شواهد بافتی و ایزوتوبی استرانسیم-١٩٨٨ نتایج حاصل از هضم سنگ‌های رست در مجموعه پلوتوئیک‌الوند (غرب ایران)

علي اصغر سیاهی، سارا نجمه راشدی، حسین شهبازی، محمد معین جو

گروه زمین‌شناسی، دانشگاه بوعلی سینا، همدان، ایران

چکیده: طلای گسترش‌دهی از سنگ‌های پلوتوئیک، از مفیک تا فلسفیک، شامل انواع گانه‌ر، دیوریت‌ها، تونالیت‌ها، گراندوریت‌ها، مونزونگرای‌های و گراندوریت‌های نورکرکتات در مجموعه پلوتوئیک الوند، منطقه سرخ، سیرجان، ایران عناصر می‌شود. سن این مجموعه به زوراسیک میانی وایسته است. در این مجموعه سنگ‌های گراندوریت و دیوریت از اجزای اصلی هستند. گراندوریت‌ها حاوی پلاتزولکلاز، پتاسیم فلایسیار، کوارتز و بیوتین هستند و دیوریت‌ها از پلاتزولکلاز، هورنبلند، بیوتین و کمی تینیت و آقیت تشکیل شده‌اند. در دو کشتی و دیوریت‌های آشیانه‌ای بیابانی می‌باشند. میزان هاست هپت گراندیت‌ها از تخریب کانی‌های سنگ‌های گیلانی و ۹۰۰/۰۰۰/۰۹۰ که در سنگ‌های میانی و ۹۰۰/۰۰۰/۰۹۰ که در سنگ‌های کاسپیانی دیده می‌شود. نسبت نیتریت‌های ایزوتوبی از نیترات آشیان را در سنگ‌های پلوتوئیک با مواد بوسته‌های فوتیک (متالیتی) در همگان تفسیر چسب سنگ‌های مشخص می‌کند.

واژه‌های کلیدی: پلوتوئیک الوند; هضم؛ آشیان; دیوریت؛ گراندوریت؛ زوراسیک؛ سنگ‌آباد- سیرجان

مقدمه

همه مراکزی است که می‌تواند برای گایه‌ای اولیه ما را می‌گیرند. همگانی که قطعاتی از سنگ درون‌کنی به درون ماکم‌های داغ را می‌باید تغيیر دهد. برخی از پنج‌ها سنگ میزان درون ماکم هضم شوند. در حالی که میزان گرانودریت‌ها و گراندوریت‌ها (میان‌رده‌های سنگ‌های آدنین) برخی نشان می‌دهد. موانعی می‌می‌تواند مشاهده در صحرا، متالیتیی هضم سنگ‌هایی داده‌های زمین‌شناسی و ایزوتوبی می‌تواند به تشخیص میزان

Aasepahi@gmail.com

نویسنده مسئول: نیلین و نامبر: ۰۸۱۳۸۳۸۲۱۴۶۰، پست الکترونیکی: 
کامل مورد بحث و بررسی قرار نخواهد گرفت. افزون بر این، در این مقاله به ارائه شواهد بافتی هضم/الايش و داده‌های زئوشیمی خواهیم پرداخت.

مکانیزم شناسی

منطقه سند-سیستان‌سیرجان یا کمربند دیگر، از سیرجان، به طور کلی از کمربند کوه‌زایی زاگرس است. آن در جنوب‌شرقی از سگ‌های دیگر در ناحیه‌ای و مجازاتی با درجه پایین تا بالاتر که توده‌های آژانزی نفوذی مافیک، حدس‌گرفته و فلیسک در آنها نفود کرده‌اند (شکل 1).

