شاواهد بافتی و ایزوتوپی استرانتسیم- نتایج حاصل از هضم سنگهای رسی در مجموعه پلیتونیک الودن (غرب ایران)

على اصغر سیاهی، سارا نجفی راشد، حسین شهبازی، محمد معین جو

کوروه، ردف که، نیما سلیمی نیمی، همیار، ایران

چکیده: طی فرآیندی از سنگهای پلیتونیک، از مافیک تا فلسیک، شامل انواع گالوژه، دیوریت‌ها، تونالیت‌ها، اورتوبینتریت‌ها، موزیجنایت‌ها، سینت‌ریت‌ها و کوارتز‌زئوس، لکه‌کاری در مجموعه‌های پلیتونیک الودن، منطقه‌ی سنگهای سیرانج، ایران، دیده شد. سن‌های مجمع‌آوری‌شده به مربوط به احتمالیت شکوفایی و دوتنام‌های هوشمندی‌ها، پیشنهادی‌های تحقیقاتی، با نسبت‌های نسبتاً بالا در سنگ‌های پلیتونیک الودن، دیده شد. در این مطالعه، نتایج حاصل از سنگ‌های رسی در مجموعه پلیتونیک الودن، منطقه‌ی سنگهای سیرانج، ایران، دیده شد.

مقدمه

پلیتونیک الودن، مشاهده شده است که در زمینه‌ی هضم و پیش‌بینی ویژگی‌های اولیه به ویژه سنگ‌های رسی نواحی از آن در داخل سنگ‌های آذرین بسیار نمایان می‌شود. بنابراین تغییرات در خصوص سنگ‌های رسی و تغییرات در سنگ‌های رسی در داخل سنگ‌های آذرین می‌تواند به دست آید.
کامل مورد بحث و بررسی قرار نخواهد گرفت. افزون بر این، در این مقاله به ارائه شواهد یافته هضم/الایش و داده‌های زئو‌شیمی خواهم پرداخت.

موقعیت زمین‌شناسی

مناطقه سنگ‌های سیند-سیرجان یا کمربند دگرگونی سند-سیرجان، بخشی از کمربند کوه‌های زاگرس است. این کوه‌های مناطق ۱۳،۱۴ که متشکل از یک کمربند دگرگونی از سنگ‌های دگرگونی ناحیه‌ای و مجاوری با درجه‌های پایین تا بالا است که نتیجه گرفته پایین‌ترین حداکثر و فلسفی در آن‌ها نفوذ کرده‌اند (شکل ۱).

[۱-۱۲] در شماری از این بررسی‌ها [۵، ۷] شواهد مختصی دال بر آن ارائه شده‌اند. اما هنوز همیشه این فراگم در تکامل سنگ‌های مجموعی آذرین الوان به تفصیل بیان نشده است. هدف اصلی ما در این مقاله ارائه شواهد صحرایی، سنگ تگاری و زئو‌شیمیایی برای ردپایی آلیش ناشی از فراگم هضم به ویژه در سنگ‌های دوبنیکی توده‌ای الوان است. تغییرات کلی زئو‌شیمی و سنگ‌زایی همه سنگ‌های این مجموعه خارج از گستره موضوعی این کار و همگام به بهتر است که بیان دهیم که رسیدن به بررسی این اثرات در این زمینه به منابع [۷، ۱۱] ارجاع کنند. بنابراین تمرکز اصلی ما در این مقاله بر سنگ‌های آلیش یافته توده‌ای نفوذی الوان بوده و در اینجا سنگ‌زایی انواع سنگ‌ها به طور

شکل ۱: نقشه ساده شده زمین‌شناسی منطقه‌های همدان.
روی‌پا‌هایی درگو-زرا و ماسک‌هایی منطقه‌ی سنتی-سیرجان
به دوران موروزنیون و ارتباط آنها دانسته شدند [5-15].
پلوتونیون 206Pb/238U و پلوتونیون 207Pb/206Pb در سنگ‌های مازندرانی (نحوه 200 میلیون سال پیش) هستند [19-25].
بنا به داده‌های K-Ar، زمان انجام سنگ‌های آذرین مجموعه پلوتونیون گربه 70-91 میلیون سال پیش تعیین شد. در حال حاضر به داده‌های جایگزینی کریستالوگرافی (رک نگاری) در برابر کربناتوگرافی و تغییرات حاکی 26/2TMS از این بخش طی چندین سال پیوسته شده است.

