Quantitative X-ray methods of amorphous content and crystallinity determination of SiO₂ in Quartz and Opal mixture

Ketabdari, M. R. and Ahmadi, K.
Atomic Energy Organization of Iran, Laboratory Exploration Division, P.O. Box 14155-1339, Tehran - 14374, Iran,
E-mail: ahmadikam@yahoo.com

Esmaeilnia Shirvari, A.
Faculty of Sciences, University of Shahid Beheshti, Iran

Tofigh, A.
NIOC Research Institute of Petroleum Industry

Key Words: XRD, Quantitative X-ray Diffraction Matrix Flushing, Crystallinity, Amorphous Content.

Abstract: X-ray diffraction (XRD) technique is commonly used for qualitative analysis of minerals, and has also been successfully used for quantitative measurements. In this research, the matrix flushing and a new X-ray diffraction method have been used for the determination of crystallinity and amorphous content of Opal and Quartz mixture. The PC-APD is used to determine the quantitative analysis of these two minerals.
آنالیز کمی و تعيين مقدار مواد بي شكل و بلوري SiO₂ در مخلوط اوبال و کوارترز به روش کمي پراش سنجي پودر پرتو ایکس

محمدرضا كنابداري و كامران احمدی
آزمایشگاه آنالیز واحده کشف ماده انسانی اتاق اتی ایران

عباس اسماعيل نيا شروانی
دانشکده علوم دانشگاه بهشتی

عاطفه توفیق
پژوهشگاه صمت نفت

چکیده: در مواردی که مواد حاضر در یک نمونه از اتمهای مشابه تشکیل شده باشند، استفاده از پودر پرتو ایکس برای اندازه‌گیری کمی نشان دهنده حساب می‌آید. در این مطالعه برای تعیین کمی ماده بی‌شکل و بلوری از دو روش ماتریکس فلاشینگ (Matrix Flushing) و پودر اتی ایران استفاده شده است. و مقدار مواد بی‌شکل و بلوری در نمونه‌های ناحیه مخلوطی از کوارترز و اوبال مورد محاسبه قرار گرفته‌اند.

واژه‌های کلیدی: آنالیز کمی، پراش سنجی پودری پرتو ایکس، روش ماتریکس فلاشینگ، بلورینگی، کوارترز، اوبال.
مقدمه

یکی از مواردی که در استفاده کمی و کیفی از پرداز سنگ پودری پرتو ایکس ایجاد مشکل می‌کند حضور ماده بی‌شکل در نمونه است [1]. در عین حال تغییر کمی مقدار ماده بی‌شکل و مقدار کمی بلورینگی از برترهای متفاوتی برخوردار است [2]. و کاربردهای زیادی در صنعت دارند [3 و 4] مثلاً تعداد زیادی داروی به صورت بی‌شکل و بلوری هستند، و گاهی موارد جنایی افزوده به دارو تنها به صورت بی‌شکل وجود دارند. موارد بی‌شکل در مقایسه تغییرات فیزیکی و شیمیایی حساسیت بیشتری نشان می‌دهند و گاهی تغییر تثبیت مقدار ماده بلوری به بی‌شکل در بعضی از داروها، باعث تغییر خواص آنها می‌شود. به همین خاطر انداده‌گیری کمی این دو مقدار در صنایع دارویی بسیار مهم است [5].

در مورد بلیرمرها نیز خواص فیزیکی-مکانیکی پلیمرهای مهم صنعتی مانند پلی اتانل، پلی پروپیلن، پلی استر و نایلون تحت تأثیر درجه بلورینگ آنها قرار می‌گیرند. به همین جهت تغییرات مقدار تبدیل مواد بی‌شکل به بلوری در این دسته از مواد در شناخت و استفاده صنعتی از آنها اهمیت زیادی دارد. در مدلهای مختلفی که برای نشان دادن خواص بلیرمرها بر حسب ساختارشان در نظر گرفته شده است، همواره بلیرمرها را به صورت مجموعه‌ای از بخش‌های بی‌شکل و بلوری در نظر می‌گیرند که این نسبت رابطه مستقیمی با خواص فیزیکی و مکانیکی پلیمر مربوط دارد.

