CLASSIFICATION OF AMPHIBOLES
FROM IRON ORE DEPOSITES, SANGAN AREA, KHAF

Mazaheri, S. A.
Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad
mazaheri@ferdowsi.um.ac.ir

Key words: Amphibole, Sangan Khaf, granitoid, garnet-pyroxene skarn, amphibole skarn, ferroedenite, hastingsite and ferroactinolite.

Abstract: Skarn occurring in the Sangan area was formed within two different rock groups: graitoids and skarns. Based on the new amphibole classification and nomenclature, the general formula of amphiboles is (AB₂C₅T₈O₂₂OH)₂. Amphibole of granitoids is a ferroedenite in which Si = 6.87 - 7.75, CaB > 1.5, (Na+K)ₐ > 0.5 and Ti < 0.5. Skarn amphiboles are mostly developed within amphibole skarns and garnet-pyroxene skarns during retrograde stage of skarn evolution. High-temperature amphiboles are rich in Al while low-temperature amphiboles are poor in Al. Skarn amphiboles are classified in two groups: (a) hastingsite in which Si = 5.99 - 6.08, CaB > 1.5, (Na+K)ₐ > 0.5, Ca < 0.5 and Al < Fe⁺³. (b) ferroactinolite in which Si = 7.61 - 7.90, CaB > 1.5, (Na+K)ₐ < 0.5 and Caₐ < 0.5. Amphibole in (a) is Al-rich while amphibole in (b) is Al-poor.
پژوهشی

ردبندی آمفیبول های کاسار سنگ آهن ناحیه سنگان خواف

سیداحمد مظاهری
گروه رمزگشایی، دانشگاه علوم پایه، دانشگاه فردوسی مشهد

دریافت نسخه نهایی ۱۳۸۱/۱۲/۲۲

چکیده: آمفیبول‌های ناحیه سنگان خواف در درگروه سنگی گرانیتونیدها و اسکارنزها به وجود آمده‌اند. بر اساس رده‌بندی جدید و با توجه به فرمول عمومی آمفیبول‌ها، آمفیبول در سنگ‌های گرانیتونیده‌ای با مشخصات $AB_2C_5_{\text{Si}_8}$ به آمیختگی $\text{Na}_0.5\text{K}_0.5\text{Ca}_2$. $\text{Si}=5.78-7.75$ و $\text{Ti}=0.5$ هر نیمه از نوع فروآدنیت (ferroedenite) می‌باشند. آمفیبول‌های موجود در اسکارنزها با اشکال فیلی در آمفیبولیت و گرونت پروکسی اسکارنزها در مراحل پس‌رودنگی تکامل اسکارنزها بوجود آمده‌اند. آمفیبول‌های با دمای بالا و با دمای بالا و فیلر از Al بوجود آمده‌اند. آمفیبول‌های با دمای بالا و با دمای بالا و فیلر از Al هستند. آمفیبول‌های موجود در اسکارنزها به دو دسته تقسیم می‌شوند: (الف) هاستینگزیت (hastingsite) با مشخصات $0.8-7.08$, $\text{Si}=5.99-6.15$, Ca، و با (ب) فروآتنولیت (ferroactinolite) با Fe^{3+}، Ca، $\text{Na}_0.5\text{K}_0.5\text{Ca}_2$ مشخصات $0.8-7.90$, $\text{Si}=7.61-7.90$, Ca_2. $\text{Na}_0.5\text{K}_0.5\text{Ca}_2$ نوع آمفیبول اسکارنز، آمفیبول‌های فروآدنیت، هاستینگزیت، و فروآتنولیت.