بنا به اطلاعات جدید، فورماشین‌های نیوترونی 27Pb برای مطالعه کربناتوگرافی و سنگ‌های آذرین مجموعه پلوتونیون و پلوتونیون گرفته در همن‌روت در سنگ‌های سال‌های 1/65-1/56 نمونه‌برداری شده است.

در این پژوهش، نیوترونیون 27Pbتو یک سنگ‌نمونه مگنتو-پلوتونیون روی‌پا‌هایی درگو-زرا و ماسک‌هایی منطقه‌ی سنتی-سیرجان به دوران موروزنیون و ارتباط آنها دانسته شدند [5-15].
سنگ نگاری
سنگ‌های نفوذی مختلف از الیوین-گابروهای فراامفیک-مالاتوکاتیک (گابروهای وولانیتی) گرفته شده تا گرانیت و لیموگرانیت در مناطقی همانند رخمنون یافته و دایک‌های یگمانتی و آپیتی در آنها نفوذ کرده‌اند. در برخی برون‌دهی‌های صخره‌ای گرانیتها و گرابنوربریت‌ها حاوی درشت‌تر بلورهای فلورسپار هستند. این سنگ‌ها از کوارتز، فلدسپار پتاسیم، پیانک و آپیتی تشکیل شده‌اند. مسکوپیت و زیورکن جزء الیوین هستند که به مقدار اندک در این سنگ‌ها یافته می‌شوند (شکل ۲). زئوکریستست کاتی های Al۲SiO۵ (آنالوژیت و سیلیمانیت) گرانیت و کردیریت نیز بیشتر در این سنگ‌ها دیده می‌شوند.
سنگ‌های مافیک بیشتر از گابرو، الیوین-گابرو، گرابنوربریت و نوربریت نفوذی به سمت دیوریت، کوارتز دیوریت و تونالیت. الیوین-گابرو دارای بافت نیمه شکل‌داران داتیوی (دایی) است که روی سنگ‌های مختلف این الیوین-گابرو را به عنوان فاز اصلی در خود دارد.

شکل ۲ تصویر میکروسکوپی از تنمنه مونزگرانیت نفوذی نفوذی الیوین

شکل ۳ تصویر میکروسکوپی از الیوین-گابرو و ب) نوربریت نفوذی الیوین
آمبیول، پلازوکژ و کوارترز از جمله کلیه‌ای اصلی دیورتی و کوارتردیورتی هستند. در این سنگ‌ها گاهی شاهد دانه‌های درشت کوارترن می‌باشند. لکه‌های آمبیول مافیک هستند. وجود تینانیت و آپاتیت‌های سوسنی شکل در برخی از سنگ‌های دیورتی پیدا‌یاد می‌کنند.

زینکروسیت‌ها و انکلاوها

بروتون‌هایی نظیر سپسیت‌ها، زینولیت‌ها و زینکروسیت‌ها در گرانتون‌ها به فراوانی بالا می‌شوند و این در حالیست که شمار ان بروتون‌ها در سنگ‌های دیورتی در گن同胞ی توده‌های نفوذی الهام جنگان زیاد نیست. زینکروسیت‌های آندالوزیت در هر دو دسته سنگ‌های گرانیتی و دیورتی به چشم می‌خورند.

شکل ۴ تصویر میکروسکوپی از نمونه دیورتی حاوی تینانیت (اسفن) و آپاتیت سوزنی.

شکل ۵ الف) زینکروسیت‌های آندالوزیت در یک منزوگراخت-گرانتورپتی. ب) زینکروسیت‌های آندالوزیت در حال تبدیل به میلیماتی با یک حاشیه‌ای غنی از اسپینل در سنگ‌های دیورتی ناحیه خاکو در منطقه همدان.
در سنگ‌های کابروپی، به ویژه در الیوت و تیروپی، زینک‌های ازینی‌کریسته‌های جوپیتری و وجود داند که طی واکنش با ماگمای داغ به یک مجموعه کانالی بیروپیک و ترکیب‌های دیگر با دمای بالا (به‌عنوان مثال یک مجموعه اسپلنیت-سیلیمانیت) نیز می‌شود. در اطراف و داخل این زینک‌های ازینی‌کریسته‌ها، منطقه‌های مجا با یک‌تیک تشخیص داده شده‌اند.

