Growth of MnCl$_2$.4H$_2$O crystals and measurement the exact percent of cobalt impurities in the crystal, using radioactive isotopes of 54Mn, 60Co, 57Co and NMRON technique

M.R. Benam
Department of Physics, Payam Noor University, Fariman, Iran
mbenam@science1.um.ac.ir

M. Hoseini
Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran

J. Pond, and B.G. Turrel
Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., V6T 1Z1, Canada

Key Words: CoCl$_2$.6H$_2$O, MnCl$_2$.4H$_2$O, NMRON (Nuclear Magnetic Resonance on Oriented Nuclei) and Antiferromagnetic

Abstract: In this paper, MnCl$_2$.4H$_2$O crystals with monoclinic structure, for the study of magnetic hyperfine field in magnetic crystal at low temperature, have been grown. To study the effect of impurities on T$_1$ (spin-lattice relaxation time), crystals with different percent of 59Co impurities, from saturated mixed solution of MnCl$_2$.4H$_2$O and CoCl$_2$.6H$_2$O at temperature of 300°K, have been grown. The percent of cobalt impurities in the solution and crystal was determined by using the radioactive isotopes of 54Mn, 60Co and 57Co as probes. The result indicated that the ratio of 59Co/55Mn was about 6.2% which has a good correspondence with the results of the NMRON spectrum of 54Mn in low temperatures (T<100mK).
پژوهشی

رشد تک بلورهای ^{59}Co و تعيين در صد ناخالصي $\text{MnCl}_2\cdot 4\text{H}_2\text{O}$ در بلور با استفاده از ايزوتوبهای ^{54}Mn، ^{57}Co و ^{60}Co در روش NMRon

محمد رضا بنام
نامه فیزيک دانشگاه پيام نور فرمان-ایران

سيد محمد حسیني
نامه فیزيک دانشگاه فردوسی مشهد-ایران

جيمژ پوند و براين تارل
نامه فیزيک دانشگاه برنتش كليمبيا - كنادا

(دریافت نسخه نهایی ۱۳۸۹/۰/۱۳ دریافت نسخه نهایی ۱۳۸۱/۰/۵)

چيکده: در اين كار پژوهشي بلورهای $\text{MnCl}_2\cdot 4\text{H}_2\text{O}$ با ساختار تک ميل، برای مطالعه ساختار و دماهاي از دماهای $	ext{T}_1$ (زمان واختل ناخالصي) اين ^{59}Co در محلول آبي اشيا براي $	ext{Mn}$ به دما K 300 درصد داده شدند. آنگاه در صد ناخالصي ^{59}Co با استفاده از ايزوتوبهای ^{54}Mn، ^{57}Co و ^{60}Co تعيين شد. نتایج حاصل نشان مي دهد كه نسبت حدود 2/6 است. درستي اين نتایج با استفاده از طيف NMRon ايزوتوب ^{54}Mn در دمائيات $	ext{T}_1<100\text{mK}$ مورد بررسي قرار گرفت.
رشد تک بلورهای \(\text{MnCl}_2 \cdot 4\text{H}_2\text{O} \) و تعیین درصد تناخلصی...

