Mineralogy of brucite bearing marbles, eastern margin of Shirkuh batholith (west of Yazd province)

Kohsari, A.H
Department of Mining, Yazd University, kohsary@yahoo.com

Key words: skarn-marble, brucite, hydromagnesite.

Abstract: Igneous bodies in Manshad-Taft fault zone are intruded into Shirkuh granitic batholithic basement. They also cause different skarn-marble mineralization in dolomitized limestones which are covered granitic basement. Skarns are composed of variety of minerals. Marbles consist of various minerals such as brucite, forsterite, diopсид, periclace, talc, calcite, dolomite, and hydromagnesite. Petrographic and geochemical data have revealed that there is several stages during the formation of marble minerals. At the first stage, anhydrous minerals formed, then followed by hydrous assemblage. Generation of brucite occurs at the second stage and is due to late hydrothermal system with low XCO₂ and high XH₂O fluids. Hydromagnesite deposition is occurred by oxidation of brucite.
کانی شناسی مرمرهای بروستی دار، حاشیه شرقی باتولیت شیر کوه (غرب استان یزد)\\

امیر حسین کوهرسرا\\
دانشگاه مهندسی معدن - دانشگاه یزد\\

چکیده: در استادان زون گسلی موسوم به مشاد، نابودیهای نفوذی، پی‌درپی بر روی سنگ‌گرایی باتولیت شیرکوه را در نورده، و باعث اسکارن - مرمرسازی انواعی در آن جهت ساخت به دست می‌آورد. اسکارن‌ها مدل‌های گوناگونی نسبت به سنگ‌شکاف‌های اصلی را نشان می‌دهند و در این میان مرمرها نیز با نوع کانی‌ها تغییر دارند، بروستی، هیدرومنزیت، فرستنیت، دیوپید، پریکلاز، تالک، کلسیت، و دیگر‌ها مشخص هستند. داده‌های شناسایی سنگ و شناسایی مواد مراحل چندگانه در گزارش کانی‌ها، در اولین مرحله شکل‌گیری کانی‌ها، کانی‌های بی‌آب و به‌انبار از مجموعه‌های آب‌دار شکل کردن و بی‌پایان پیدا می‌کنند. بروستی در مرحله نهایی از XCO_32- با پایین و XH\textsubscript{2}O بلافاصله به اکسی اکسیری مجزا به نهشت هیدرومنزیت از به‌وجود بروستی شده است.

واژه‌های کلیدی: مرمر، اسکارن، بروستی، هیدرومنزیت، روابط پارازننگیک، نمودار عنکبوتی REE
کانی‌شناسی مرم‌های بروسیت دار

روش کار

پس از برداشت‌های صحرایی، مطالعات میکروسکوپی با استفاده از روش‌های کلاسیک انجام شد. از پاراپنتایژ پرتو X برای تأیید مطالعات کانی شناسی استفاده شد. داده‌های زنونشیمی نیز از روشن فعال کردن نوترونی (NAA) در مرکز تکنولوژی اصفهان گرفته شده است.

کانی‌شناسی و روابط پاراپنتایژی کانه‌ها

مطالعات میکروسکوپی و XRD مؤیت مجموعه کانی‌های زیر است:

1- بروکلاز - بروسیت - کلسیت - دولومیت
2- هیدرومیتزنیت - کلسیت
3- بروسیت - کلسیت - دولومیت
4- فرسترت - سرباتنیت - دولومیت

در مرم‌های بروسیت دار، بروسیت به دو گونه بیافته می‌شود: لف (ب) بروسیت های پراکندگی میکروسکوپی در زمینه گرانولاسیتیک دولومیت - کلسیت (شکل 1). اینگونه بروسیت‌ها در هیپمبین با پریده‌های پلیکالز ناپید می‌شوند. ب) بروسیت‌های رگه‌ای که منحصراً شکستگی‌های موجود در مرمر را از ری می‌کند (شکل 2). اینگونه بروسیت‌ها به صورت 100 cm مساحت می‌شوند. فرسترت‌ها به صورت بلورهای منفرد‌یا مجتمع در زمینه مرمرها دیده می‌شود و از بخشی کمی کامل به سربان‌های تجزیه شده‌اند. هیدرومیتزنیت به صورت بلورهای میکروسکوپی منحصراً در شکستگی‌های حاوی بروسیت جانشین شده است. این کانی به صورت رشته‌ای یا رنگه‌ای تداخلی علاوه بر دیده می‌شود و برای تأیید آن منحصراً از استفاده شده است. (جدول 1) روابط متقابل کانی‌ها را با در نظر گرفتن ارتباط بانفی آنها نظر شکل گیری بروسیت و سربان‌های به ترتیب به خروج پلیکالز.
و فرسوده‌ی می‌توان به صورت شکل ۳ خلاصه کرد. همان‌طور که ملاحظه می‌شود شکل گیری کانی‌ها در ذوب مرحله خنکک و آب‌دار مشخص است.

