Investigation of parameters affecting zeolite NaA crystal size and morphology

I - The influence of reactants composition ratios on zeolite A synthesis

Aghabozorg, H.R., Ghassemi, M.R., Salehirad, F. and Attarnejad, M.A.
Catalyst Department, Research Institute of Petroleum Industry

Keywords: Zeolite A, Synthesis, Crystal size, Morphology, Alkalinity, Aging

Abstract: Crystal size and morphology of zeolite NaA have an important role in its specific use in the industries. Thus, investigation of parameters which influence crystal size and morphology of this compound during the synthesis is very important. Parameters such as intensity of mixing, temperature and aging time of the gel preparation, crystallization temperature and composition ratios are important in this case. In this study, the influences of $\frac{\text{SiO}_2}{\text{Al}_2\text{O}_3}$, $\frac{\text{Na}_2\text{O}}{\text{Al}_2\text{O}_3}$ and $\frac{\text{H}_2\text{O}}{\text{Al}_2\text{O}_3}$ ratios and impurity in the gel composition on zeolite NaA crystal size and morphology are investigated. Characterization techniques such as X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) have been used for phase identification, particle size and morphology of crystals throughout this work.
بررسی اندازه و ریخت شناسی بلورهای زئولیت
بخش I - اثر تغییر نسبت واکنشگرها در سنتز

حمیدرضا آقابزرگ، محمد رضا قاسمی، فتح‌الله صالحی راد
محمدرضا عطار‌نژاد
پژوهش کاتالیست، پژوهشگاه پالایش، پژوهشگاه صنعت نفت

چکیده: اندازه و ریخت شناسی دانه‌های بلوری زئولیت
نامه‌ی NaA تنشی‌ته‌ی NaA کنده‌ی در کاربردهای ویژه‌ی آن دارد. لذا بررسی عامل‌های مؤثر در اندازه و
ریخت شناسی دانه‌های بلوری در حین سنتز این ترکیب از اهمیت بیشتری برخوردار است. عامل‌های بسیاری از
چنین نشاندهنده‌ی این نسبت‌ها در این امر امکان‌پذیر قرار می‌دهد.

شنایی در نسبت واکنشگرها در سنتز این ترکیب از بررسی
مورد بررسی قرار گرفته‌هایی مورد بررسی قرار گرفته‌اند. نتایج به دست آمده
نشان داده که این عامل‌ها در اندازه و ریخت شناسی دانه‌های بلوری زئولیت

NaA مؤثرند. برای شناسایی فاز زئولیت NaA از بررسی پتروپرایک
SEM و بررسی اندازه و ریخت شناسی بلورها از
(XRD)

است.

واژه‌های کلیدی: زئولیت NaA، سنتز، بلورهای مورفولوژی، قلب‌یابی بودن
مقدمة

زمولیت A یکی از زمولیتهای سنترزی است که دارای کاربردهای متنوعی است. ریخت شناسی این نوع زمولیت نشان دهنده کمکی از کاربردهای مورد نظر آن دارد [1]. برای منابعی از این ترکیب به عوامل گیرندگی سختی آب در شرایط اولاً استفاده می‌شود. اما شکل مکعبی کامل دانه‌های بلوری این نوع زمولیت به سختی آب از اب باره چیده می‌شود و در نتیجه به آن آسیب می‌رساند. لذا شکلی مناسب خواهد بود که از حالت مکعبی کامل خارج و به شیب کروی تبدیل شود. بررسی و مطالعه دقیق عامل‌های مؤثر در تغییر شکل دانه‌های بلوری زمولیت NaA می‌تواند منجر به دستیابی به روش‌های مناسب برای تهیه آن با شکل‌های منفی شود که در جهت استفاده بهینه از این ترکیب ضروری است.

علاوه بر موادی از قبیل دما و سرعت هدایت در دمای تهیه زل و دمای خارجی، شدت که در سنتز زمولیتهای مؤثر، نسبت واکنش‌گرهای اثر ناخالصی و میزان قلیاییت نیز در سنتز NaA آنها تأثیر دارد. در این کار تحقیقاتی نسبت‌های $\frac{\text{Na}_2\text{O}}{\text{Al}_2\text{O}_3}$ و $\frac{\text{Na}_2\text{O}}{\text{SiO}_2}$ و مطالعه قرار گرفته‌اند.

