Textures and REE geochemistry in Gian copper occurrence

Taghipour, N. and Moore, F.
Department of Geology, Shiraz University,
n.taghipoor@graduate.uk.ac.ir

Key Words: copper, metamorphism, REE

Abstract: The Upper Devonian - Lower Carboniferous Sourian complex, is composed of clastic - carbonates, volcanic, metamorphic rocks and quartz lenses hosts copper mineralization in Gian area of Fars province.

This complex is metamorphosed to green schist facies. This metamorphism resulted in massive to disseminated sulfide mineralization in the direction of schistosity and within quartz lenses.

Low-grade green schist facies metamorphism is recognized with cataclastic flow and fracturing of pyrite crystals, infilling of fractures of pyrite with chalcopyrite, pressure shadow of chalcopyrite around pyrite, recrystallization and presence of triple junctions in pyrite.

Distribution pattern of REE in schists of Gian copper shows a decreasing trend from La to Lu. The ratio of \sum LREE/\sum HREE is more than one and the ratio of La_N / Yb_N is less than 15. This indicates that schists are formed by the metamorphism of shales and the ratio of $\frac{La/Lu}{Lu}$>1 indicates that the transfer of REE has been affected by surface adsorption. It may be concluded that this copper occurrence is the result of ore-bearing shale metamorphism.
پژوهشی

مطالعات بافتی و عناصر نادر خاکی (REE) در رخداد مس جیان

نادر تقی پور و فرید مفر
بخش زمین‌شناسی، دانشگاه شیراز

(دریافت مقاله ۸/۵/۱۳۸۰، دریافت نسخه نهایی ۱۳۸۰/۲/۲۵)

چکیده: همبافت سوریان به سن دونین فوقانی - کربونیفر زیرین، شامل سنگهای آواری - آهکی، آنتشفاسانی، دگرگونی و عدسی های کوارتز- سنگ میزان کانه‌ای مس در منطقه جیان استان فارس است. این همبافته در حد رخساره شیست‌های سنگ دگرگون تند است. این دگرگونی باعث قرار گرفتن کانه‌های توده‌ای به سه سطح سولفیدی در جهت برجوارگی شیست‌های درون عدسی‌های کوارتز شده است. پیریت و کالکوپریت کانه‌ای اصلی هستند. دگرگونی احتمالاً درجه پایین شیست‌های سیز، با جریان عدسی‌آواری و خرده بلورهای بیبریت، پر شدن شکستگی‌های پیریت در کالکوپریت، سایه‌نگار کالکوپریت در اطراف پیریت، تبلور دوباره و پیوندی گیاهی در پیریت مشخص می‌شود.

نمره‌های پراکندگی عناصر نادر خاکی شیست‌های ذخیره مس جیان از Lu به La بین

www.SID.ir
مقدمه

تعداد زیادی ذخیره سولفید توده‌ای و افسانه از مناطق دگرگون شده جهان گزارش شده است و ذخیره مس جان نیز در زمراه این گروه گردیده محصول می‌شود که درگونی ناحیه‌ای آن در حد رخساره شیست سیز درجه پایین است و با حضور کانی‌های کلری و سربیستی مشخص می‌شود.

پژوهشگران زیادی از مطالعه ریز ساختارهای سولفیدی و فابریک‌ها برای تعیین وسعت دگرگشکی و دگرگونی کانی‌های سولفیدی استفاده کرده‌اند [۲، ۳، ۴]. مارشال و همکاران [۵] به بررسی جنبه‌های تحریک دوبازه ذخایر برداشت و نشان دادند که ساز و کارهای دگرگشکی شامل تحریک دوبازه درونی و بیرونی کانسگ در سولفیدی را می‌توان از روی تاثیر و ساخته‌ها در محل جایگیری کانسگ مشخص کرد.

جاکاه زمین‌شناسی رخداد مس جان

ذخیره مس جان در ۱۸۰ کیلومتری شمال شرق شیراز در منطقه بوتانات در زور سندج -سیرجان واقع شده است. این ذخیره در همبافت سوریان که شامل مجموعه‌ای از سنگهای اوراری -آهکی، آنتشفشانی، دگرگونی، و عدسی‌های کوارتزی به سین دوینی فوکانی -کربنیفر زیرین است، قرار دارد [۵] (شکل ۱).