مقدمه

بلورها با توجه به خواص مغناطیسی آنها در حالی کلی به دو گروه تقسیم می‌شوند. بلورهای مانند مواد فرو و یا فرمول مغناطیسی که در گیاه میدان مغناطیسی، دارای ساختار مغناطیسی منظم اند، و بلورهایی که ساختار مغناطیسی منظم ندارند. بلورهای نوع اول علاوه بر نظم مغناطیسی دارای نظم در توزیع جرم و بار نیز هستند. بلورهای از این گروه اند. این بلورها دارای ساختار بلوری تک میل پوهه که در \(\text{MnCl}_2 \cdot 4\text{H}_2\text{O} \) نام‌نامه \\[1\] این بلورها زیر دمای نیل \\(T_N = 175 \) تغییرات فاز بلوری مذکور در دماهای پایین با استفاده از روش NMR در تصویر تغییرات فاز بلوری مذکور در دماهای پایین با استفاده از روش NMR در موارد مطالعه فتا گرفته است [5]. به هر حال برای بررسی و مطالعه اثر تناخلصی کیالات و خواص مغناطیسی آن، در دماهای بسیار پایین (\(< 100 \) mK) لازم است که در صد تناخلسی کیالات به دقت تعیین شود. برای این منظور بلورهایی با ابعاد کوچک را از محلول اشباع آبی در دما اتاق رشد داده و تا پایان اشباع برای وارد کردن تناخلسی‌های \(\text{Co} \) آنهما را در محلول آبی اشباع \(\text{CoCl}_2 \cdot 6\text{H}_2\text{O} + \text{MnCl}_2 \cdot 4\text{H}_2\text{O} \) قرار دادیم. در صد تناخلسی کیالات وارد شده در نقطه \(59 \) Co/55Mn نا‌یونی از دست نیست. 55Mn را نمی‌توان از نسبت \(\text{MnCl}_2 \cdot 4\text{H}_2\text{O} \) بلوری دیگری توانا از دست آورد. زیرا فعالیت این یون‌ها در قرار گرفتن در نقطه شکل یک نیست. به همین دلیل از ایزوتوپ‌های هافنرکین و \(57 \) Co و \(60 \) Mn برای تعیین درصد دقیق تناخلصی کیالات در بلور رشد داده استفاده شد.

روش آزمایش

برای تهیه و رشد بلورهای \(\text{MnCl}_2 \cdot 4\text{H}_2\text{O} \) محصول از حل کردن دیا مقدار ده % در آب مقطر، محلول اشباع آبی با درجه خلوص 99.9% در آب مقطر، محلول اشباع آبی Chemical Fisher www.SID.ir
تنهیه شد. پس از عبور محلول از صافی محلول چلسی، به مدت ۱۲ ساعت در دمای نسبتی K=۳۵۰ درجه داشتیم، پس از تبخیر و ابجاد هسته‌های کوچک بلوری، جنده نمونه مناسب از آنها را انتخاب کردیم و در یک ظرف جداگانه ای شام محلول اشباع در دمای مذکور قرار دادیم. نتیجه پس از بارش کندن به ابعاد CoCl۲.۶H۲O به اندازه ۵۲۳۲۵۰۷ و MnCl۲.۴H۲O به اندازه ۵۳۲۷۱۰۹ گرمی ثابت نمود. این نتایج در محلول آبی Co و Mn، تیزی ۵۶۱۹.۴ و ۵۲۴۹.۶ در محلول عبارتند از:

\[
N_{Co} = N_A \left(\frac{25.0523}{55 + 2 \times 35.45 + 4 \times 2 + 4 \times 16} \right) = 1.266 \times 10^{-11} N_A
\]

\[
N_{Mn} = N_A \left(\frac{2.7094}{59 + 2 \times 35.45 + 6 \times 2 + 6 \times 16} \right) = 1.139 \times 10^{-12} N_A
\]

که در آن \(N_A \) عدد اومگا است. لذا کسر یونهای Co در محلول عبارت است از

\(\frac{N_{Co}}{N_{Mn}} \approx 9/9 = 1 \) مول.

کسر یونهای Co در بلور، از یونهای موجود در محلول کمتر خواهند بود. برای تعیین دقیق کسر یا در صد یونهای کبالت در بلور، از فعالیت ایزوتوپهای رادیویی استفاده می‌شود. برای این منظور به محلول اشباع، ایزوتوپهای Co و Mn اضافه شده می‌باشد. مسی بلور را در این محلول قرار دادیم. نتیجه در نمونه سیگز، به دلیل ساده‌تر بودن Co و Mn در نقاط مشترک قرار گرفتند، پس از آن برای جلوگیری از آلودگی با مواد رادیو اکتشی در محلول نا رادیویی MnCl۲.۴H۲O رشد داده شد.