در زمین‌شناسی نیز با استفاده از این روش می‌توان به نوعی دماسنج عمیقی دست یافته، و بور (Weaver) نشان داد که با پایین رفتن در عمق زمین، درجه تبلور ایلیت بالا می‌رود و هر چه پیشرفته در عمق پیشرف شود، بر درجه بلورینگ ایلیت افزوده می‌شود. نتایج این مطالعه به این مسئله که کانی‌ها در دمای‌های مختلف تشکیل می‌شوند و این دستورالرازی در طریق تحولات کانی‌های رسی نیز بررسی، و نتیجه‌ها با مقدار درجه تبلور ایلیت مقایسه کرد. بدین طریق ویکی ثناستی بر ساخت کانی دماسنج برای کارهای زمین‌شناسی جامعه عمل بیشترند. بنابراین می‌توان با تغییر مقدار ماده بی‌شکل و متابولی ایلیت در یک نمونه، به عمیق و دمای تشکیل آن بر پرداز این روش در پی چونه‌های مخازن جدید نفت یافتن بسیار کاربرد بوده است [6].
بلورینگی و پیشکلی
بلورینگی را به صورت نسبت وزن پخش می‌تولید به وزن کل تعیین می‌کند. مقدار ماده بی‌شکل نیز به همین ترتیب، به صورت درصد وزن مقدار ماده بی‌شکل به کل وزن موجود تعیین می‌شود. در این صورت این دو تعیین مکمل یکدیگرند و نسبت‌های عکس هم است. پرایش پرتو ایکس (XRD) از نمونه‌ای که دارای موادی به صورت بلوری و بی‌شکل باشند، به صورت خاصی ظاهر می‌شود. به این معنی که بخشی که مربوط به ماده بلوری است به‌طور خاطر آنکه پرتوهای ایکس را به‌صورت یک‌واخت پراکنده می‌سازد به‌صورت مجموعه‌ای از قله‌ها ظاهر می‌شود و بر عکس بخشی که مربوط به ماده بی‌شکل است، به‌دست برای این اجمال با ترتیب این دو ماده بی‌شکل و بلورین، طیف پرایش پرتو ایکس آنها نیز به‌صورت ترکیبی از این در حاله قله و قوز دیده می‌شوند. از همین خواص مشابه در پرایش پرتو ایکس آنها، برای محاسبه مقدار بلورینگی و درصد ماده بی‌شکل می‌تواند جزءی از شیوه استفاده از روش کمی پرایش سنگی پرتو ایکس یکی از مناسب‌ترین روش‌ها برای تعیین مقدار بلورینگی و ماهی بی‌شکل در حالت‌های ذکر شده است.

روش ماتریکس فلشینگ
یکی از روش‌های کمی پرتو ایکس روش ماتریکس فلشینگ چانک [7] است. در حالتی که ماده بلوری و بی‌شکل از یک جنس بسیار باشند می‌توان از این روش استفاده کرد. این حالتی است که اغلب در بلوری و بعضی از داروها دیده می‌شود و تشکیل یک سیستم ساده دو فازه را می‌دهند. کلیوگ و آلکساندر (Klug & Alexander) روابط (8) را به شدت پرتو پرایش یافته ای برای با: \[I_a = K_a \chi_a / \left[\rho_a \left(\mu_a - \mu_m \right) + \mu_m \right] \] است که در آن به ترتیب \(I_a \) شدت پرتو پرایش‌های آن \(K_a \) مقدار ثابت واپس‌شته به جنس ماده، \(\chi_a \) درصد وزنی جنس یک، \(\mu_a \) غربال، \(\rho_a \) ضرب جذب گرمی آن، و \(\mu_m \) ضرب جذب گرمی ماتریکس است. در حالتی که تنها یک سیستم دو فازه وجود داشته باشد.
شکل 1- مقایسه دو طیف کوارتز خالص و اوبال خالص.

(در ایجاد کوارتز و اوبال) مقادیر μ_m و μ_a برای خواهند بود و نتیجه حاصل خطی بودن رابطه بین شدت و فرکانس است [7].