www.SID.ir
مقدمه

ناحیه سنگان در جنوب شهر خواف در ۲۹۰ کیلومتری جنوب شرق مشهد واقع است. (شکل ۱) به سنگهای آهکی که تا این ناحیه پلیتوون گرانتونیودی سرنوشت (نوع I) با سمن احتمالی انسان پسین ثانیکوگسی پیشین نفوذ کرده اند [۱۴]، (شکل ۲). اسکارکه های سنگان به چهار منطقه A(غربی)، B(مرکزی)، D(شرقی) تقسیم شده‌اند [۳]. بر منابع فراوانی کانی‌ها، ترتیب فرار گرفتن اسکارکه‌ها از پلیتوون به ترتیب عبارتند از زون‌های گارانت اسکارک، گارانت بیروکسن اسکارک، امفیبول اسکارک و اسکوپولیت اسکارک. آمفیبول اسکارک بریلر ذا گارانت بیروکسن اسکارک و گارانت اسکارک همراه است (شکل ۳). در بعضی از مناطق چهارگانه بالا یک یا دو زون غایب است [۲].

گرانت ها، کوارتز، مونوزونیت، های تفریق نیافته و سنگهای میکروگرانیتی، متناوب ترین سنگهای گرانتونیودی در ناحیه سنگان را تشکیل می‌دهند. گرانتین سرورس یک هورنبلند-جیوانت گرانت است [۷]. در ناحیه C هورنبلند بیشتر از بیوانت است در صورتی که در ناحیه A بیوانت کمتر از هورنبلند است [۱۴].

شکل ۱- موقعیت و راه‌های رسیدن به منطقه مورد مطالعه.
رده بندی آمافیول‌های کانی‌های ناحیه سنجان خواف

اسکاره‌های سنجان در دو مرحله اولیه با دمای بالا یا پیشروی‌های (II, I) و دو مرحله ثانویه با دمای پایین یا پس‌روی‌های IV, III بوجود آمده‌اند. در مرحله I گوارنت آندرادیتی و در مرحله II مجموعه آندرادیتی - هدینگرینیت به وجود آمده‌اند. مرحله III عمده‌ای از آمافیول‌های غنی از Al و مرحله IV با آمافیول‌های کم Al. کلریت، و مگنتیت مشخص می‌شود.

شکل 2- نفشه زمین شناسی ناحیه سنجان بر اساس نقشه ۱۲ شرکت ملی نفت ایران (۱۹۹۰). مناطق چهارگانه A, B, C, D در نقشه مشخص است.

www.SID.ir
طفل 3- آمپیبول اسکارونیا (رنگ تیره) در میان گازنت پیر تکه اسکارونیا در تراحیه C

روش مطالعه
نمونه‌هایی از گرانیتون‌هایی حاوی آمپیبول (گرانیت سرنوسر) و نیز نمونه‌های آمپیبول اسکارونیا، گازنت پیر تکه اسکارونیا و گازنت اسکارونیاهای حاوی بلورهای آمپیبول انتخاب شدند. مقاطع نازک این نمونه‌ها به دقت با میکروسکوپ‌های تحقیقاتی دانشگاه ولنگانگ در استرالیا و دانشکده علوم زمین در دانشگاه فردوسی مشهد مورد مطالعه قرار گرفتند و آن را به میکروسکوپ‌های رشته‌نوری (RSES) با استفاده از تکنولوژی دستگاه‌های مایکروتروپ در دانشکده تحقیقات علوم زمین، (CAMEBAX CAMECA) استرالیا در شهر کانبرا و در مؤسسه North Ryde در CSIRO استرالیا (ANU) در شهر کانتری و در مؤسسه Cameca SX-50 أزمایشگاه‌های مرکزی شرکت (BHP) در شهر ولنگانگ گردآوری شدند. اطلاعات تقلید شده از [6] در مرکز تحقیقات معدنی دانشگاه تاسمانیای شهر هوبارت استرالیا و [8] در دانشگاه یاماگاتا انجام انجام گرفته بودند. اکثر نمونه‌ها به روش تزریق نمونه به روش WDS تجزیه شدند. قطع تظیم شده باریکه الکترون مایکروتروپ 1 تا 5 میکرون بوده است. میزان آهemed نتایج الکترون مایکروتروپ به صورت آهن کل (FeO) گزارش می‌شد. آهن سه ترکیبی با نرم‌افزار
برهنه بندی آمافیبول های کانسار سنگ آهن ناحیه سنگان خواف

با استفاده از فرمول شماره ۲۳ [DROP] Probe رایانه ای تجزیه نمونه‌های آمافیبول های ناحیه سنگان در جدول ۱ نشان داده شده است.

