Mineralogy of brucite bearing marbles, eastern margin of Shirkuh batholith (west of Yazd province)

Kohsari, A.H
Department of Mining, Yazd University, kohsary@yahoo.com

Key words: skarn-marble, brucite, hydromagnesite.

Abstract: Igneous bodies in Manshad-Taft fault zone are intruded into Shirkuh granitic batholithic basement. They also cause different skarn-marble mineralization in dolomitized limestones which are covered granitic basement. Skarns are composed of variety of minerals. Marbles consist of various minerals such as brucite, forsterite, diopsid, periclase, talc, calcite, dolomite, and hydromagnesite. Petrographic and geochemical data have revealed that there is several stages during the formation of marble minerals. At the first stage, anhydrous minerals formed, then followed by hydrous assemblage. Generation of brucite occurs at the second stage and is due to late hydrothermal system withlow XCO₂ and high XH₂O fluids. Hydromagnesite deposition is occurred by oxidation of brucite.
کانیشناسی مرمرهای پروسیت دار، حاشیه شرقی باتولیت شیرکوه (غرب استان یزد)

امیر حسین کوهرسای
دانشگاه مهندسی معدن - دانشگاه یزد

چکیده: در استدلال زون گسیل موسوم به منشاد - تنها توده‌های نفوذی، پی سنگ گرانتی باتولیت شیرکوه را در نوردهناد و باعث اسکارن - مرمرسازی متنوعی در واحده آهک دولومیتی بر پی سنگ شده‌اند. اسکارن‌ها نمونه زیادی نشان می‌دهند و در این میان مرمرها نیز با نمونه کانی‌هایی از قبیل پروسیت، هیدرومیت‌زیت، فورستریت، دوبسید، پریکلز، تالک، کلسیت، و دولومیت مشخص هستند. داده‌های سنگ‌شناسی و زنونشیمیایی مؤید مراحل چندگانه در شکل گیری کانی‌هایی در اولین مرحله شکل گیری، کانی‌های بی‌اپ و بی‌پدیدال آن مجموعه‌های آبادار شکل کرتفان. پیدایش پروسیت در مرحله دوم ناشی از یک سیستم کرمایی تأخیری با XCO_2^- پایین و XH_2O بی‌بوده است. اکسپرس تأخیری منجر به نهشت هیدرومیت‌زیت از منشاء پروسیت شده است.

واژه‌های کلیدی: مرمر، اسکارن، پروسیت، هیدرومیت‌زیت، روابط پارازنتیکی، نمودار عنکبوتی، REE
کتی شناسی منرمهای بروسیت دار

مقدمه

منطقه موردنظر مطالعه در زون ساختاری ایران مرکزی، در ۳۸ کیلومتری جنوب غرب آذربایجان شرقی، دارای سه منطقه مشخصی است. این منطقه شامل سه منطقه شیرکوه، مین‌رود و شربیانه است.

روش کار

پس از برداشتهای صحرایی، مطالعات میکروسکوپی با استفاده از روش‌های کلاسیک انجام شد. از پردازش‌های پروتو برای تایید مطالعات کتی شناسی استفاده شد. پس از بررسی نتایج، بررسی‌های XRD از مجموعه کتی‌های زیر است:

1- بروکلار - بروسیت - کلسیت - دولومیت
2- هیدرومنیزت - کلسیت
3- بروسیت - کلسیت - دولومیت
4- فرشتریت - سرپانسیت - دولومیت

در ممرنهای بروسیت دار، بروسیت به دو گونه یافته می‌شود: گونه کلسیت (الپ) و گونه کلسیت (کلسیت). این گونه‌ها در شرایط مواد به یکدیگر تبدیل می‌شود. بروسیت‌های رنگ‌جهتی که شکستگی‌های موجود در میان تا پر می‌کند (شکل ۲)، این گونه بروسیت را به صورت ۱۰ میلی‌متری می‌شود. فرشتریت ها به مساحت ۲۰ cm میلی‌متری به صورت بلورهای منفرد یا مجمع در زمینه موردنره دیده می‌شوند و از بخشی تا کامل به سرپانسیت تجزیه شده‌اند. هیدرومنیزت به صورت بلورهای میکروسکوپی مشخصا در شکستگی‌های حاوی بروسیت جانشین نشده است. این کتی به میزان رشتایا را نشان می‌دهد. در نظر گرفتن ارتباط بانفی آنها نظر شکل گیری بروسیت و سرپانسیت به ترتیب به خروج بروکلار و پایداری آنها با استفاده از XRD روش‌های تایید آن منحصر به 자체 است. (جدول ۱) روابط متقابل کتی‌ها را با در نظر گرفتن ارتباط بانفی آنها نظر شکل گیری بروسیت و سرپانسیت به ترتیب به خروج بروکلار...
و فرمول‌برداری می‌تواند به صورت شکل ۳ خلاصه کرد. همان‌طور که ملاحظه می‌شود شکل‌گیری کانی‌ها در دو مرحله خشک و آبدار مشخص است.