اگر پسوند (ν) را نشان ماده بی شکل و پسوند (ν) را نشان ماده بلوری در نظر بگیریم آتکه:

\[
\begin{align*}
I_a &= (K_a / \rho_a \mu_a) \chi_a = K_a \chi_a \\
I_c &= (K_c / \rho_c \mu_c) \chi_c = K_c \chi_c \\
\end{align*}
\]

و از آن جا

\[
\frac{\chi_c}{\chi_a} = \frac{K_c}{K_a} \frac{I_c}{I_a}
\]

\[
\chi_c + \chi_a = 1
\]

\[
k = \frac{K_c}{K_a}
\]

که در آن k شیب خط و χ_c و χ_a درصد های مقادیر بلوری و بی شکل اند [7]. در حالت‌هایی که تعداد کانی‌ها در نمونه از دو پیشتر باشند، می‌توان از یک ماده سوم مانند کرونند به عنوان واسطه استفاده کرد و منحنی‌های همستحکم مربوط به آن را رسم کرد. ولی در حالتی که تنها یک سیستم دو فازه ساده در کار باشد به ماده سوم دیگر نیازی

13-Aug-2001 11:59
روش کمی (APD)
روش‌های کمی مورد نیاز در ترم‌افزار (APD) و کاربردها و کارآیی‌های هر یک از آنها در مقاله جدایگانه [9] مورد بررسی قرار گرفته‌اند. از آن جمله روش ماتریکس (APD) است که در این مقاله از آن بهره گرفته شده است و به روش ماتریکس فلشیشگی چانگ شهامت دارد [10]. با استفاده از این ترم‌افزار نمونه‌های استاندارد پس از آماده‌سازی های‌های لازم برای رسم منحنی همسنجی، طیف گیری شده‌اند. پس از انجام آزمایشات لازم به نتایج زیر رسیدیم.

نرم‌افزار APD برای طیف‌گیری های لازم برای رسم منحنی، نهایت یک محل را برای کلیه نمونه‌ها طلب کرده و به حساب می‌آورد و این مسئله در مواردی که اختلاف موجود بین زمینه دو فاصله قابل توجه باشد این‌ها مشکل‌هایی ایجاد می‌کند. به خاطر وجود آمدن این مشکل روش جدیدی که آن را "نرم‌افزار "نامیدیم برای حل آن تدوین گردید.

تدوین روش نیمه خودکار (APD)
تدوین روش به‌خاطر مشکلاتی صورت گرفت که در عمل برای تعیین صحیح مقدار زمینه در موضع مطلوب به وجود می‌آید. این روش بر اساس داده‌های روش‌های قبلی استوار است ولی با این تفاوت که بعضی از آن‌ها شامل طیف‌گیری و تعیین مقادیر اندازه‌شناسی قله‌ها (سطح قله و یا ارتقاء) بود، مانند قبل براساس کامپوتر و با استفاده از نرم‌افزار APD انجام می‌شد. در حالی که رسم منحنی‌های همسنجی و محاسبات انجام شده مربوط به آنها به‌طور نیمه خودکار و با استفاده مقطعی از نرم‌افزار APD و سایر نرم‌افزارهای رایانه‌ای صورت گرفته.

جاده‌گذاری گفته شد، پرتره این روش به خاطر داشتن امکان راه اندازی و انتخاب متریکس فلشیشگی مقدار زمینه است که علت اصلی اختلال در اندازه‌گیری و محاسبه سطح با ارتقاء قله تشخیص داده شد. این اختلال به این خاطر است که محل اندازه‌گیری زمینه در کلیه نمونه‌های به کار گرفته شده ثابت بود.
مشخصات نمونه مورد بررسی و آماده‌سازی استانداردها
نمونه‌های مورد آزمایش از مناطقی در جنوب اردبیل در مسیر روستای گلی‌جان به دوگر
انتخاب شده است. در این محل ربخنده‌هایی از سنگ‌های ریولیتی هوازده توهفهای
شبیه‌سای داسیتی و ریولیتی و توس و آندزیتی وجود دارند که از نظر سنی متعلقاند به
اولیگوسن. کانی‌های اصلی این سنگ‌ها شامل بلازیوکلاز، بیوتیت، فلذسیات آللک‌پان تجزیه
شده و کوارتز است. در این سنگ‌ها رگ‌های فراوانی از سیلیس تانویه و اوفال شیری
رنگ مشاهده می‌شوند که گاهی ضخامت آنها به بیش از ۲۰ سانتی‌متر می‌رسد و
نمونه‌های مورد آزمایش از این رگ‌ها انتخاب شده‌اند. موقعیت زمین‌شناسی واحد
مشخص شده‌است در شکل ۲ دیده می‌شود. و
نیز شکل ۲ ربخنده‌هایی از سنگ‌های مورد مطالعه در منطقه اردبیل.