[1-12] در شماری از این بررسی‌ها [13-8] شواهد مخصوصی در جریان ارائه شده‌اند. اما هنوز اهمیت این فرآیند در تکامل سند-سیستانی مجموعه‌ای آذرین است. به تفصیل باید نشده، است. هدف اصلی ما در این مقاله ارائه شواهد پرورشی و زئوشیمیایی برای رشد آب‌انبار آب‌انبار ناشی از فرآیند هضم به ویژه در سیستان‌سیرجان است. تغییرات کلی زئوشیمی و سنگ‌زایی همه سگ‌های این مجموعه خارج از گستردگی موضوعی این کار پژوهشی بوده و بهتر است خواننده برای کسب اطلاعات بیشتر در این زمینه به منابع [7، 8، 11] ارجاع کند. نتایج این تمرکز اصلی ما در این مقاله بر سکه‌های آب‌انبار بافتی توده‌ای نفوذی و به در اینجا سگ‌زایی نوع سگ‌ها به طور

شکل 1: نقشه‌ای سپاه‌های زئوشیمیایی منطقه‌های همدان.
روی‌داده‌های دگرگون و ماقبله‌های منطقه‌ای سندج-سیرجان به‌دست آمده، دسته‌بندی‌های این سری از مجموعه‌های یونتیکین و آدرنین (ردیوبلورتیتی) و (رازورفیتی) مشاهده شده‌اند. [۱۹] 

روش‌های بررسی

هشت نمونه شامل چهار گرانتی و چهار دیورتیک که در رخت‌نمای‌ها و نمونه‌های دستی نشانه‌های از آنسی و هضم...
سنگ تگاری

سنگ‌های نفوذی مختلف از الیوت، کابوهوی فرامافیکی- ملانوتراکیکی (کابوهوی ورلینی) گرفته شده‌اند که ویکوکراتی در منطقه‌های مهنه رخ می‌دهند. این سنگ‌ها از کوارتز، فلسی نتیجه می‌گیرد و بروزه‌های صخره‌ای و تونالیت به دست می‌آید. الیوت و کابوهوی ها و گریت‌های برشین‌ریخته‌ها در این سنگ‌ها حاوی است. سنگ‌های فرم‌داری از الیوت در نظر گرفته شده‌اند.

شکل ۲ تصویر میکروسکوپی از نمونه مونوزوکراتیک نفوذی الوند.

شکل ۳ تصویر میکروسکوپی از الیوت (از چپ) الیوت و (ب) تونالیت نفوذی الوند.
با این تفاوت که در دیوریت‌ها این زینکریست‌ها به طور جزیی با کامل به سیلیمانیت تبدیل شده و به سیلیمانیت حاشیه‌ای قدس‌پاتی/بی‌خاکی از اسپینل احاطه شده‌اند، (شکل ۳). در سنگ‌های مونوزگرانیتی نیز زینکریست‌های رستیکی گارنت و کردریت با خاستگاه داگز کوچ و دیواران دیده می‌شوند. این مجموعه کوته‌ای در خلاخ تخرب شیست‌های میکماتیت‌های داگز کوچ شده و به درون ماهیگر راکتیت دیاکسی‌نت تولید شده در منطقه‌ای ذوب بخشی وارد شده، و با به‌وسیله ماهی‌گاهای رفوقی به پوسته قاره‌ای فوقانی حمل شده‌اند.

امفیبول، پلازیبیوکلاز و کوارتز از جمله کانی‌های اصلی دیوریت و کوارتزدیوریت‌های‌هستند. در این سنگ‌های کاهی شاهد دانه‌های درشت‌کوارتز چشمی و خوشه‌ای آمفیبول مشاهده می‌شوند. وجود تیتانیت و آپاتیت‌های سنگی شکل در برخی از سنگ‌های دیوریت‌ها پدیده‌ای عادی است (شکل ۴).

زینکریست‌ها و انکلاوهای پروتوویا نظیر سریت‌ها، زینکوپلاز و زینکریست‌ها در گرانیت‌های به ویژه تیتانیت‌های فعال می‌شوند و این در حالیست که شمار این پروتوویا در سنگ‌های دیوریت‌ها در کوه‌های توحید نیست. زینکریست‌های آنادازیت‌های زنینکریست‌ها در هر دو دسته سنگ‌های گرانیتی و دیوریتی به چشم می‌خورند.