جدول ۱: داده‌های XRD هیدرومنیزیت (رگچه خالص)

********** JCPDS POWDER DATA INFORMATION**********
JCPDS CARD NO. = 8 - 179
FORMULA = Mg₄(OH)₂(CO₃)₃. 3H₂O
NAME = MAGNESIUM CARBONATE HYDROXIDE
HYDRATEHYDROMAGNESITE I/c =
3 STRONG LINES (1) 5.790 100 (2) 2.901 90 (3) 2.150 50
D-1 PAIR NUMBER = 39

<table>
<thead>
<tr>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>9.186</td>
<td>40</td>
<td>6.444</td>
<td>40</td>
<td>5.790</td>
<td>100</td>
<td>4.581</td>
<td>5</td>
<td>4.471</td>
</tr>
<tr>
<td>06</td>
<td>4.211</td>
<td>20</td>
<td>4.051</td>
<td>5</td>
<td>3.811</td>
<td>10</td>
<td>3.501</td>
<td>10</td>
<td>3.310</td>
</tr>
<tr>
<td>11</td>
<td>3.211</td>
<td>5</td>
<td>3.151</td>
<td>5</td>
<td>3.090</td>
<td>5</td>
<td>2.901</td>
<td>90</td>
<td>2.840</td>
</tr>
<tr>
<td>16</td>
<td>2.870</td>
<td>5</td>
<td>2.691</td>
<td>30</td>
<td>2.630</td>
<td>5</td>
<td>2.500</td>
<td>30</td>
<td>2.420</td>
</tr>
<tr>
<td>21</td>
<td>2.350</td>
<td>5</td>
<td>2.300</td>
<td>30</td>
<td>2.200</td>
<td>10</td>
<td>2.150</td>
<td>50</td>
<td>2.090</td>
</tr>
<tr>
<td>26</td>
<td>2.030</td>
<td>5</td>
<td>1.990</td>
<td>20</td>
<td>1.966</td>
<td>5</td>
<td>1.930</td>
<td>10</td>
<td>1.900</td>
</tr>
<tr>
<td>31</td>
<td>1.860</td>
<td>5</td>
<td>1.840</td>
<td>5</td>
<td>1.820</td>
<td>5</td>
<td>1.756</td>
<td>10</td>
<td>1.740</td>
</tr>
<tr>
<td>36</td>
<td>1.670</td>
<td>5</td>
<td>1.650</td>
<td>5</td>
<td>1.620</td>
<td>30</td>
<td>1.080</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***************END OF INFORMATION***************

شکل ۱- تجمع بلورهای پروسیت به صورت پراکنده در زمینه کلسیت (نور پلاریزه و پزرهنگی ۱۰۰).
شکل ۲- ورقه‌های پروسیت‌هایی که بر سطح سنگ‌های مرمری که در حقيقة به صورت رگچه‌ای مشبک‌گی‌ها را پر کرده‌اند.

<table>
<thead>
<tr>
<th>کانی</th>
<th>مرحله I</th>
<th>مرحله II</th>
<th>مرحله III</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلسیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دولومیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فرسترت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بریکلاز</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پروسیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هیدرومیژیت</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۲- روابط پارازنتیک کانی‌ها در مرمرهای پروسیت دار.
واکنش‌های دگرگونی

در منطقه مورد مطالعه نخست سنجش آهک سازند ثبت به طور نامنظم دولومیتی شده است. این دولومیتی شدن به طور کلی در حاشیه‌های شرقی شیرکوه و حتی بدور از نواحی مامگانیسم صورت گرفته است، به نظر می‌رسد شاره‌های طبیعی جوی اکسیداسیونی بر اساس واکنش ذوب شدن آن است.

\[2\text{CaCO}_3 + \text{Mg}^{2+}(aq) \rightarrow \text{CaMg}(\text{CO}_3)_2 + \text{Ca}^{2+}(aq) \]

برای تشکیل دیویسید و فرسنتریت و براکلاز، در مواردی از افزایش گرم می‌توان واکنش‌های زیر را در نظر گرفت [۵] :

\[
\text{Dolomite} + 2\text{Quartz} \rightarrow \text{Diopside} + 2\text{CO}_2
\]

\[
\text{Diopside} + 3\text{Dolomite} \rightarrow 4\text{Calcite} + 2\text{Forsterite} + 2\text{CO}_2
\]

\[
\text{Dolomite} \rightarrow \text{Calcite} + \text{Periclase} + 2\text{CO}_2
\]