جدول ۱: داده‌های XRD هیدرومیزیت (رگچه خالص)

******* JCPDS POWDER DATA INFORMATION*******
JCPDS CARD NO. = 8 - 179
FORMULA
= Mg₄(OH)₂(CO₃)₃. 3H₂O
NAME = MAGNESIUM CARBONATE HYDROXIDE
HYDRATE
HYDROMAGNESITE
I/c = 3 STRONG LINES (1) 5.790 100 (2) 2.901 90 (3) 2.150 50
D-1 PAIR NUMBER = 39

<table>
<thead>
<tr>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>9.186</td>
<td>40</td>
<td>6.444</td>
<td>40</td>
<td>5.790</td>
<td>100</td>
<td>4.581</td>
<td>5</td>
<td>4.471</td>
</tr>
<tr>
<td>06</td>
<td>4.211</td>
<td>20</td>
<td>4.051</td>
<td>5</td>
<td>3.811</td>
<td>10</td>
<td>3.501</td>
<td>10</td>
<td>3.130</td>
</tr>
<tr>
<td>11</td>
<td>3.211</td>
<td>5</td>
<td>3.151</td>
<td>5</td>
<td>3.090</td>
<td>5</td>
<td>2.901</td>
<td>90</td>
<td>2.840</td>
</tr>
<tr>
<td>16</td>
<td>2.870</td>
<td>5</td>
<td>2.691</td>
<td>30</td>
<td>2.630</td>
<td>5</td>
<td>2.500</td>
<td>30</td>
<td>2.420</td>
</tr>
<tr>
<td>21</td>
<td>2.350</td>
<td>5</td>
<td>2.300</td>
<td>30</td>
<td>2.200</td>
<td>10</td>
<td>2.150</td>
<td>50</td>
<td>2.090</td>
</tr>
<tr>
<td>26</td>
<td>2.030</td>
<td>5</td>
<td>1.990</td>
<td>20</td>
<td>1.966</td>
<td>5</td>
<td>1.930</td>
<td>10</td>
<td>1.900</td>
</tr>
<tr>
<td>31</td>
<td>1.860</td>
<td>5</td>
<td>1.840</td>
<td>5</td>
<td>1.820</td>
<td>5</td>
<td>1.756</td>
<td>5</td>
<td>1.740</td>
</tr>
<tr>
<td>36</td>
<td>1.670</td>
<td>5</td>
<td>1.650</td>
<td>5</td>
<td>1.620</td>
<td>30</td>
<td>1.080</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

************END OF INFORMATION************

شکل ۱- تجمع بلورهای پروسیت به صورت پراکنده در زمینه کلسیت (نور پلازیم و پرگنماتی) X100.
شکل ۲- ورده های پروسیت چسبیده به سطح سنگ ممر، که در حقيقة به صورت رگچهای شکستگی‌ها را پر کرده‌اند.

<table>
<thead>
<tr>
<th>کانی</th>
<th>مرحله I</th>
<th>دگرسانی مجاورتی</th>
<th>مرحله II</th>
<th>اکسیداسیون III</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلسیت</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دولومیت</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فرسترت</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پریکلیاز</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پروسیت</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هیدرومیزیت</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
واکنشهای دگرگونی

در منطقه مورد تحقیق دریافت شده است. این
دولومیتی شدن به طور کلی در حاشیه شرقی شیرکوه و حتی بدور از نواحی گچیان
صارفه این پدیده است. به نظر می‌رسد شاره‌های گرمایی حاوی Mg
منجر به دولومیتی شدن
بر اساس واکنش زیر شده‌اند.

\[2CaCO_3 + Mg^{2+}(aq) \rightleftharpoons CaMg(CO_3)_2 + Ca^{2+}(aq)\]

برای تشکیل دیوبیسید و فرستریت و پریکلاز در می‌تواند با افزایش گرمایی واکنش زیر
را در نظر گرفت [5].