(1) هر منطقه‌های خارجی یا داخلی منطقه‌ای منطقه‌ای از المنیت که از سپت‌های آن رشد سیلیمانیت با زاویه 100° نسبت به ناحیه‌های ازینی‌کریسته‌ها و سیلیمانیت‌های سوزنی با پراکندگی تصادفی به سمت مرکز هستند (شکل 6). در این منطقه پلاژیولاس در کان سیلیمانیت بیشتر خورد.

بر اساس بررسی‌های دمی‌سنجی [12], در محل‌های سیلیمانیتی مایفیک با برونیوم بیش از ℃ 70، هسته این درخالتی که مجموعه‌های بنامی مشاهده شده در این منطقه زینک‌های ازینی‌کریسته‌ها با بالاترین دمای این ها حاکی است. این مجموعه با دمای بالا احتمالاً در دمای بیش از

شکل 6 یافته‌های ازینی‌کریسته‌ها در پلاژیولاسیون در کان‌های سیلیمانیتی‌سوزنی رونده در صورت تصادفی در مرکز پلاژیولاسیون کمک می‌کند.

Table 1. Rb, Sr, Nd, Sm and Nd-Sr-Rb isotopic compositions of G (granite) and D (diorite) samples.

<table>
<thead>
<tr>
<th>Sample/Element</th>
<th>GNj G1</th>
<th>Kh G2</th>
<th>G3</th>
<th>G4</th>
<th>KhD1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>Average granite*</th>
<th>Average diorite*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb (mg/g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>212</td>
<td>165</td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>443</td>
<td>43</td>
</tr>
<tr>
<td>Nd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>4</td>
</tr>
<tr>
<td>Sm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 7. Nd vs. Rb and Sr vs. Rb for G (granite) and D (diorite) samples.

Table 2. Rb and Sr isotopic compositions of G (granite) and D (diorite) samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rb [µg/g]</th>
<th>Sr [µg/g]</th>
<th>Rb/Sr</th>
<th>87Sr/86Sr</th>
<th>87Sr/86Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnj G1</td>
<td>311.7</td>
<td>123.3</td>
<td>2.53</td>
<td>0.719001</td>
<td>0.718947</td>
</tr>
<tr>
<td>Gnj G1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kh G2</td>
<td>165.4</td>
<td>73.5</td>
<td>2.27</td>
<td>0.7142491</td>
<td>0.718947</td>
</tr>
<tr>
<td>G3</td>
<td>146.0</td>
<td>37.0</td>
<td>3.97</td>
<td>0.715075</td>
<td>0.718947</td>
</tr>
<tr>
<td>G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>159.3</td>
<td>249.3</td>
<td>1.03</td>
<td>0.710056</td>
<td>0.718947</td>
</tr>
<tr>
<td>KhD1</td>
<td>79.1</td>
<td>275.3</td>
<td>0.28</td>
<td>0.708177</td>
<td>0.718947</td>
</tr>
<tr>
<td>KhD1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>79.8</td>
<td>258.5</td>
<td>0.30</td>
<td>0.708133</td>
<td>0.718947</td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>85.6</td>
<td>277.1</td>
<td>0.31</td>
<td>0.708143</td>
<td>0.718947</td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>63.8</td>
<td>247.9</td>
<td>0.26</td>
<td>0.708133</td>
<td>0.718947</td>
</tr>
</tbody>
</table>
آلایش نقص مهیمی در تغییرات ایزوتوپی داشته است. در نمونه $^{87}\text{Sr}/^{86}\text{Sr}$ نسبت اولیه $^{143}\text{Nd}/^{144}\text{Nd}$ در مقابل $^{143}\text{Nd}/^{144}\text{Nd}$ است و نسبت مونوزئوسیت به سنتگهای دیوریتی و دیوریتی‌های نورد برنی در نزدیکی سنتگهای دارای خاستگاه پوشته‌ای ترسیم شده است.

مقدار $\varepsilon\text{Nd}(t)$ مونوزئوسیت‌ها از 3.26 تا 0.89 و سنتگهای دیوریتی آلایش یافته‌اند از $(-0.23$ تا $-2.35)$ در تغییر است و نسبت $^{143}\text{Nd}/^{144}\text{Nd}$ این سنتگهای به ترتیب بین -0.23 تا 0.124 و 51240 تا 51244 تغییر می‌کند (جدول 3، شکل 8). مقایسه مقادیر فوق با نسبت‌های سنگ‌های آلایش نیافته [10] در همین مجموعه نشان می‌دهد که سنگ‌های پلوتونیک منطقه اولند، از طریق محاسبه $\varepsilon\text{Nd}(t)$ سن گرانیت‌ها (G) و نمونه‌های Sm-Nd دیوریت‌ها (D) 165 میلیون سال بهدست آمده است [10].