علایه بر آن تشکیل فرسنتریت از واکنش دولومیت با کوارتز نیز محتمل است.

\[2\text{CaMg}(\text{CO}_3)_2 + \text{SiO}_2 \rightarrow \text{Mg}_2\text{SiO}_4 + 2\text{CaCO}_3 + 2\text{CO}_2 \]

برای شکل گیبری برپیست تأثیر آبها گرم بر براکلاز را در نظر می‌گیریم.

\[
\text{MgO} + \text{H}_2\text{O} \rightarrow \text{Mg(OH)}_2
\]

همچنین برپیست به طور مستقل می‌تواند از تأثیر آبها گرم بر دولومیت شکل گیرد.

\[
\text{CaMg}(\text{CO}_3)_2 + \text{H}_2\text{O} \rightarrow \text{CaCO}_3 + \text{Mg(OH)}_2 + \text{CO}_2
\]

همراه با برپیست - سربیانان نیز با واکنش زیر [۱] تاپیل توجه است.

\[2\text{Mg}_2\text{SiO}_4 + 3\text{H}_2\text{O} \rightarrow \text{Mg}_5\text{Si}_2\text{O}_8(\text{OH})_2 + \text{Mg(OH)}_2 \]

donomenیتی شدن از نوع تدفینی [۷] در طول حرکت و نفوذ شاره‌های گرم به داخل سنگ‌های کربناته بیش از دگرگونی مجاورتی رخ داده است. توجهی رخی از توالی هیدرومیتریت و کلسیت که مشاهده‌ها می‌کنیم و تایید کردناد را می‌توان بیان کرد. واکنش‌های زیر در نظر گرفته است:

\[\text{Mg(OH)}_2 + 3\text{MgCa}(\text{CO}_3)_2 + 3\text{H}_2\text{O} \rightarrow \text{Mg}_4(\text{OH})_2(\text{CO}_3)_3.3\text{H}_2\text{O} + \text{CaCO}_3 \]

بحث هیدرومیتریت به طور مستقل از طریق جانشینی در ریگچه‌های خالص برپیست نیز امکان‌پذیر است. می‌توان گفت که نفوذ \(\text{CO}_2 \) فعال کردن که نفوذ \(\text{CO}_2 \) از بخش‌های عمیقتر در امتداد شکستگی‌ها، یا هیچ‌گونه شکل گیبری هیدرومیتریت به خرج برپیست‌ها به شکل زیر صورت گرفته است:

\[
4\text{Mg(OH)}_2 + 3\text{O}_2 + 3\text{H}_2\text{O} + 1/2\text{O}_2 \rightarrow \text{Mg}_4(\text{OH})_2(\text{CO}_3)_3.3\text{H}_2\text{O}
\]
هامانطور که مشاهده می‌شود این واکنش اکسیژن کربنر است. احتمالاً آب‌های مریخ مس با اکسیژن موجود در کارست‌ها که اندکی پس از ضربه گرماگیری به صورت هرمیت در آمدان‌های فشرده و در پیش‌شوری این واکنش مؤثر بوده و یا آب‌های گاز کربنیک دار در شرایط اکسیژنی عمل کرده‌اند. کیفیت [8] نیز شکل گیری هوتیت و هیدرومونزیت در آت هوازگی به صورت رگچه‌های باریک در شکافهای موجود در بروسيت را یادآور شده است.

داده‌های دنوشی
برای بروسيت زنده رگچه‌های بروسيت و ارتباط آنها با سطح میزان از داده‌های عناصر نادر خاکی و عناصر کم‌بای (جدول 2) استفاده شده. به این منظور مقدار این عناصر را درمرمرهای دولومیتی و رگچه بروسيت نسبت به تركیب گوشته اوله Sun و Pirm به‌عنوان کریم (شکل 4). با وجود بهبود بودن نمودار همان طور که دیده می‌شود همگام با وجود یک روند مثبت بیانگر تغییر شدیدی تدریجی از عناصر Lu به La افزایش عدد انتی-کربنیک و نمودار عناصر

![Diagram](image-url)
پلاک نادر سبک (LREE) است و مقدار Ce و La در رکه پروسیت کمتر از سلگ میزان است. زیرا این دو عناصر قادرند در ساختار کلسیت جانشین شوند. بنابراین تمایل این دو عناصر در سلگ میزان دولومیت بیشتر شده است. علاوه بر این وجود نابهنجاری منفی در رگچه های پروسیت نشان می دهد که در زمان شکل گیری رگچه ها، شاهد حاوی فورگاسیه جزئی پلاک نادر سبک بالایی به همراه دارند. در نهایت التویل های مشابه این دهدهای این واقعیت است که مشاهده سازه های رگچه های پروسیت از همان سلگ میزان دولومیت است. در حقيقة می توان گفت که از شستشیوی داخلی به وسیله یک سیستم گرمایی پس از مرحله اصلی درگیری شکل گرفته اند.