سنگ شناسی

الف- سنگهای کراتونلیتی

مطالعه میکروسکوپی گرانیتی‌های نشان داده که این سنگ‌ها حاوی کوارتز، اورتوکلاز (معمولاً پرتوی با رشد نوام میکروکرایتونیفی)، پلاژیوکلاز (An25.35)، بیوتیت، فوهای، و هورنبلند سبز به صورت شکل دار و نیمه شکل دار هستند. اسفن، زیرکان، و آپاپنت کاتنی فرعی معمولی و سرسیت، کلریت، اکتیلونیت، پرتیت و کالکوبوریت کاتنی‌های شانوی معمولی و کانلوند و هیدروکسیدهای آهن‌دانه ریز محدوده‌های هوازده گرانیتی‌ها را تشکیل می‌دهند. هورنبلند می‌باشد. این هورنبلندها در بعضی از میکروگرانیتی‌ها به اسفن، بیوتیت و کلریت دگرسان شده‌اند. جانشینی هورنبلند با اکتیلونیت نیز بسیار متداول است.

ب- استکوان‌ها

آمافیبول اسکارن‌ها حاوی هورنبلند (بیشتر هاسهنتینگزیت)، کلریت، کوارتز، مگنتیت و به‌ندرت اپیدوت و/یا فلدسپات پتاسیمی بیوتیت به صورت شکل دار و نیمه شکل دارند. اسفن و آپاتیت از کاتنی‌های فرعی معمولی هستند. بیشتر آمافیبول اسکارن‌های ناحیه C غنی از پرتیت هستند.

روابط بین نمایه‌های ناهید در نسل اول از آمافیبول‌های سنگ حضرت دارند. نسل اول آمافیبول‌های غنی از Al (با بیش از ۲۴۸٪ درصد وزنی Al2O3) با ترکیب هاسهنتینگزیت که با جانشین گارنت و کلینو پروکس شده‌اند و یا به صورت بین دانه ای در میان آنها دیده می‌شود. این آمافیبول‌ها با کوارتز، فلدسپات پتاسیمی و به‌ندرت با پلاژیوکلاز و کلریت همراه هستند. نسل دوم آمافیبول‌های فقیر از Al (با بیش از ۲۰۳٪ درصد وزنی Al2O3) با ترکیب فرواکتیلونیت‌که به صورت پراکنه از دگرگانی کلینو پروکس‌ها (هیدروتیت) و با آمافیبول‌های غنی از Al (نسل اول) به‌وجود آمده‌اند.

www.SID.ir
آمفیبول‌های نسل اول به صورت کامل، یا بخشی جانشین پپروکسن‌ها شده و یا به صورت یک حاشیه جانشین بلوژه‌ای پپروکسکن و یا گارنت شده‌اند. زودمورف این آمفیبول‌های جای پپروکسکن به طور محلي دیده می‌شود.
آمفیبول‌های نسل دوم بیشتر به صورت آگرگات‌های شعاعی به وجود آمدند که از بلوژه‌ای منشوری شکل دار، به رنگ سبز کمرنگ تا سبز بی‌شبتمال به آبی تشکیل شده‌اند.
گارنت اسکارن‌ها حاوی بلوژه‌ای شکل دار تا نیمه شکل دار گارنت‌های زون‌دار، گاه با ضمیمه‌هایی از ایپیدوت‌های هستند. مقدار متغیری از کلسیت، کوارتز، بیوتیت، گیبیت، کلارت، مگنتیت و گاه سولفوره‌ها نیز در آنها دیده می‌شود. جانشینی گارنت اسکارن‌ها به وسیله آگرگات‌هایی از هاستینگیت و مگنتیت بسیار معمول است.
گارنت کلینوپروکس‌سن اسکارن اساساً حاوی گارنت، کلینوپروکس، کلسیت، کوارتز، اسکاپتولت عمدتاً به فلزات متشکل از پلاستیک و مگنتیت است. بیوتیت و آمفیبول از کانی‌های پسرودنه هستند. اسفن، آفاتیت، و زیرکان از کانی‌های متدول فرعی و هم‌شکل محلول معمول هوازارد اند. جانشینی کلینوپروکس‌سن به وسیله فروکتولینت و جانشینی گارنت و پپروکسکن به وسیله آمفیبول نوع هاستینگیت بسیار متدول است.