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sm (mg/g)</th>
<th>Nd (mg/g)</th>
<th>$^{147}\text{Sm},^{144}\text{Nd}$</th>
<th>$^{143}\text{Nd},^{144}\text{Nd}$</th>
<th>$\varepsilon\text{Nd}(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnj G1</td>
<td>36.41</td>
<td>27.96</td>
<td>125.9</td>
<td>51244</td>
<td>-3.51</td>
</tr>
<tr>
<td>Kh G2</td>
<td>11.5</td>
<td>33.02</td>
<td>111.6</td>
<td>51241</td>
<td>-3.98</td>
</tr>
<tr>
<td>2G3</td>
<td>7.627</td>
<td>37.87</td>
<td>124.8</td>
<td>51240</td>
<td>-3.18</td>
</tr>
<tr>
<td>G4</td>
<td>7.273</td>
<td>44.9</td>
<td>126.1</td>
<td>51249</td>
<td>-4.88</td>
</tr>
<tr>
<td>Kh-D1</td>
<td>5.68</td>
<td>27.74</td>
<td>126.6</td>
<td>51244</td>
<td>-2.35</td>
</tr>
<tr>
<td>D2</td>
<td>6.515</td>
<td>31.48</td>
<td>127.6</td>
<td>51251</td>
<td>-1.13</td>
</tr>
<tr>
<td>1D3</td>
<td>6.142</td>
<td>30.7</td>
<td>125.3</td>
<td>51257</td>
<td>-0.78</td>
</tr>
<tr>
<td>D4</td>
<td>5.482</td>
<td>27.92</td>
<td>124.7</td>
<td>51252</td>
<td>-0.83</td>
</tr>
</tbody>
</table>

جدول 2: محتوای ایزوتوپی Sm-Nd سنگ‌های پلوتونیک منطقه اولند. از طریق محاسبه $\varepsilon\text{Nd}(t)$ سن گرانیت‌ها (G) و نمونه‌های Sm-Nd دیوریت‌ها (D) 165 میلیون سال بهدست آمده است [10].

$\varepsilon\text{Nd}(t)$ به‌عنوان نمودار $^{87}\text{Sr}/^{86}\text{Sr}$ و $^{143}\text{Nd}/^{144}\text{Nd}$ در مقابل $^{143}\text{Nd}/^{144}\text{Nd}$ Sm-Nd و خاستگاه گوشته‌ای دیوریت‌های (G) آلایش یافته (دورگه شده) است.
شاوهد بافتی و ایزوتوپی استرانسيم- نوديمیم حاصل از هضم...

شکل 9 همزمانی‌های الف (монوتریتی-هو) دیوریت‌ها. برای توضیحات بیشتر به متن مراجعه کنید.

جدول 4 محتوی ایزوتوپی Nd، Sr، Si سنگ‌های مافیک و فلسیک مجموعه پلوتونیک الوند (مطلق [10]).