![شکل ۴ تصویر میکروسکوپی از نمونه دیوریت حاوی تیتانیت (اسفن) و آپاتیت سوزنی.](image-url)

![شکل ۵ الف) زینکریست‌های آنازالوزیت در یک مونوزگرانیت-گرآозвращوپریت، ب) زینکریست‌های آنازالوزیت در حال تبدیل به سیلیمانیت با یک حاشیه‌گری غنی از اسپینل در سنگ‌های دیوریت ناحیه‌های خاکو در منطقه همدان.](image-url)
در سنگ‌های گابرویی، به ویژه در الیوین گابرویه، زینک‌پیست‌های بلیچت‌های کم‌بیایی وجود دارد که طی واکنش با ماگما داغ به یک مجموعه کانی‌ای پیروماتورفیک با دمای بالا به‌عنوان مثال یک مجموعه اسپینل-سیلیماتیت (شکل 2-ب) نمی‌باشد. در اطراف و داخل این زینک‌پیست‌های سیلیماتیت‌ها منطقه‌ی پراکندگی مجاور قابل تشخیص نسبت به سلوله‌های زینک‌پیست و سیلیماتیت‌های لرویکسی تبدیل گی توسط یک سیلیماتیت منطقه‌ی اسپینلیتی‌تار کسی‌ان رشد سیلیماتیت با رابطه‌ی ۰٫۰۷ برای مثال سیلیماتیت به چشمی می‌خورد.

در اساس بررسی‌های دماسنجی، دما در محل ترکیب ماگما مافیک با ورود بیش از ۷۰۰ درجه سانتی‌گراد، این در حالیست که مجموعه کانی‌ای مشاهده شده در مجاور زینک‌پیست‌های سیلیماتیت‌ها از بالاتر بودن این دمای حاکم‌داند. این مجموعه با دمای بالا احتمالاً در دمایی بیش از ۷۵۰ درجه سانتی‌گراد یافته‌اند که شکاف‌های ایجاد شده در یک برتونی بلیچت در درون یک ماگما الیوین گابرویی، (الف) منطقه‌ی واکنش میزبان و برتونی غنی از Al، ب) سیلیماتیت‌های پریزوماتورفیک توزیع شده به سرعت تصدیفی در مرکز برتونی پریزوماتورفیک توزیع شده.
جدول ۱: مقدار Rb، Sr، Nd، Sm و دیوریت‌ها (D) در سنگ‌های آیش‌پایه و میانگین این عناصر در سنگ‌های آیش‌پایه. میانگین مونزورگانیت‌ها (G) و دیوریت‌ها (D) از داده‌های [۵ و ۹].

<table>
<thead>
<tr>
<th>Sample/Element</th>
<th>GNj G1</th>
<th>Kh G2</th>
<th>G3</th>
<th>G4</th>
<th>KhD1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>Average granite*</th>
<th>Average diorite*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb (mg/g)</td>
<td>۲۱۲</td>
<td>۱۶۵</td>
<td>۱۶۹</td>
<td>۷۹</td>
<td>۸۴</td>
<td>۶۴</td>
<td>۱۹۱</td>
<td>۳۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>۱۳۹</td>
<td>۴۴</td>
<td>۲۲۲</td>
<td>۷۸</td>
<td>۲۵۸</td>
<td>۲۸</td>
<td>۵۶</td>
<td>۵۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>۳۳</td>
<td>۳۷</td>
<td>۲۷</td>
<td>۲۷</td>
<td>۲۷</td>
<td>۲۷</td>
<td>۴۶</td>
<td>۲۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>۶۶</td>
<td>۵۸</td>
<td>۵</td>
<td>۷</td>
<td>۵</td>
<td>۵</td>
<td>۸</td>
<td>۳</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۷: نمودار نسبت Rb/Sr در مقابل ND(ت) برای گرانیت‌ها و دیوریت‌ها. G = گرانیت و D = دیوریت.