(Or) جنوب اردبیل.
شکل 3- نماهای سطح‌های برشته‌ای میان‌بوده حاصله‌ای رگ‌های کامپرسیو و اوپالی که نمونه‌های مورد مطالعه از آنها انتخاب شدند.

برای رسماً منحنی‌های همسنجی، از نمونه‌های مناسب کوارتز و اوپال خالص به عنوان استاندارد استفاده شد. این کانال‌ها پس از آماده‌سازی و پودر شدن به صورت نسبتی‌ای صفر تا صد برای کوارتز، و صفر تا صفر برای کوارتز بهره و مورد طیف‌گیری قرار گرفتند (شکل 4). با استفاده از این استانداردها نمونه‌های مشخصی نیز با مقدار درصد معلوم (85% برای کوارتز و 15% برای اوپال) ساخته شده تا بررسی کارآیی روش نیمه‌خودکار بکار گرفته شود.

آنالیز‌ها در آزمایشگاه آنالیز واحده اکتشاف سازمان انرژی اتمی ایران با دستگاه فیلیپس مدل 2710 با مشخصات طیف‌گیری (Cu kα, 400 kV, 30mA) انجام شد.

نتایج روش کمی ماتریکس فلاشینگ در مرحله اول، نرم‌افزار APD ساخت شرکت فیلیپس برای طیف‌گیری و رسم منحنی‌های همسنجی بکار گرفته شد. در این مرحله تنها از روش کمی ماتریکس...
شکل ۴- طیف‌های استاندارد تشکیل شده از مخلوط اویال و کوارتز با نسبت‌های مختلف.

فلارشینگ موجود در نرم‌افزار APD استفاده شد. حالتهای مختلف تغییر شدت پراش از طریق محاسبه سطح قله (شکل ۵ و ۶) و نیز ارتفاع قله مورد آزمایش قرار گرفتند، و منحنی‌های هماسنجی آنها رسم شدند در عین حال برای بررسی مشکل تغییر محل زمینه، حالت‌های مختلفی در نظر گرفته شدند و مورد آزمایش قرار گرفتند.

نتایج روش نیمه‌خودکار (APD)

مقادیر شدت قله‌ها با استفاده از نرم‌افزار محاسبه و منحنی‌های هماسنجی نیز با استفاده از نرم‌افزار Excel رسم شدند. منحنی‌های هماسنجی کوارتز به دو صورت ارتفاع قله (شکل ۷) و سطح قله (شکل ۸) و نیز برای اویال منحنی‌های هماسنجی برای دو حالته سطح و ارتفاع قله ترسیم شدند. در اینجا نیز بهترین پاسخ‌ها برای سطح قله به دست آمده که اختلافی برابر ۱/۴ برای کوارتز و ۲/۵ درصد برای اویال دیده شد.

البته این دو پاسخ مکمل یکدیگر بودند و مکمل بودن رابطه بین بلورینگی و پیش شکلی را نشان می‌دهد (شکل ۹). نتایج بدست آمده از روشهای بالا در جدول ۱ خلاصه شدهاند.
شکل 5- منحنی هم سنجه روش ماتریکس فلاشینگ (کوارتز)

شکل 6- منحنی هم سنجه روش ماتریکس فلاشینگ (اوپال)
جدول 1- در این جدول پاسخ‌های حاصل از روش مانیتور فلزشینگ با (MF) و پاسخ‌های حاصل از روش نیمه‌خودکار با (SA) نشان داده شده اند:

<table>
<thead>
<tr>
<th>شدت قله</th>
<th>درصد ماده موجود</th>
<th>درصد اختلاف</th>
</tr>
</thead>
<tbody>
<tr>
<td>کوارتز سطح (MF)</td>
<td>88/2</td>
<td>3/3</td>
</tr>
<tr>
<td>کوارتز ارتفاع (MF)</td>
<td>80/1</td>
<td>4/9</td>
</tr>
<tr>
<td>اوبال سطح (MF)</td>
<td>12/6</td>
<td>2/4</td>
</tr>
<tr>
<td>اوبال ارتفاع (MF)</td>
<td>93</td>
<td>8</td>
</tr>
<tr>
<td>کوارتز سطح (SA)</td>
<td>86</td>
<td>1</td>
</tr>
<tr>
<td>کوارتز ارتفاع (SA)</td>
<td>88</td>
<td>3</td>
</tr>
<tr>
<td>اوبال سطح (SA)</td>
<td>12/5</td>
<td>2/5</td>
</tr>
<tr>
<td>اوبال ارتفاع (SA)</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