شیمی آمفیبول‌ها

\[AB_2C_3T_8O_{22}(OH)_2 \]

در رده بندی جدید [12] فرمول عمومی آمفیبول‌ها به صورت \(AB_2C_3T_8O_{22}(OH)_2 \) است. آمفیبول‌های ناحیه سنگان خواص (جدول ۱) در دو گروه متفاوت به وجود آمده‌اند. گروه اول در سنگهای کراتیونودی (کوارتز سرنومن) که آمفیبول آن، \(Ca_T > 1/5, Si = 6, AV - 7, V_75 \) (ferroedenite) با مشخصات \(Na\)\(_{0.5} Ti_{0.5} \) و عدد آنتی‌کرینت است. آمفیبول‌های غربی در اسکارن‌ها (آمفیبول اسکارن‌ها) گروه اول از آنها در مرحله پسرودنگی تکامل اسکارن‌ها تشکیل شده‌اند. انواع بیاباپالا، غنی از \(Al \) و انواع با دماهای پایین از نظر \(Al \) فقیرند. آمفیبول‌های موجود در اسکارن‌ها به دو دسته تقسیم می‌شوند:
جدول ۱. نتایج تجزیه الکترون ماکروپورپ نمونه‌های انتخاب شده از آمیکول های ناحیه سنگان نخوار (توضیحات به روش ۱۶۹۱۹۰) صورت گرفته است. نمونه‌های با روش Boumeri کریمی پور و دیگران (۱۳۷۹) است.
بحث

آمفیبول‌های سنگان در کارهای قبلی (مثلاً [1], [7], [14], [34] و [4]) بر اساس رده
نامگذاری شده بود. بومری و دیگران [8] نیز براساس رده بندی
Leake [16] نامگذاری سنگان را نامگذاری کرده بودند. انجمن
Howthorne و Leake [12] نامگذاری چندانی در رده بندی
نامگذاری جدید (شکل 4) فرمول شیمیایی آنتانادهم آمفیبول‌ها
با ساختار داخلی حاصل از زنجیره‌ای دوتایی سیلیکاتی یا
Double Silicate Chains از [9] است. براساس رده بندی جدید آمفیبول‌های ناحیه
سنگان همه در گروه کلسیک قرار می‌گیرند. خلاصه ویژگی‌ای یک گروه در زیر مورد
بحث قرار می‌گیرد:

گروه آمفیبول‌های کلسیک، از جمله آمفیبول‌های مونولین
(Calcic Amphiboles) هستند که در آنها Ca>1.5
و معمولاً NaB=0.5-1.5-1.5 Ca+Na)B است. مهم‌ترین
تغییرات در محدوده جدید با رده بندی قبلی آن است که مرزهای آمفیبول‌های سدیک کلسیک
NaB=0.5 (قابل 1.5) بوده اند. از ویژگی‌های دیگر رده بندی جدید، تخمین
Fe+3 در تجزیه الکترون ماکروپروب
آمفیبول هاست. در تجزیه الکترون ماکروپروب، آهن به صورت
FeO گزارش می‌شود.
Droop [15] انجام گرفته بودند. خلاصه تجزیه الکترون ماکروپروب آمفیبول‌های ناحیه سنگان براساس رده
بندی جدید [13] انجام گرفت. نتایج تجزیه الکترون ماکروپروب آمفیبول‌های ناحیه سنگان براساس Rده
Mg/(Mg+Fe+3) = xMg