Dolomite + 2Quartz \rightleftharpoons Diopside + 2CO_2
Diopside + 3Dolomite \rightleftharpoons 4Calcite + 2Forsterite + 2CO_2
Dolomite \rightleftharpoons Calcite + Periclase + 2CO_2

علاوه بر آن تشکیل فرستریت از واکنش دولومیت با کوارتز نیز محتمل است.

\[2CaMg(CO_3)_2 + SiO_2 \rightleftharpoons Mg_2SiO_4 + 2CaCO_3 + 2CO_2\]

برای شکل‌گیری بروسیت تأثیر آب‌های گرم در پریکلاز را در نظر می‌گیریم.

MgO + H_2O \rightarrow Mg(OH)_2

همچنین بروسیت به طور مستقل می‌تواند از تأثیر آب‌های گرم در دولومیت شکل گیرد.

\[CaMg(CO_3)_2 + H_2O \rightarrow CaCO_3 + Mg(OH)_2 + CO_2\]

\[2Mg_2SiO_4 + 3H_2O \rightarrow Mg_3Si_2O_5(OH)_4 + Mg(OH)_2\]

دولومیتی شدن از نوع تذفیش [7] در طول حرکت و تغذیه شاره‌های گرم به داخل سنته‌ساز
کریستال‌پیش از دگرگونی مجاورتی رخ داده است. توجه به رخ‌دادن نوام هیدرومینیت و کلسیت
که مشاهده‌ها می‌کسوسکوپی و تایید کرده‌اند می‌توان به شکل واکنش زیر در نظر
گرفت.

Mg(OH)_2 + 3MgCa(CO_3)_2 + 3H_2O \rightarrow Mg_2(OH)_2(CO_3)_3 + 3H_2O + CaCO_3

پیدایش هیدرومینیت به طور مستقل از طریق جانشینی در رگچه‌های خالص بروسیت
نیز امکان‌پذیر است. می‌توان گفت که نفوذ CO_2
فعال از بخش‌های عمیق‌تر
در امتداد شکستگی‌ها، یا هجوم شکل‌گیری هیدرومینیت به خرج بروسیت‌ها به شکل زیر
صارفه گرفته است:

\[4Mg(OH)_2 + 3O_2 + 3H_2O + 1/2O_2 \rightarrow Mg_2(OH)_2(CO_3)_3 + 3H_2O\]
همان‌طور که مشاهده می‌شود، این واکنش‌ها اکسیژن کیسیز غیر است. احتمالاً، این واکنش‌ها از آسیبد موجود در کارتن‌ها به‌دست می‌آیند، از ضریب‌های بخصوص کره‌ای به‌صورت یک‌هم‌فک در آمده‌اند و در پیش‌بینی این واکنش‌ها می‌باشد. این واکنش‌ها موجب بودن یا افزایش گاز کربن‌دی‌اکسید در شرایط اکسیژنی عمل کرده‌اند.

کیفیت (8) نیز شامل گزینه‌های فلزی و هیدروفیزیت در اثر هوازدگی به‌صورت رگچه‌هایی باریک در شکاف‌های موجود در بروسیت را پدیدار ساخته است.

داده‌های دیجیتال
برای بررسی روابط غیردرنیایی رگچه‌های بروسیت و ارتباط آنها با سنگ‌هایی از داده‌های عناصر نادرخاکی و عناصر کمیاب (جدول 2) استفاده شد. به این منظور مقدار این عناصر را (Sun) و (Pirm) درمادرهای دولیتی و رگچه بروسیت نسبت به ترکیب گوشه‌ای اولیه به‌نگار کردن (شکل 2). با وجود پیچیده بودن نمودار همان طور که دیده می‌شود همگام با Afrasiabi اعداد انتقال Lu به‌طور یک‌سان می‌باشد و و روی نمودار برابر گذشته تظهر‌ها تدریجی‌اند از عناصر

![الف) مدل‌های مقدار گشته اولیه](image1)

![ب) نمودار نرم‌ساز مدل 0 درمیت دولیتی 0 رگچه بروسیت](image2)