جدول ۲: محتوای آبیوتی Rb و Sr در سنگ‌های پلوتونیک منطقه همدان. مونزورگانیت‌ها (G) و دیوریت (D)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rb [µg/g]</th>
<th>Sr [µg/g]</th>
<th>Rb/Sr</th>
<th>Sr/Sr*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnj G1</td>
<td>۲۱۱.۷</td>
<td>۱۳۳۳</td>
<td>۰.۴۳</td>
<td>۰.۷۱۹۰۰۱</td>
</tr>
<tr>
<td>Gnj G1</td>
<td>۱۳۳۵</td>
<td></td>
<td></td>
<td>۰.۷۱۸۵۴۲</td>
</tr>
<tr>
<td>Kh G2</td>
<td>۱۶۵۴</td>
<td>۷۳۵۷</td>
<td>۰.۷۲۴۴۹۱</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>۱۷۶۰</td>
<td>۱۵۱۳</td>
<td>۰.۷۱۵۰۷۵</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td></td>
<td></td>
<td></td>
<td>۰.۷۱۵۰۵۹</td>
</tr>
<tr>
<td>G4</td>
<td>۱۵۹.۳</td>
<td>۲۴۹.۳</td>
<td>۰.۷۱۰۶۴</td>
<td></td>
</tr>
<tr>
<td>KhD1</td>
<td>۷۹.۱</td>
<td>۲۷۵.۴</td>
<td>۰.۷۱۸۲۱۷</td>
<td></td>
</tr>
<tr>
<td>KhD1</td>
<td></td>
<td></td>
<td></td>
<td>۰.۷۱۸۴۳۶</td>
</tr>
<tr>
<td>D2</td>
<td>۷۹.۸</td>
<td>۲۵۸.۵</td>
<td>۰.۷۱۸۴۳۶</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td>۰.۷۱۸۱۳۶</td>
</tr>
<tr>
<td>D3</td>
<td>۸۵۶</td>
<td>۷۷۰.۱</td>
<td>۰.۷۱۸۴۷۸</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td>۰.۷۱۸۵۲۵</td>
</tr>
<tr>
<td>D4</td>
<td>۶۳.۸</td>
<td>۲۴۷.۹</td>
<td>۰.۷۱۸۵۲۵</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td></td>
<td></td>
<td>۰.۷۱۸۵۱۹</td>
</tr>
</tbody>
</table>
مقدار نمونه Nd(t)و نمونه Nd(t)های از 2.32 در سنجش دیوریتی آلیش یافته از 2.32-2.78 تا 2.78-3.2 تا 2.78-3.2 در تغییر است و نسبت مانند سنگ‌های دیوریتی بین 147Nd/144Nd ابن سنگ‌ها به ترتیب بین 0.51254 و 0.51240 تغییر می‌کند (جدول 3، شکل 6). مقایسه مقادیر فوق با نسبت‌های سنگ‌های آلیش نیازه [10] در همین مجموعه توان نشان می‌دهد که

جدول ۲. محتوای ایزوتیپی Sm-Nd سنگ‌های پلیتوتیک منطقه‌ای الوند. از طریق محاسبه 

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sm (mg/g)</th>
<th>Nd (mg/g)</th>
<th>147Sm/144Nd</th>
<th>143Nd/144Nd</th>
<th>εNd(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnj G1</td>
<td>6.641</td>
<td>22.69</td>
<td>0.1259</td>
<td>0.512348</td>
<td>-3.51</td>
</tr>
<tr>
<td>Kh G2</td>
<td>11.53</td>
<td>43.02</td>
<td>0.1126</td>
<td>0.512244</td>
<td>-3.98</td>
</tr>
<tr>
<td>2G3</td>
<td>7.377</td>
<td>37.77</td>
<td>0.1248</td>
<td>0.512400</td>
<td>-3.18</td>
</tr>
<tr>
<td>G4</td>
<td>7.377</td>
<td>44.35</td>
<td>0.1248</td>
<td>0.512361</td>
<td>-3.48</td>
</tr>
<tr>
<td>Kh-D1</td>
<td>5.765</td>
<td>27.74</td>
<td>0.1286</td>
<td>0.512344</td>
<td>-2.35</td>
</tr>
<tr>
<td>D2</td>
<td>6.516</td>
<td>31.48</td>
<td>0.1276</td>
<td>0.512311</td>
<td>-1.02</td>
</tr>
<tr>
<td>1D3</td>
<td>6.142</td>
<td>30.7</td>
<td>0.1253</td>
<td>0.512521</td>
<td>-0.78</td>
</tr>
<tr>
<td>D4</td>
<td>5.842</td>
<td>27.47</td>
<td>0.1237</td>
<td>0.512521</td>
<td>-0.82</td>
</tr>
</tbody>
</table>

شکل ۸ نمونه Nd(t)و نمونه Nd(t)های از 143Nd/144Nd (G) و خاستگاه گوشتهای دیوریتی (D) که نشانگر خاستگاه بوستهای مونوگرانتیهای (G) و خاستگاه گوشتهای دیوریتی (D) الیش یافته (دورکه شده) است.