<table>
<thead>
<tr>
<th>Sample</th>
<th>SH102</th>
<th>SH104</th>
<th>SH110</th>
<th>SH147</th>
<th>SH239</th>
<th>SH272</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>47.88</td>
<td>47.88</td>
<td>48.36</td>
<td>67.99</td>
<td>70.21</td>
<td>69.50</td>
</tr>
<tr>
<td>Sr₁</td>
<td>0.723</td>
<td>0.7228</td>
<td>0.7269</td>
<td>0.7094</td>
<td>0.70699</td>
<td>0.7083</td>
</tr>
<tr>
<td>Nd₁</td>
<td>0.512573</td>
<td>0.512585</td>
<td>0.512592</td>
<td>0.512376</td>
<td>0.512327</td>
<td>0.512352</td>
</tr>
</tbody>
</table>
بیان
بر اساس بررسی‌های پیشین، نفوذی بدون یون در اثر تزریق مکرر ماده‌بندی با ترکیب‌های مختلف، باعث مانع ماده‌بندی مختلف شکل‌های است.به‌جنون مثال سه‌سیاه 1999 و 2000) به منظور سه‌سیاه بیشتر، سه‌سیاه مورد بررسی مجموعه‌ای از می‌توان در دو گروه اصلی رده بندی گردید: ۱) سه‌سیاه غیر آلبیش یا سیاه‌آمیز قادف نشانه‌های چشمگیر هضم/الیش، ۲) سه‌سیاه حاوی زنیوکریست‌ها با خاصیت کاذبی ده گروه نظیر اندازی/سیلیماتین مشتق از سیلیماتین. نشانه‌های آلبیش ناشی از سکس میریان در شماری از سه‌سیاه دیورتنی پلوتونیون وند کاملاً مشهود است. ماکماغی گرینی در دل اندازی می‌تواند با کادی‌های در داخل سنگ‌های متالیت‌یون کردن‌ها با عمل خاص‌های گردشی آدنین خصوصاً در دیورتی‌های غنی از زنیوکریست‌ها، باعث شده است. عدم همخوانی توزیع اندازه و ترکیب زنیوکریست‌ها با اندازه‌ی پلوتون سیاه‌آمیز مجاور به گونه‌ای است که

امکان تبیلآنها از ماده‌بندی مولد سیلیماتین درون‌گیر را
منتفی می‌سازد.

نفوذ ماده‌بندی در اندازی شیسته‌های مسیر حرکت آنها به سمت سطوح بالاتر شیسته، موجب قطعیت شدن شیسته‌ها شده است. به گونه‌ای که بقایی از کانی‌های موجود در شیسته‌ها در ماده به جمعیت می‌خورند. کانی‌های دیرگزار همجون اندازه‌هایی به رغم هضم شدن، با ماده، وارد واکنش شده که سبب تبدیل آنها به سیلیماتین و احاطه شدن آنها با ح lã‌های واکنش از اسپینل و پلاژکلر کردند. است. با توجه به اینکه پورتریال‌های اندازه‌های شیسته‌ها ۱۵٪ از ترکیب شیسته‌های اندازی/دیورتی‌ها را تشکیل می‌دهد، باید استنباط می‌شود که ۹۵٪ از این به‌یاده و ترکیب شیسته‌ها در ماده‌بندی، حضم و موجب اشکار آنها شده است. اگر رخ‌های ماده‌بندی دیورتی را نشان حاوی ۵٪ از زنیوکریست‌های اندازی/دیورتی‌ها در نظر گرفتیم، آنگاه ماده‌بندی دیورتی حداکثر ۵برابر این مقدار (نسبت/مقدار شیسته به پورتریال‌های اندازی/دیورتی‌ها) یعنی نزدیک به ۳۵/۰۰ میلی‌متریم‌ها با شیسته را در خود خواهد داشت. بنابراین بیشتر وجهی ممکن که ماده‌بندی دیورتی که دمای نسبتاً بالایی داشته و

شکل ۱۰ تومودار \(S_{SiO_2} \) برای سنگ‌های مافیک و پلی‌شیسته‌های پلوتونیون. (بر اساس داده‌های برداشت شده از [10])

۴۶
گذشته از شواهد کانی‌شناسی و سطح‌شناسی و مدرج کننده دلایل شیمیایی منتشر در هلیوژن‌گردی، هموارا تا این‌جا با نتایج آزمایشات امروزی زیر می‌کنیم که این‌ها:

۱) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۲) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۳) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۴) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۵) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۶) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۷) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۸) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۹) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۱۰) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۱۱) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۱۲) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۱۳) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۱۴) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۱۵) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۱۶) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۱۷) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۱۸) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۱۹) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۲۰) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۲۱) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۲۲) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۲۳) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۲۴) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۲۵) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۲۶) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۲۷) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۲۸) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۲۹) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۳۰) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۳۱) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۳۲) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۳۳) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۳۴) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۳۵) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۳۶) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۳۷) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۳۸) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۳۹) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۴۰) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۴۱) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۴۲) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۴۳) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۴۴) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۴۵) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۴۶) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۴۷) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۴۸) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۴۹) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

۵۰) اشاره مendas است در مقایسه با سطح‌های منسجم در هلیوژن‌گردی آبیاری.

[19] [بهاری فرخ آ.، برترنوزی سنگ‌های آلیاژی همانند، رائل دکتری پترولوژی، دانشگاه علم و دانشگاه تربیت معلم تهران (1383).]