![شکل 4-نمودار علائم عناصر فرعی، کمیاب و نادر خاکی برای سنجش چاه مادرهای دولیتی و رگچه بروسیت](image3)
خاکی نادر سبک (LREE) است و مقدار Ce و La در رکه بروسیت کمتر از سنگ میزان است. زیرا این دو عنصر قادرند در ساختار کلسیت جانشین شوند. بنابراین تمرکز این دو عنصر در سنگ میزان دومیوتی بیشتر شده است. علاوه بر این وجود نابهنجاری منفی در رگچه‌های بروسیت نشان می‌دهد که در زمان شکل‌گیری رگچه‌ها، شاردهای حاوی فوگاسیته‌ای کم‌کم بالایی بوده‌اند. در نهایت رویه‌های مشابه نشان دهنده این واقعیت است که مسیله سازه‌های رگچه‌ها بروسیت از همان سنگ میزان دومیوتی است. در حقیقت می‌توان گفت که از استنشاوی داخلی به وسیله یک سیستم گیمایی پس از مرحله اصلی دگرگونی شکل گرفته‌اند.

جدول 2: داده‌های زئوپتیماتی رگچه بروسیت و سنگ دومیوتی میزان (مقدار به ppb)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>رگچه بروسیت ppm</th>
<th>مرمر دومیوتی ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>316</td>
<td>05</td>
</tr>
<tr>
<td>Ce</td>
<td>046</td>
<td>158</td>
</tr>
<tr>
<td>Eu</td>
<td>010</td>
<td>0189</td>
</tr>
<tr>
<td>Hf</td>
<td>007</td>
<td>015</td>
</tr>
<tr>
<td>La</td>
<td>006</td>
<td>049</td>
</tr>
<tr>
<td>Lu</td>
<td>032</td>
<td>01</td>
</tr>
<tr>
<td>Nd</td>
<td>089</td>
<td>012</td>
</tr>
<tr>
<td>Rb</td>
<td>010</td>
<td>064</td>
</tr>
<tr>
<td>Sm</td>
<td>022</td>
<td>026</td>
</tr>
<tr>
<td>Sr</td>
<td>009</td>
<td>012</td>
</tr>
<tr>
<td>Tb</td>
<td>081</td>
<td>043</td>
</tr>
<tr>
<td>Th</td>
<td>088</td>
<td>087</td>
</tr>
<tr>
<td>Tm</td>
<td>011</td>
<td>011</td>
</tr>
<tr>
<td>U</td>
<td>020</td>
<td>03</td>
</tr>
<tr>
<td>Yb</td>
<td>010</td>
<td>012</td>
</tr>
<tr>
<td>Zr</td>
<td>043</td>
<td>012</td>
</tr>
</tbody>
</table>
برداشت

بکرین مرمرهای بروست دار شرق شیرکوه در طی مراحل سه گانه و مستقل رخ داده است.

در این خصوص می‌توان این مرمرها را به عنوان مرمرهای چندزدایی یا پلی‌ژنیک در نظر کردن. الگوی داده‌ها وزن‌شیمیایی بر این مسئله تأکید دارد که مرحله بروست‌زایی رگه‌ای در یک سیستم سومانی‌ای داخلی گرامایی در محیط داخلی مرمرهای پریکلزی دارد. به صورت ناچیزی انجام گرفته است اما در نهایت جانشینی هیدرومانیت به جای بروست در زون اکسیدان و در شرایط سوپرزن بوکسیس دار است.

مراجع

1- کهفی‌باری، امیرحسین، و مکی‌زاده، محمدعلی، (1373)، کانون شناسی اسکارنهای حاشیه شرق باتولیت شیرکوه، چکیده‌های مقالات سی‌سی‌های مسیران بلوشراسی و کانون شناسی ایران، صفحه 3.

2- رنی‌پوره‌شریف، امیر، مکی‌زاده، محمدعلی، و شریفی، شهرزاد، (1374)، معرفی کانون شناسی اسکارنهای کوه گیمیک گیالمیتی کوه‌ستان شیرکوه - یزد، مجله بلوشراسی و کانون شناسی ایران، سال چهارم شماره ۱ و ۲ صفحه ۴۷-۳۷.

3- سیاه‌های، منصور و علی‌اکبر مهابادی، سلیمان، (1365)، گزارش مقدماتی مطالعات زمین شناختی و سنگ شناختی مرمرها و اسکارنهای منطقه ده بالا‌یزد، مرکز زمین‌شناسی منطقه جنوب باوری مرکز یزد ۳۵ صفحه.

4- دروودی، فریدا، (1377)، پژوهش نهایی سنگ شناختی اسکارنهای منطقه شیرکوه، استان یزد (د forthcoming)، انتشار نامه کارشناسی ارشد، دانشگاه اصفهان، صفحه ۲۴۷.