روش کار

در این کار تحقیقاتی برای سنتز زمولیت NaA از آلومینیم هیدروکسید، سدیم هیدروکسید و سدیم سیلیکات (آب شیشه) تجربی داخلا استفاده شد. تمام واکنش‌گرهای تهیه شده با استفاده از روش‌های UOP (82-85 و 86-87) تجزیه شدند. از مواد خالص آزمايشگاهی، عنی آلومینیم هیدروکسید و سدیم هیدروکسید (BDH) نیز برای سنتز برخی از نمونه‌ها استفاده شد.

برای ساخت زمولیت NaA ابتدا سدیم آلومینیت به روش توصیف شده در مرجع [3] تهیه شد. برای تهیه پودر محلول‌های آلومینیت و سدیم آلومینیت با توجه به $\frac{\text{Na}_2\text{O}}{\text{SiO}_2}$ و $\frac{\text{Na}_2\text{O}}{\text{Al}_2\text{O}_3}$ مورد نظر در گستره دمای 95-97 در درون راکتور به کمک همزن مکانیکی (1000-50 دور در دقیقه) مخلوط شدند. در تهیه شده به مدت 60-100 دقیقه همزن شد. سپس دما آن طی مرحله سنگر دمای 95-97 در افزایش یافت. محصول نهایی با مقدار زیادی آب مقطر شستشو داده شد، به طوری که pH محلول زیر
جدول 1: گسترده عنصر سنجی واکنشها در برخی از آزمایش‌های انجام شده

<table>
<thead>
<tr>
<th></th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>Na₂O</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/0-1/3</td>
<td>1/6-1/9</td>
<td>(2/7-4/1)</td>
<td>*</td>
<td>94-95</td>
</tr>
<tr>
<td>1/0-1/3</td>
<td>1/6-1/8</td>
<td>1/9-2/2</td>
<td>94-95</td>
<td></td>
</tr>
<tr>
<td>1/0-1/3</td>
<td>1/8-2/0</td>
<td>2/0-2/4</td>
<td>94-95</td>
<td></td>
</tr>
</tbody>
</table>

* (2/7, 3/7, 4/7, 4/1)

صافی به حدود 10 تقلیل یافت.

برای بررسی عامل‌های مؤثر در ریخت شناخته و اندازه‌گیری در جدول 1 اورده شده‌اند.

آندازه‌گیری‌ها در جدول 1 اورده شده‌اند با استفاده از تکنسیون‌گرها (XRD) و کینال PC-APC X-ray Diffractometre PW 1840 Philips اطلاعاتی انجام شد. بررسی اندوزه‌های و ریخت شناخته با دیگر اندازه‌گیری‌ها بررسی شد (ICPDF eltron) انجام شد.

بحث و بررسی

یکی از عامل‌های که مورد بررسی و مطالعه قرار گرفته تاثیر میزان قلبانیت بر ریخت شناخته و اندازه‌گیری در جدول 1 اورده شده‌اند. استفاده این کار گل‌فکن‌های متغیری از هیدروکسید سدیم در محدوده 10 و سیب بررسی شدن. تا اینکه به دست آمده نشان داد که میزان قلبانیت زیاد سبب به وجود آمدن فازهای دیگر زئولیت همراه با فاز زئولیت NaA می‌شود. الگوهای XRD نشان دادند در شکل 1 مورد مقایسه قرار گرفته اند. جهانی ملاحظه می‌شود برای مقادیر زیاد سود، قله ای در ناحیه 17-14 ظاهر شده است که مربوط به ناحیه اسیدالیت است. برای مقادیر کمتر سود، این ناحیه ملاحظه نمی‌شود. این پایداری با نتایج حاصل از کار دانوسکا و همکارانش همخوانی دارد. تجربیات انجام شده توسط آنان وجود ناخالصی سودایی و زئولیت P را به همراه زئولیت NaA نشان می‌دهند. [2] میزان فاز...
شکل ۱ مقایسه الگوهای پرتو ایکس زئولیتهای NaA در شرایط یکسان (با مقدارهای متفاوت Na2O، الف - نمونه حاوی ۷/۲ مول Na2O، ب - نمونه حاوی ۳ مول Na2O، ج - نمونه حاوی ۸/۸ مول Na2O، د - نمونه حاوی ۴/۱ مول Na2O)