چنان‌که دیده می‌شود، نتایج بسیار خوبی از هر دو روش به دست می‌آید، ولی نتایج حاصل از روش نیمه‌خودکار از دقت بیشتری برخوردار است. برای مثال نتایج

![Peack Hieght](chart.png)

شکل 7- منحنی همسنجی روش نیمه‌خودکار (کوارتز).
شکل 8: منحنی همسنجی روش نیمه‌خروجکار (کوارتز).

شکل 9: رابطه بلورینگی و آمورف (کوارتز و آویال).
آنالیز کمی و تعیین مقدار مواد بی‌شکل و بلوری \(\text{SiO}_2 \) در مخلوط ...

حاصل برای کوارتز با روش تمام خودکار 2/2 و 4/9 درصد اختلاف در مقابل روش نیمه خودکار 1 و 3 درصد بوده است. در عین حال نتایجی که بر پایه اندازه‌گیری فلترهای کوارتز استوارند در مقایسه با پاسخگیری که براساس اندازه‌گیری فلتر بی‌شکل اوپال قرار دارند به نسبت اصلی نزدیکتر می‌باشند: 2/2 درصد اختلاف برای قله‌های کوارتز که از طریق سطح قله اندازه‌گیری شدند در مقابل 1 درصد اختلاف برای اندازه‌گیری همان قله‌ها از طریق ارتفاع با توجه به نتایج موفقیت آمیز به دست آمده از یک نمونه معلوم، این روش‌ها برای نمونه‌های جهش‌های مورد نظر از منطقه مذکور به‌کار گرفته شدند و نتایج زیر بدست آمدهند:

1- روش تمام خودکار: \(\text{APD} \) 0/88/7 کوارتز و 0/48/0 اوپال.
2- روش نیمه خودکار: 0/54/0 کوارتز و 0/55/0 اوپال.

با توجه به نتایج نمونه‌های معلوم می‌توان گفت که نتیجه حاصل از روش دوم (نیمه خودکار) به واقعیت لازم‌کردن است.

برداشت

نمونه‌های بی‌کار گرفته شده به عنوان استاندارد دارای خلوص کامل نیزند و در آنها مقداری ناخالصی به‌چشم می‌خورند (شکل 1). خطای موجود در این نتایج به همین دلیل بوده است. مسلماً با به‌کارگیری استانداردهای مناسب و با درجه خلوص بالا نتایج بهتری بدست خواهند آمد.

در روش‌های کاملاً خودکار نرم‌افزار APD که در برنامه‌های کمی تعبیه شده است، امکان تغییر زاویهای که برای اندازه‌گیری مقدار زمینه تعیین می‌شود می‌سیزد. برای نمونه‌هایی که اختلافی در مقدار زمینه اجرا کرده آن وجود دارد، روش نیمه‌داروی برای APD پیشنهاد شد.

بدین ترتیب به نظر می‌آید که روش ماتریکس فلاشینگ مناسب‌ترین روش برای اندازه‌گیری کمی مقدار درصد ماده بلوری و بی‌شکل در پلیمرها و مواد دارویی باشد، و روش ابداعی نیمه‌داروی به‌کارگیری های کمی مربوط به مواد معدنی یک همراه با کانی‌هایی از قبیل اوپال، لیمونیت و پیشبند همراهند، مناسب‌ترین باشد.

6- بیوهشگاه صنعت نفت خزر، جزوه آموزشی: کاربرد کانیهای رسی در اکتشافات منابع هیدروکربوری.

9- محمدضاکی کتابداری و کامران احمدی "آلاین کمی SiO₂ در مخلوط کوارتز و (BO₃H₃) با دستگاه دیفرانسیمتری (XRD) اشعه ایکس (X-ray) مجهز انرژی اتمی، در نوبت چاپ.