سنگهای دگرگونی غالب در این همبافت را کلاهی شیست و کلاهی شیست تشکیل می‌دهند. عدسی‌های کوارتزی دارای اندازه‌های متفاوتی هستند (با ضخامت بیشینه ۲ متر). این عدسی‌ها درون شیست‌های قرار دارند و از روند کلی شیست‌سای حاکم بر این سنگ‌ها که شمال غربی -جنوب شرقی است، تبعیت می‌کنند. دایاکه‌های دیابازی سنگهای آذرین این همبافت را تشکیل می‌دهند که شیست‌سای سنگهای دگرگون را قطع کرده‌اند. علاوه بر همبافت سوریان، آهکهای توده‌ای و خاکستری به سین زوراسیک –کرتاسه و آهکهای کرتاسه‌ای در جنوب معدن و شیل‌های قرمز رنگ زوراسیک در شمال معدن وجود دارد [۱].

دو گسل با روند شمال غربی -جنوب شرقی در منطقه دیده شده‌اند که گسل شمالی بین همبافت سوریان و شیل‌های قرمز رنگ زوراسیک، و گسل جنوبی بین همبافت سوریان و آهکهای زوراسیک -کرتاسه واقع شده است (شکل ۱).
ویژگی‌های نوده معدنی
سنگ‌های میزبان کانک توزیع در معدن مس جیان شیست‌ها و عدسی‌های کوارتز هستند.
کانک سنگ‌های سولفیدی از نازک‌لاهی‌ها غنی و فقیر سولفیدی تشکیل می‌شود.
ضخامت این نازک‌لاهی‌ها از 2\text{mm} تا 9\text{mm} تغییر می‌کند. پیریت کالی اصلی سولفیدی است که به صورت خوش وجه در این سنگ میزبان دیده می‌شود.
اندازه‌ای بلوک‌ها متفاوت بوده و از دانه‌های پیچار ریز به دانه‌های با‌پایه‌ای با استفاده
متفاوت است. نازک‌لاهیه‌های فیقر سولفیدی با دانه‌های پرآکند، پیریت که به موازات
شیب‌سالی قرار گرفته‌اند، مشخص می‌شود.
اعدسی‌های کوارتزی در همبافت‌سوزیان در ذریه است. این عدسی‌های سولفیدی در ذریه
گرفته‌اند و از شیب‌سالی حاکم بر این سنگ‌ها تبعیت می‌کنند. عدسی‌های کوارتز
سولفیدی نیز در ذریه است. این عدسی‌های سولفیدی قرار دارند. اندامه‌ای عدسی‌های
سولفیدی متغیر بوده و ضخامت به‌شیب‌نیا می‌است. پیریت و کالکوپیریت کانی‌های
اصلی سولفیدی، در عدسی‌های کوارتز جای دارند. این کانی‌ها بیشتر به صورت افشان
در ذریه عدسی‌های کوارتز قرار گرفته‌اند.
کانی‌های جیره‌سولفیدی در نازک‌لاهیه‌ای و نقش‌سولفیدی شیست‌های پیریت است.
مشخصه بارز این نازک‌لاهیه‌ای پیریتی بیافته تنها یک ترکیبی (کاتانکلتی) آنهاست.
در بخش‌های چیزی خورده شیست‌های سولفیدی، پیریت با سختی بالشکلی بافت
می‌شود. فضایی بین بالشکل‌ها با کوارتز و یا کلریت بر شده است.
هر جا که پیریت به فراوانی یافته می‌شود و در جایی که بلورهای خوش‌وجه پیریت
تحت تاثیر نیروهای عمل کننده در مقابل یکدیگر قرار گیرند، دگرگونی شکلی تنها آواری رخ
کانی پیریت علی‌رغم سختی و ماهیت دورگانه، تمامی درد که در واکنش به
دگرگونی در درجات اکسیراسیون شیست‌سوز و بالاتر، باز بلوری‌بندی شود. باز بلوئیش
بخش‌های خاوی پیریت فراوان باعث تشکیل پیریت‌های موزائیکی با بایا پیوندگاه
سگانه شده و از روی زاویه ۱۲۰ بین دانه‌های پیریت مشخص می‌شود [8] (شکل ۳).
در مواردی مربوط به پیوندگاه سگانه در اثر فشارهای زمین‌ساختی با فشار شاره باز
می‌شود که در این حالت کانی‌های نرم‌تر مانند کالکوپیریت بین مرز دانه‌ها یا جانشین
می‌شوند (شکل ۴).
اغلب کانساهارهای سولفیدی که تحت تاثیر دگرگونی قرار گیرند، بافت‌هایی به وجود
می‌آیند که نشانگر تحرک مواد سولفیدی نرم‌تر (کالکوپیریت، پپروتین، استفاریتیت، و
گالن) به داخل شکستگی‌های موجود در ذریه سولفیدهای سخت‌تر و شکننده‌تر (پیریت
و آرسنپیریت) است. شکل ۵ چنین حالی را در ذره‌های من ساین نشان می‌دهد که