سپاهی، نجفی راده، شهبازی، معینی جو
شواهد بافتی و ایزوتوپی استرانسیم- نتودیم حاصل از هضم...

خاستگاه گوشتهای خالص هستند.

برای گرانیت‌ها حدود ۷۰۰ و برای دیوریت‌ها ۷۷-
۸۰ همزمانی متنا دارد.

برای نتایجی این سنگ‌ها نیست. بهتر داده‌ها
نیتی‌گیری
می‌شود که سنگ‌های مافیک و فلیسیک توده‌ای نفوذی‌های
بر اثر جدایی یک ماگمای واحد به وجود نیامده. به این دلیل که
این گروه سنگ‌های تابث و مشابه نیستند.

شکل ۹ همزمانی‌های الف) موتوزوگرانیت‌ها (ب) دیوریت‌ها. برای توضیحات بیشتر به منابع مراجعه کنید.

جدول ۴ ترتیب سنگ‌های مافیک و فلیسیک مجموعه پلوتوتکنیک‌های
مطالعه (۱۰۱).

<table>
<thead>
<tr>
<th>Sample</th>
<th>SH102</th>
<th>SH104</th>
<th>SH110</th>
<th>SH147</th>
<th>SH219</th>
<th>SH32</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>۴۷.۸۸</td>
<td>۴۷.۸۸</td>
<td>۴۸.۳۶</td>
<td>۶۷.۹۹</td>
<td>۷۰.۲۱</td>
<td>۶۹.۵۰</td>
</tr>
<tr>
<td>Sr۵۷</td>
<td>۰.۷.۲۲۸</td>
<td>۰.۷.۲۲۸</td>
<td>۰.۷.۲۲۸</td>
<td>۰.۷.۲۲۸</td>
<td>۰.۷.۲۲۸</td>
<td>۰.۷.۲۲۸</td>
</tr>
<tr>
<td>Nd۵۷</td>
<td>۰.۵۱۲۸۵</td>
<td>۰.۵۱۲۸۵</td>
<td>۰.۵۱۲۸۵</td>
<td>۰.۵۱۲۸۵</td>
<td>۰.۵۱۲۸۵</td>
<td>۰.۵۱۲۸۵</td>
</tr>
</tbody>
</table>
بهت بخش

بر اساس بررسی‌های پیشین، تودههای نفوذی الکتر در اثر تزریق مکرر ماده‌های با ترکیب‌های متغیر، واکنش به منابع ماه‌آبی مختلف تشکیل شده است. به عنوان مثال، سیاه‌های 1999 و 2000 پریسی مجموعه الکتر را می‌توان در دو گروه اصلی به دنبال کرد: 1) سیاه‌های غیر آبی‌شاخو - یا سیاه‌های قادف، نشانه‌های هوشگر هستم/علی‌الیش (2) سیاه‌های خاوی زنوکریست‌هایی با خاستگاه دفرگونی‌های آندالوزیت/سیلیمانیتی مشتمل از سنگ‌های پلیتی.

نشانه‌های آبی‌شاخو از سنگ‌های درگون در شماری از سنگ‌های دیورتی‌های پلیتون الکتر کاملاً مشهود است. می‌تواند در مکرر سیاه ماه‌آبی گرانیتلی که در داخل سنگ‌های طبیعی نفوذ کرده‌این خاجا های با خاستگاه دفرگونی‌های با مشاهده شود. این تعبیر ترکیب کاتیونی موجب تغییر ویژگی‌های ایزوتونی سیاه‌های با خاصیت‌های آبراه خاصی در مکرر الکتر غنی از زنوکریست‌های ویژه‌روی شده است. عدم همخوانی توزیع اندوزه و ترکیب زنوکریست‌های با اندازه بیولر سنگ‌های درون‌گیر مجاور به گونه‌های است که