برداشت‌ها

برای تعیین درصد ناخالصی Co در بلور حاصل و فعالیت محلول اصلی، بلور و زمینه به مدت ۱۰۰۰ ثانیه در فاصله ۵۰ سانتی‌متری از شاخص‌ساز Ge قرار داده شدند و هم‌زمان با استفاده از دریافتگاه آنالیزر چند کانالی (MCA - Multi Chanal Analyser) شمارش شد و نتایج در جدول ۱ آمده‌اند.

برای تعیین کسری آزمایشی از یونهای Co به داخل بلور راه می‌پیوندد، می‌توان آن را از نسبت F والعیت آنها در بلور به فعالیت محلول + بلور محاسبه کرد. در مورد ایزوتوپ Co این کسر برابر با ۵۴۵۵۱ قرار داده شد.

کسر برابر با ۱۸۱،۰ و در مورد ایزوتوپهای Co برابر با ۱۲۵،۰ است.
جدول ۱- فعالیت هر یک از ایزوتوپهای موجود در بلور.

<table>
<thead>
<tr>
<th>ایزوتوپ</th>
<th>انرژی (KeV)</th>
<th>شمارش خالص</th>
<th>شمارش در بلور</th>
<th>محول</th>
</tr>
</thead>
<tbody>
<tr>
<td>⁵⁷Co</td>
<td>۱۲۷</td>
<td>۱۸۲۴</td>
<td>۹۸۰۷</td>
<td>۲۲۹۷۷۴</td>
</tr>
<tr>
<td>⁵⁴Mn</td>
<td>۸۵۰</td>
<td>۱۱۶۴</td>
<td>۵۸۴۲</td>
<td>۲۶۰۲۴</td>
</tr>
<tr>
<td>⁶⁰Co</td>
<td>۱۱۷۰</td>
<td>۲۴۷</td>
<td>۹۵۰</td>
<td>۷۲۷۳۲</td>
</tr>
<tr>
<td>⁶⁰Co</td>
<td>۱۳۳۰</td>
<td>۲۲۰</td>
<td>۸۶۱</td>
<td>۵۳۵۸۷</td>
</tr>
</tbody>
</table>

آگر r نسبت یونهای Co به Mn در بلور فرض شود، آنگاه خواصی داشت:

\[r = \left(\frac{\text{Co}}{\text{Mn}} \right) \times \left(\frac{0.0125}{0.0181} \right) = 6.2 \times 10^{-2} = 6.2\% \]

بتاراین درصد واقعی برای با ۷۳% خواهد بود. از آنجا که هر یک از Mn در بلور مذکور با نرخ باز همسایه است، بنابراین احتمال اینکه یک يون Mn از يون Co باشد، عبارت است از:

\[P(n) = r^n (1-r)^{6-n} C_6^n \]

\[C_6^n = \frac{6!}{n!(6-n)!} \]

به این ترتیب کسری از یونهای Co با آن شکل قرار می‌گیرند که به این ترتیب کسری از یونهای Co است، برای خواهد شد با:

\[P(1) = 0.04 \]

\[P(2) = 0.27 \]

اما وجود یونهای کبالت باعث تغییر میدان فوق ریز در محل هیئت با ۵۴Mn ایجاد خطوط اتوماری در طرف تشکیدی آن می‌شود که شدت این خطوط نسبت به خط اصلی، بستگی به کسر یونهای مغناطیس شده ⁵⁴Mn به عنی (1) P(1) و P(2) دارد.

 بطیف تشکیدی خط ⁵⁴Mn در نموده بلوری با ۶۲ درصد کبالت به روش NMROD نشانگر خط اتوماری در ناحیه بسامد ۴۹.۶ MHz باشد مکانی در حداکثر ۲۶۰ /۷۰ خط اصلی قابل تشکیل بوده است که با مقدار (1) محاسبه شده، مطابقت خوبی دارد.