www.SID.ir
شکستگی‌های پیرویت با کالکوپیریت پر شده است. از جنبه‌های دیگر همین فرآیند مهاجرت مواد سولفیدی نرم به صورت سایه‌ای فشاری در اطراف کانی‌های سنگر و سفت‌تر است (شکل ۶).

شکل ۲ - بافت تنگ آواری (کانالکستی) در پیریت درون عدسی کوارتری (نور عادی)
بزرگنمایی ۵۰×

شکل ۳ - پاکت پیوندگاه سه گانه در پیریت درون شبیه‌کننده (نور عادی)
بزرگنمایی ۵۰×
شکل 4- پر شدن فضای میان بلورهای پیرویت تشکیل دهنده بافت پیوندگاه سه گانه با کالکوپیریت (نور عادی) بزرگنمایی ۱۰۰×.

شکل ۵- بافت تنش آواری (کانتاصتی) در پیرویت و پرندگی شکستگی‌ها با کالکوپیریت (نور عادی) بزرگنمایی ۵۰×.
طرح ۲- سایه‌نگاری کالکوپیریت در اطراف پیریت در عدسی کوارتزی (نور عادی) بزرگنمایی ۵۰×.

مارشال و همکاران [۳] اخیراً بحثی درباره تحرک دوباره، در محیط‌های دگرگون ناحیه‌ای ارائه کردند. با بر نظر این پژوهشگران سازوکارهای اصلی در دگرگونی شامل شارش تنش آواری و دانه‌ای (۱) و شارش درفتگی (۲) است.

به عقیده کاکس [۵] در محیط‌های با فشار محصور کننده و دمای بالای، شارش تنش آواری (۲) و گسیختن شکننده (۱) ساز و کارهای مهم دگرگشایی سولفیدی هستند. با شواهد ریز بافتی تحرک دوباره در محیط‌های دگرگون، پریت غالباً گسیخته یا شکسته می‌شود و سپس این شکستگی‌ها به وسیله سیلیکات‌ها کریستال‌ها، کربنات‌ها و یا سولفیدها به صورت نهشته شدن از یک محلول به طور همزمان با خرد شدن پیریت، و یا از طریق حمل در حالت جامد سولفیدهای انعطاف‌پذیر، پر می‌شود.

1- Cataclasis and granular flow
2- Dislocation flow
3- Cataclasis flow
4- Brittle failure
مطالعات بافتی و عنصر نادر خاکی (REE) در...

(REE)

بر اساس نظر مارشال و گلی گان [2] کالیکربرت کانی رایجی است که یا با حرکت دولابی خود به صورت شاره و یا با مهاجرت انحلال شیاری (1)، شکستگی‌های موجود در پیر قی کنده

زمین شیمی عنصر نادر خاکی

به منظور مطالعه عنصر نادر خاکی و بررسی چگونگی توزیع و انتقال آن عنصر در فرانسند ذگرگونی، 7 نمونه از زون کاندایرو و 3 نمونه از شیست‌ها برای تجزیه به روشن فعالسازی نوترودئ (NAA) به مرکز انرژی اتمی اصفهان ارسال شد. عنصرREE، La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Tm در این تجزیه اندازه‌گیری شدند، شامل Yb, Lu بودند.

برای این‌که این بررسی به سهولت انجام شود، فراوانی‌ای عنصر در هر یک از نمونه‌های برداشت شده، به فراوانی عنصر مشابه در کندیت بهنجار شد. در این برابری با امرتنها REE

اساس کندیت نیز برای این نمونه‌ها محاسبه شدند (جدول 1).