با یکدیگر از ماده‌های مولدن سنگ‌های درون‌گیر را می‌پوشاند و آزمایشگاه و حاکم شدن سیلیمانیتی تشکیل شده است. با توجه به آنکه پورتریلاست‌های آندالوزیت حاکم 10% تا 15% از ترکیب شیست‌های آندالوزیتی را تشکیل می‌دهند، پهنای تا از کناره‌های سنگ‌های درون‌گیر در نظر گرفته می‌شود که 95% تا 96% به‌شکل شیست‌های درون‌گیر هستند. این با توجه به پورتریلاست‌های آندالوزیت حاکم 10% تا 15% از ترکیب شیست‌های آندالوزیتی را تشکیل می‌دهند، پهنای تا از کناره‌های سنگ‌های درون‌گیر در نظر گرفته می‌شود که 95% تا 96% به‌شکل شیست‌های درون‌گیر هستند. این با توجه به پورتریلاست‌های آندالوزیت حاکم 10% تا 15% از ترکیب شیست‌های آندالوزیتی را تشکیل می‌دهند، پهنای تا از کناره‌های سنگ‌های درون‌گیر در نظر گرفته می‌شود که 95% تا 96% به‌شکل شیست‌های درون‌گیر هستند. این با توجه به پورتریلاست‌های آندالوزیت حاکم 10% تا 15% از ترکیب شیست‌های آندالوزیتی را تشکیل می‌دهند، پهنای تا از کناره‌های سنگ‌های درون‌گیر در نظر گرفته می‌شود که 95% تا 96% به‌شکل شیست‌های درون‌گیر هستند. این با توجه به پورتریلاست‌های آندالوزیت حاکم 10% تا 15% از ترکیب شیست‌های آندالوزیتی را تشکیل می‌دهند، پهنای تا از کناره‌های سنگ‌های درون‌گیر در نظر گرفته می‌شود که 95% تا 96% به‌شکل شیست‌های درون‌گیر هستند. این با توجه به پورتریلاست‌های آندالوزیت حاکم 10% تا 15% از ترکیب شیست‌های آندالوزیتی را تشکیل می‌دهند، پهنای تا از کناره‌های سنگ‌های درون‌گیر در نظر گرفته می‌شود که 95% تا 96% به‌شکل شیست‌های درون‌گیر H
قرات مکانی نزدیکی با چیسته‌های پیش‌تر داشته است. به‌طور کلی، نسیم‌های آبی که در آن‌جایی که باید یاد کنیم، آبی‌رنگ می‌باشد و نسیم‌های آبی‌رنگ‌هایی که به‌طور کلی در یک‌جا هستند، به‌طور کلی در یک‌جا هستند. برای یاد کردن که چهار میلی‌متری نشان از چیسته‌های پیش‌تر داشته است، باید به سرعت و در ده‌ها گونه‌های موجب‌کننده گفتار به دو فاصلهٔ یکسان‌سازی دو چیسته، موجب‌کننده کاهش آن‌ها لازم است. این که این آب‌های چیسته‌های پیش‌تر باعث‌کننده محاسبات و نویسندگی بسیاری می‌باشد.

در مقایسه با سیستم‌های غیر آبی، که در آن‌جا که باید یاد کنیم، آبی‌رنگ می‌باشد و نسیم‌های آبی‌رنگ‌هایی که به‌طور کلی در یک‌جا هستند، به‌طور کلی در یک‌جا هستند. برای یاد کردن که چهار میلی‌متری نشان از چیسته‌های پیش‌تر داشته است، باید به سرعت و در ده‌ها گونه‌های موجب‌کننده گفتار به دو فاصلهٔ یکسان‌سازی دو چیسته، موجب‌کننده کاهش آن‌ها لازم است. این که این آب‌های چیسته‌های پیش‌تر باعث‌کننده محاسبات و نویسندگی بسیاری می‌باشد.

برداشت

در مقایسه با سیستم‌های غیر آبی، که در آن‌جا که باید یاد کنیم، آبی‌رنگ می‌باشد و نسیم‌های آبی‌رنگ‌هایی که به‌طور کلی در یک‌جا هستند، به‌طور کلی در یک‌جا هستند. برای یاد کردن که چهار میلی‌متری نشان از چیسته‌های پیش‌تر داشته است، باید به سرعت و در ده‌ها گونه‌های موجب‌کننده گفتار به دو فاصلهٔ یکسان‌سازی دو چیسته، موجب‌کننده کاهش آن‌ها لازم است. این که این آب‌های چیسته‌های پیش‌تر باعث‌کننده محاسبات و نویسندگی بسیاری می‌باشد.


[19] "پژوهشی در بررسی سنگ‌های منطقه همدان"، رساله دکتری پرلولوزی و دانشکده علوم، دانشگاه تربیت معلم تهران (۱۳۸۳).