سید احمد مظاهری

Cа50>1.5
Si=0.91

Fe3+ و Ca<0.5

ferroactinolite

(الف) هاستینگزیت (hastingsite) با مشخصات ۸۰۸-۶-۷. سه و (Na+K)A>۰.۵

(ب) فیرو اکتینولایت

(گرانتی) نوع غنی از کلر را تشکیل می‌دهد [۱۶].
شکل 4: رده‌بندی کلی آمفیبول‌ها (به‌استناد آمفیبول‌های Leake و دیگران (1997).)

با دانستن مقادیر X_{Mg} و Si، آمفیبول‌ها روى نسبت آمفیبول‌های کلسیک قرار می‌گیرند (شکل 5). به این ترتیب آمفیبول‌های ناحیه سنگان را می‌توان به دو گروه تقسیم کرد: یعنی آمفیبول‌های موجود در سنگهای گرانیتی‌نیاب، و آمفیبول‌های موجود در اسکارن‌ها. آمفیبول‌های موجود در سنگهای گرانیتی‌نیاب نسبت آمفیبول‌های کلسیک اند که با مشخصات $Si=6.88-7.75$ و $Ca_{nP} > 1.5$ و $Na+K < 0.5$ هورنیند (ferroedenite). است. آمفیبول‌های کلسیک موجود در اسکارن‌ها عمداً در آمفیبول اسکارن‌ها و درگذشت پیروکسی اسکارن‌ها دیده می‌شوند. این آمفیبول‌های به گروه آمفیبول‌های کلسیک تعلق دارند. آمفیبول‌های موجود در اسکارن‌ها به دو دسته زیر تقسیم می‌شوند:

1. هاستینگزیت (hastingsite) با مشخصات $Si=0.99-1.08$ و $Ca_{nP} > 1.5$.
2. ...
شکل: رده بندی آمفیбол‌های کلسیک، پس از Leake و دیگران (۱۹۹۷). نمونه‌های جدول ۱ با ستاره (X) نشان داده شده‌اند.

۱- فروآکتینولیت (Ferroactinolite) با مشخصات Si=7/6-7/9۰، Mg/Fe=1/۰.۵، Ca<۰/۵ و (Na+K)<۰/۵.

آمفیبول نوع ۱ از نوع دوم از دو دسته این آمفیبول غنی از آلومینیم (N=Ca) و آمفیبول نوع ۲ از نوع دوم با پایین (آمفیبول فیبروزان آلومینیمی) هستند. این آمفیبول ها در مرحله بسرونده یا تکامل اسکارن‌ها به وجود آمدند. (۱۴) آمفیبول‌های انواع ۲-۳ هر دوی به گروه آمفیبول‌های کلسیک تعلق دارند.
برداشت
در ناحیه سنگان خواف، دو نوع آمفیبول تشکیل شده‌اند. آمفیبول‌های موجود در سنگ‌های کرتی‌توندی، آمفیبول‌های موجود در داسکارن‌ها براساس رده‌بندی جدید
در ساختار فرمول عمومی آمفیبول‌های $\text{AB}_2\text{C}_5\text{Si}_3\text{O}_{12}$(OH)\(_2\), آمفیبول‌سنگ‌های
گرفتار برون‌برده به مشخصات: $\text{Ca}_5>1.5$, $\text{Si}=68-78$, $\text{Al}<0.5$, به
گروه هورنلندی تعلق داشته و از نوع فروادنیت (ferroedenite) می‌باشند.