ناخالصی در سیستم را با تغییر در مقدار آب می‌توان تغییر داد. بدین‌گونه است که با تغییر میزان آب زمان بلوری شدن تغییر خواهد کرد [۲]. تأثیر مقدار آب را می‌توان در شکل ۲ مشاهده کرد. این شکل الگوهای XRD دو نمونه که در شرایط یکسان ویلی با مقدار آب ترکیبی زلکی، الف - ۹۵ درصد مولی آب نسبت به کل واکنشگرها، ب - ۹۴/۵ درصد مولی آب نسبت به کل واکنشگرها.
شکل ۳ عکس‌هایی از دانه‌های بلوری زئولیت A سنتز شده با میکروسکوپ الکترونی.
الف - نمونه سنتز شده با ۷/۷ مول Na۲O
ب - نمونه سنتز شده با ۳ مول Na۲O
ج - نمونه سنتز شده با ۴/۱ مول Na۲O.
توده‌ها مابین ذرات یافت شدند که افزایش نیروی نسبی در همکارانش و افزایش میزان نسبی در همکارانش باعث افزایش نیروی نسبی در همکارانش می‌شود. آنتی‌وکسیدان‌های [9] نشان دادند که تأثیر قلیاییت در یک مجموعه نابینشته سنتزی بر سرعت بلووری شدن به غلطه OH مبتنی دارد.

تأثیر میزان آلومینیم در مخلوط واکنش بر اندازه دانه‌های بلووری محصول نیز مورد مطالعه و بررسی قرار گرفت. نتایج به دست آمده نشان می‌دهد که با افزایش غلظت آلومینیم در ژل، دانه‌های بلوور در محصول بزرگتر می‌شود. بدین‌نوعی یاد شده یا مشاهدات رومانیکف و همکارانش در ارتباط با سنتز MFI [10] و کمپلور و همکارانش در ارتباط با سنتز Zئولیت بنیا [11] قابل مقایسه است. تصویربرداری گرفته شده به وسیله میکروسکوب الکترونی از دو نمونه سنتزی در شکل ۵ نشان داده شده‌اند. چنان‌که ملاحظه می‌شود با افزایش غلظت آلومینیم، بالاهای بلووری مکعبی Zئولیت بهینه شوند.

نتایج

نتایج حاصل از آزمایش‌های انجام شده و بررسی عامل‌های مؤثر بر اندازه و ریخت شناسی دانه‌های بلووری Zئولیت دانه‌های بلووری زئولیت NaA را می‌توان به صورت زیر خلاصه کرد:

1. افزایش میزان سرود در میان و دستگاه باعث کوچک شدن و تغییر شکل دانه‌های
بلوری از حالت مکعبی کامل به سمت کروی می‌شود. همچنین افزایش بیش از حد سود به محیط واکنش ناخالصی را بالا می‌برد.

۲- افزایش میزان آلومینیم در واکنش‌های از این برای تشکیل ذل موجب بزرگ شدن اندازه دانه‌های بلور زئولیت NaA و تغییر شکل بلورها از حالت مکعبی کامل به سوی مکعبهایی با پانه‌های بیهون می‌شود.

شکل ۴ عکس‌هایی از دانه‌های بلوری زئولیت NaA با میکروسکوپ الکترونی الک - نمونه سنتر Na₂O ب - نمونه سنتر شده با ۲/۷ مول Na₂O شده
تشکر و قدردانی
بدين و سپه از كليه دوستان در واحدهاي كاتاليست و تجريب دستگاهي بهره‌گاه
صنعت نفت به ویژه آقایان علي عباسی و رحمت اس.. رضایی كه در انجام اين كار
تحقيقاتي مارا ياري كردن، تشکر و قدردانی مي شود.

3. قاسمی، م.، عطارنژاد، م.ع.، مسعودیان، س. ک. و آقابزرگ، ح. (1377) مجموعه مقالات نهمین همایش نفت و گاز و پتروشیمی، تهران.