مقایسه الکتریکی پراکندگی عنصر نادر خاکی شیست‌های دختره سن جیان با الکتریکی پراکندگی شیست‌های REE

با توجه به اینکه شیست، میزان کانه‌های کانه‌های سن است، و مقدار کانتکت در شیست بیش از 50/ همی‌سازان کانه‌های میکاپیکس بیش از 25/ است، یکتا این منوی گفت که این شیست‌ها از ذگرگونی سنگ‌های نادرین به وجود آمده‌اند. برای مشخص کردن سنگ‌مانند شیست‌ها، مقایسه بین پراکندگی REE در شیست‌ها و پراکندگی REE در 33 نمونه از شیست‌های پس از آرکن استرالیا صورت گرفت. است.

پراکندگی REE به‌جوار شده با کندیت شبیه‌سانی پس از آرکن استرالیا را نشان می‌دهد. از مشخص‌هایی که بیان می‌گردد، شیست‌هایی REE که در این شیست‌ها نیز می‌باشد. در این شیست‌ها نیز $	ext{La}_N/	ext{Yb}_N$ و $	ext{Gd}_N/	ext{Yb}_N=1-2$

1-Pressure solution
<table>
<thead>
<tr>
<th>جدول</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1.3</td>
<td>8.0</td>
<td>68.6</td>
<td>58.1</td>
<td>45.8</td>
<td>7.4</td>
<td>2.4</td>
<td>10.4</td>
<td>12.4</td>
<td>17.4</td>
<td>12.1</td>
<td>12.1</td>
<td>9.3</td>
<td>0.9</td>
</tr>
<tr>
<td>XX</td>
<td>2.2</td>
<td>6.0</td>
<td>65.7</td>
<td>56.2</td>
<td>44.8</td>
<td>7.2</td>
<td>2.3</td>
<td>10.3</td>
<td>12.3</td>
<td>17.3</td>
<td>12.0</td>
<td>12.0</td>
<td>9.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Xh</td>
<td>4.1</td>
<td>2.6</td>
<td>67.6</td>
<td>57.6</td>
<td>46.6</td>
<td>7.6</td>
<td>2.6</td>
<td>10.6</td>
<td>12.6</td>
<td>17.6</td>
<td>12.6</td>
<td>12.6</td>
<td>9.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Xh</td>
<td>4.1</td>
<td>2.6</td>
<td>67.6</td>
<td>57.6</td>
<td>46.6</td>
<td>7.6</td>
<td>2.6</td>
<td>10.6</td>
<td>12.6</td>
<td>17.6</td>
<td>12.6</td>
<td>12.6</td>
<td>9.6</td>
<td>0.9</td>
</tr>
</tbody>
</table>
نماد گرافکتیکی عنصر نادر خاکی به‌هم‌گزاری شده با کندیت شیل‌های پس از آرکتین استرالیا.

نماد گرافکتیکی عنصر نادر خاکی شیست‌های دیخره مس جیان.
مقایسه‌ای که بین نمونه 33 نمودار سه‌تایی از شیل‌های پس از آركن استرالیا و نمودار شیست
رخداد محاسبه‌ای صورت گرفت، وجوه نشانه و تفاوتی بیشتری می‌بود. نمودار شیست‌های RREE /ΣREE شیست‌های غی شیمیایی نسبت به REE ΣREE /ΣHREE بیشتر از یک، و پراکنده‌گی
می‌دهند. در این نمودارها نسبت La/Lu به ۱۵ است (جدول ۲). KLaYbN به سیر نژلی دارد و نسبت Gd/Yb نسبت به یک است.

تأثیر دگرگونی بر پراکنده‌گی

اگر همه‌گیان دگرگونی کانایی جدیدی تشکیل شود و یا دما و فشار تشکیل سنگ مولد متغیر باشد، دگرگونی باعث به حرکت درآمده‌است. REE در مقیاس محلی خواهد شد (۱۱).[۱]

آگاهی از حالتی که در محول‌های اگزسون برای تفسیر انواع
پراکنده‌گی عنصر نادر خاکی مهم است و تحقیک‌های تحرک‌ناپذیر افراد مختلف بررسی شده‌اند (۱۱).[۱۱] در واکنش‌های شاره سنگی، الگوی پراکنده‌گی فاز شاره از پارامترها زیر تأثیر می‌پذیرد (۱۲).

