکل 4 تصویر دیگری از لایه‌های خوردگی با برگنگی می‌باشد را نشان می‌دهد. لایه‌های خاکستری روش که در لایه تیره رنگ مگنتیت در این تصویر دیده می‌شود، احتمالاً مربوط به زنده‌ترین است که همان طور که انتظار می‌رود دارای رنگ روشنتری است. نتایج تجزیه عناصر سه نقطه از این EDX نشان می‌دهد که لایه‌های B و C از ترکیبات آهن (اکسید آهن) استه نشانه دستگاه قاده به نمایان کردن اکسیژن نیست، آبنی با درصد بالاتری نشان می‌دهد. در لایه A مقدار آهن بیشتر کم است و عناصر موجود در این نشان دهنده وجود خاکی است که در سطح شهر و وجود دارد. بررسی‌های انجام شده با میکروسکوپ قطعی ذیل وجود سیلیکات را در لایه‌های نازک سفید رنگی که حداقل مگنتیت و لایه رزین پلاستیکی است، ثابت می‌کند.

تیجته

اشیاء آهنی که در حفاری منطقه بوکان به‌دست آمده بودند به دلیل کم بودن میزان کربن از نوع آهن کار شده‌اند و با این که عمری نزدیک به ۱۸۰۰ سال دارند، دارای مغز فلزی هستند. عکس‌های میکروسکوپی از آنها، به خوبی به لایه‌ای خوردگی SEM را در کنار مغز فلزی نشان می‌دهد که به علت فشار منطقه‌ای ناشی از تشکیل لایه‌های خوردگی، ترکی در سطح آن مشاهده می‌شود.

به طور کلی سطح آهن ابتدا با لایه‌های زنگ Fe₂O₃ پوششده می‌شود که جلو این

جدول 3 نتایج تجزیه شیمیایی نقطه‌ای از لایه‌های خوردگی به روش EDX

<table>
<thead>
<tr>
<th>%S</th>
<th>%P</th>
<th>%K</th>
<th>%Fe</th>
<th>%Mg</th>
<th>%Ca</th>
<th>%Al</th>
<th>%Si</th>
<th>لایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>0/88</td>
<td>0/97</td>
<td>2/84</td>
<td>2/60</td>
<td>20/94</td>
<td>53/93</td>
<td>A</td>
</tr>
<tr>
<td>0/18</td>
<td>0/12</td>
<td>97/29</td>
<td>-</td>
<td>0/35</td>
<td>0/04</td>
<td>2/01</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C</td>
</tr>
</tbody>
</table>
شکل ۳ تصویر میکروسکوپی SEM از لایه خورده‌ای. لایه خورده‌ی به رنگ خاکستری تیره در کنار میز فلزی که به رنگ خاکستری روشن است، قابل رویت است (برگنمايی $6\times$).

شکل ۴ تصویر میکروسکوپی SEM از لایه خورده‌ای. در لایه B بخش‌های خاکستری تیره و خاکستری روشن به ترتیب مگنتیت و زئوتیت است (برگنمايی $177\times$).
بپرسی خوردرگی اشبیه آهنتی کشف شده از حفاری بوکان

لاهی به صورت پویار و مست است به راحتی از سطح فلز جدا شده و منجر به خوردرگی بیشتر خواهد شد، ولی در آهن‌های باستانی این لاهی‌ها اولیه با گذشت زمان به دلیل اکسایش ناقص به لایه‌های فشرده مگنتیتی و مستیت تبدیل شده‌اند که نقض محافظ را داشته و از ادامه خوردرگی جلوگیری کرده‌اند ولی همین دلیل مغز فلزی حفظ شده است. با توجه به عدم وجود خوردرگی فعلی، نیازی به حذف کلرید نیست و فقط برای نگهداری این قبیل اشبیه، بايد رطویت نسبی زیر 35 باشد تا از خوردرگی ناشی از رطویت جلوگیری شود.

مراجع

1. Stambolov, T. (1985) The corrosion and conservation of metallic antiquities and works of art, Centeral research laboratory for objects of art and science, Amesterdam, 63-120.
Fast Oxidation of Styrene by Oxygen Molecule with Metal Porphyrin Mn(TPP)OAc Supported on Alumina or Silica in the Presence of Electron Transfer Agents in Various Solvents

Tabatabaeian *, K., Zanjanchi, M.A., Ebrahimi, A. and Yazdani, N.
Department of Chemistry, Faculty of Science, University of Guilan, P.O.Box 1914, Rasht, Iran.

Keywords: Tetraphenyl porphyrin, γ-Alumina, Silica, Tetra-n-butyl amonium borohydride, Catalyst, Styrene.

Abstract: The protons on a silica or alumina surface can be replaced by manganese(III) porphyrin cations, Mn(TPP\(^+\)). Manganese(III) porphyrin supported on silica and alumina can activate dioxygen in the presence of additional NaBH\(_4\) or [NBu\(_4\)][BH\(_4\)] as an electron source and styrene, affording 1-phenyl ethanol and acetophenone in a 4:1 ratio. When oxidation was applied in a mixture of benzene/ethanol, Mn(TPP\(^+\)) heterogeneous catalyst was desorbed from silica and alumina surface. The oxidation of styrene has also been studied in two phases systems H\(_2\)O/CH\(_2\)Cl\(_2\) in the presence of NaBH\(_4\) and tetra-n-butyl amonium bromide as a phase transfer catalyst. Manganese(III) porphyrin remained stable and major product was 1-phenyl ethanol, when dichloromethane used in the presence of catalyst supported on alumina, the only product was 1-phenyl ethanol.