جدول 2: داده های انتشاری رگچه پروسیت و سلگ دولومیت میزان (مقدار به ppb)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>رگچه پروسیت ppm</th>
<th>مرمر و دولومیت ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>316</td>
<td>0.2</td>
</tr>
<tr>
<td>Ce</td>
<td>0.47</td>
<td>1.08</td>
</tr>
<tr>
<td>Eu</td>
<td>0.15</td>
<td>1.89</td>
</tr>
<tr>
<td>Hf</td>
<td>0.12</td>
<td>0.15</td>
</tr>
<tr>
<td>La</td>
<td>0.25</td>
<td>0.49</td>
</tr>
<tr>
<td>Lu</td>
<td>0.22</td>
<td>1.31</td>
</tr>
<tr>
<td>Nd</td>
<td>8.91</td>
<td>13.5</td>
</tr>
<tr>
<td>Rb</td>
<td>10.7</td>
<td>4.62</td>
</tr>
<tr>
<td>Sm</td>
<td>32</td>
<td>0.26</td>
</tr>
<tr>
<td>Sr</td>
<td>3.09</td>
<td>0.12</td>
</tr>
<tr>
<td>Tb</td>
<td>0.81</td>
<td>0.43</td>
</tr>
<tr>
<td>Th</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>Tm</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>U</td>
<td>0.20</td>
<td>0.3</td>
</tr>
<tr>
<td>Yb</td>
<td>0.13</td>
<td>0.38</td>
</tr>
<tr>
<td>Zr</td>
<td>34.1</td>
<td>4.14</td>
</tr>
</tbody>
</table>
برداشت

تکوین مرمرهای بروسیت دار شرق شیرکوه در طی مراحل سه گانه و مستقل رخ داده است.

در این خصوص می‌توان این مرمرهای را به عنوان مرمرهای جنگل‌داری یا پالی دنیک در نظر

کرده. اکثریت مدل‌های زنوشیمیایی بر این مسئله تأکید دارد که مرحله بروسیت‌زایی رگه‌ای

در یک سیستم شستشوی داخلی گرمايی در محیط داخلی مرمرهای پریکلیز دارد، به صورت

ناخشیانی انجام گرفته است، و در نهایت جانشینی هیدرومنزوفت به جای بروسیت در زون

اکسیدان در درشت‌ریز سپر، ژن بوکسیت است.

مراجع

1- کوهساری، امیرحسین، و مکی‌زاده، محمدعلی. (1373)، کانیشناسی اسکارن‌های حاشیه

شرق باتولیت شیرکوه، چنگیده مقالات دومین سمینار بلورشناسی و کانیشناسی ایران،

صفحه 11.

2- نوری‌پوری، ایسر، مکی‌زاده، محمدعلی، و شرکت، شهروند. (1374)، معرفی کانیشناسی

اسکارن کوکه در یک تاکید برنامه کمیاب کلیولوئید، گروهستان شیرکوه - پزد، مجله

بلورشناسی و کانیشناسی ایران، سال چهارم شماره 1 و 2 صفحه 47-72.

3- سیبزایی، مسیب، و علی‌یی، مهتاب، سلیمانی. (1365)، گزارش مقدماتی مطالعات زمین

شناختی و سنگ‌شناسی مرمرهای و اسکارن‌های منطقه ده بالا، بزر، مکریت زمین شناسی

منطقه جنوب خاوری مرکز کرمان 150 صفحه.

4- داوودی، فرشا. (1377)، پژوهش‌های سنگ‌شناسی اسکارن‌های منطقه شیرکوه، استان یزد

(ده بالا، بافق آباد)، پایان نامه کارشناسی ارشد، دانشگاه اصفهان، 296 صفحه.

5- Turner F. (1968) Metamorphic Petrology. Mineralogical, field and tectonic

6- Tracy R.J. and Frost B. R. (1991) Phase equilibria and thermobarometry of
calcareous, ultramafic and mafic rocks, and iron formation. In contact
Metamorphism (Kerrick, D. M., ed.) Mineralogical Society of America,
Reviews in Mineralogy Vol. 26. pp. 207-289

7- Tucker M. E., and Wright, P. V. , (1990), Carbonate sedimentology, Black

American Mineralogist. Vol. 52 (9-10), pp 1332-1340.