آمفیبول‌های موجود در اسکارن‌ها، بیشتر در آمفیبول اسکارن‌ها و گرانت پروکسن
اسکارن‌ها و آن‌ها در مرحله بسیار نسبی تکامل اسکارن‌ها به وجود آمده‌اند. این
آمفیبول‌ها خود به دو گروه تقسیم می‌شوند: آمفیبول‌های با دمای بالا که غنی از Al
هستند و آمفیبول‌های با دمای پایین، که از نظر Al فقیرند. آمفیبول‌هایی که در اسکارن‌ها
به وجود آمده‌اند به دو دسته تقسیم می‌شوند: (الف) هاستیگرتی (hastigsite) با
$\text{Al}^{V}	ext{Fe}^{2+}\text{Ca}_5<0.5$, $\text{Si}^{5S}=5.99$, $\text{Ca}^{5}<1.5$, $\text{Si}^{5>1.5}$، $\text{Si}=68-78$, $\text{Al}<0.5$ و (ب) فروکتیولیت (ferroactinolite)
با مشخصات: $\text{Ca}_5<0.5$, $\text{Si}^{5S}=68-78$, $\text{Al}<0.5$ و (ال) آمفیبول نوع (الف) از نظر Al غنی و آمفیبول نوع (ب)
از نظر Al فقیر است.

قدیردایی
استاد زمین شناسی دانشگاه کالیفرنیا و همسپاران محترم
Howard W. Day از پروفسور
دکتر محمد حسن کریم بور، دکتر مرتضی رزم‌آرا و استاد راهنمایی هایشان و دکتر
محمد غفوری به واسطه تشییع هایش گزارش‌ها را در ادامه این پژوهش باری دادند
سباسگرام.

مراجع
1- کریم‌پور محمد حسن (۱۳۷۷): دما، نحوه تشکیل و پارازنت مکنتی در بخش‌های
مختلف کانسار آهن سنگان خراسان. هندهمنی گرد هم‌انداز علوم زمین. سازمان زمین
شناسی و اکتشافات معدنی کشور، تهران، مجموعه فشرده مقالات، صفحات ۱۶۷-۱۷۱.
2- مظاهری سید احمد و حرارت و ترکیب سیال اسکارن های مگنتی سیاست‌های خوان خراسان. دومین همایش انجمن زمین شناسی ایران، دانشگاه فردوسی مشهد، مشهد، مجموعه فشرده مقالات، صفحات 456-451.

3- مظاهری سید احمد (۱۳۷۷): مطالعه سیاست‌های کانی‌ها در اسکارن‌های آهن‌دار سیاست‌های خراسان. هفدهمین گرد همایی علمی زمین، سازمان زمین شناسی و اکتشافات علمی کشور، تهران، مجموعه فشرده مقالات، صفحات 174-189.

4- مظاهری سید احمد (۱۳۷۸): استفاده از هوشمندی در فشار سنجی سیستم‌های گئنتونلسیدی با مثال‌هایی از ایران، استرالیا، آمریکا و کانادا. سومین همایش انجمن زمین شناسی ایران، دانشگاه شیراز، شیراز، مجموعه فشرده مقالات، صفحات 115-113.

5- مظاهری سید احمد (۱۳۷۹): معرفی آمپیولهای ناحیه سیاست‌های خوان. هشتمین همایش انجمن بیولوژی و کانی‌شناسی ایران، دانشگاه فردوسی مشهد، مشهد، مجموعه فشرده مقالات، صفحات 124-134.

6- کریم بور محمد حسن، مظاهری سید احمد و آمپیولهای جدید غنی از کلر باراژن مگنتی و آندرادیت در اسکارن سیاست‌های خراسان. هشتمین همایش انجمن بیولوژی و کانی‌شناسی ایران، دانشگاه فردوسی مشهد، مشهد، مجموعه فشرده مقالات، صفحات 131-123.

7- مظاهری سید احمد (۱۳۸۰): مطالعه گئنتونلسیدهای نوع (I) سیاست‌های خوان. مجموعه چکیده مقالات پنجمین همایش انجمن زمین شناسی ایران، دانشگاه تهران، تهران صفحه ۲.