1- الگوی پراکنده‌گی
2- جذب سطحی
3- همبافت‌های شیمیایی

تأثیر جذب سطحی و همبافت‌های شیمیایی بر فراوانی عنصر نادر خاکی در شاره‌ها
عکس یکدیگرند. جذب سطحی که بر سطح کاتیون‌ها و ذرات انجم می‌شود باعث کاهش در شاره‌ها می‌شود. در حالی که همبافت‌های قیصری باعث
اهراشی در شاره خواهد شد، زیرا انحلال الکتریک همبافت‌های REE باعث انتقال ناهموبافتی است (۱۵).[۱۵]

www.SID.ir
جدول (2) مقادیر

<table>
<thead>
<tr>
<th>Sample</th>
<th>La</th>
<th>Gd</th>
<th>Yb</th>
<th>(La/Yb)šn</th>
<th>(Gd/Yb)šn</th>
</tr>
</thead>
<tbody>
<tr>
<td>JL1</td>
<td>68.66</td>
<td>2.45</td>
<td>12.14</td>
<td>5.65</td>
<td>0.2</td>
</tr>
<tr>
<td>JL2</td>
<td>80.65</td>
<td>1.99</td>
<td>9.56</td>
<td>8.43</td>
<td>0.2</td>
</tr>
<tr>
<td>JL3</td>
<td>76.57</td>
<td>3.37</td>
<td>8.35</td>
<td>9.17</td>
<td>0.4</td>
</tr>
</tbody>
</table>

اگر الگوهای پراکندگی REEšn (عناصر نادر خاکی بهنگار شده با کندربت) یک شاره به وسیله فرابند جذب سطحی کنترل شود، با کاهش در شعاع یونی REE به طرفین (La/Lu)šn بیش از یک می‌نرود. اما در صورتیکه الگوی پراکندگی REE به وسیله ساز و کارهای همبانی (همبافت‌های هیدروکسید، فلوئورورت و یا کربنات) کنترل شود، با کاهش در شعاع یونی عنصر نادر خاکی، نسبت (La/Lu)šn بین از یک تا خواهد شد.

در نمونه‌های شیست‌های رخداد مس چنان‌که، نسبت (La/Lu)šn بین از یک است و به همین دلیل الگوی پراکندگی REEšn در شاره حاصل از دگرگونی به وسیله جذب سطحی کنترل شده است و نیز روند پراکندگی REEšn یک سیر نزولی را به وسیله جذب سطحی REEšn به وسیله جذب سطحی است.

برداشت

با مطالعه عنصر نادر خاکی شیست‌های رخداد مس چنان نسبت به این شیست‌ها REE است. الگوی پراکندگی REE این شیست‌ها از عنصر نادر خاکی بسیار سبک به سمت عنصر نادر خاکی سبک‌گذاری یک سیر نزولی را نشان می‌دهد و نسبت Gdšn/Ybšn کمتر از 15 است که مشابه شیل‌های شیسبایین شیل‌ها سبک مادر شیست‌های رخداد مس چنان هستند.

مطالعه نمونه‌های دستی و میکروسکوپی رخداد مس چنان به خوبی تاثیر دگرگونی ناحیه‌ای درجه پایینی را نشان می‌دهد بفایته تنش‌های ناشی از تغییرات در پیوست، بافت پرندگاه سه‌گانه در پیوست، سایابی فشاری کالکوپیریت در اطراف پیوست و پری‌بندنگاه شکست‌های پیوست به وسیله کالکوپیریت، نشانگر حركت دیواره در طول دگرگونی در این ذخیره است.
 نحوه تشکیل ذخیره مس جیب را می‌توان چنین بیان کرد که شیب‌های کان‌گیر تحت تاثیر دگرگونی ناحیه‌ای رخ‌خورد. شیب‌های سبز با دماهای پایین واقع شده است. در اثر این دگرگونی شیب‌ها و عادسی‌های کوارتزی بوجود آمده‌اند و کان‌های داخل شیب‌های نیز تحت تاثیر این دگرگونی، حرکت دوباره یافته و در جهت برش‌گرهای شیب‌ها و در عادسی‌های کوارتزی قرار گرفته‌اند.

شکل ۹ تشکیل ذخیره مس جیب را طرح‌وار نشان می‌دهد.
Meteories بافته و عنصر نادر خاکی (REE)

5- نفیسی، نادر (1379) "زیمنشناسی و زئن رخداد مس جیان استان فارس، پایان‌نامه کارشناسی ارشد زمینشناسی اقتصادی، دانشگاه شیراز، 2011 صفحه.

6- هوشنگی، سهین، ع. (1379). "شرح نفیسی، زمینشناسی چهار گوش اقلیمی انتشارات سازمان زمینشناسی کشور.

