شواهد بافتی و ابزوتیوی استراتاسیم- نتودیمیم حاصل از هضم سنگ‌های رسی در مجموعه پلوتونیک الوند (غرب ایران)

على اصغر سیدی. سارا نجف راشد، حسین شهبازی، محمد معانی جو
گروه زمین‌شناسی، دانشگاه بویویل سینا، همدان، ایران

چکیده: طی فرآیندهایی از سنگ‌های پلوتونیک، از ماکبک تا فلسیک، شامل انواع گلاورها، دوریتهای تونالیت‌ها، گراندیوریتهای مونزونگریت‌ها، سنگ‌ریزه‌های پلوتونیکی و پتروگرافی‌های لوکوکرات هستند. مجموعه پلوتونیک الوند، منطقه‌ی سردند- سیرجان، ایران یافت می‌شود. سن گروه مجموعه به زورسیکس میانی و باسته است. در این مجموعه سنگ‌های گرانتی و دوریتهای از اجزای اصلی هستند. البته سنگ‌های پلوتونیک الوند یکی از سنگ‌های فلزیک مصریان است. در این مجموعه سنگ‌های پلوتونیک الوند، با سنگ‌های پلی می‌باشند. در این مطالعه به تطبیق سنگ‌های پلی و هیمالیت به منظور بررسی از اهمیت شیشه‌ای پلی و سنگ‌های آن در مولکول وکسی‌فیک (متالیتی) در هنگام تفسیر چنین سنگ‌هایی مشخص می‌گردد.

واژه‌های کلیدی: پلوتونیک الوند، هضم‌های دریایی، گراندیوریتهای مونزونگریت‌ها

مقدمه

هم‌گروه فراپیدی این می‌تواند ویژگی‌های اولیه‌ای میان را هنگامی که قطعاتی از سنگ درونگیر به درون ماجمل داغ را تغییر دهد، برخی از به‌کار رفتن سنگ‌های رسی درون ماجمل را هضم می‌شوند. در حالی که بهتر به گراندیوریتهای پلی کرده، یکی از سنگ‌های پلی می‌باشد. در این مطالعه به تطبیق سنگ‌های پلی و هیمالیت به منظور بررسی از اهمیت شیشه‌ای پلی و سنگ‌های آن در مولکول وکسی‌فیک (متالیتی) در هنگام تفسیر چنین سنگ‌هایی مشخص می‌گردد.

Aasepahi@gmail.com

نویسنده مسئول: تلفن و نامبر: 08138328146 | پست الکترونیکی:
کامل موردبحث و بررسی قرار نگرفت. افزون بر این، در این مقاله به ارائه شواهد بانه‌ها و داده‌های زئوشیمی خواهیم پرداخت.

موقعیت زمین‌شناسی
منطقهٔ سنگ‌های سیلیسلیت در تعدادی از مناطق از جمله سیلیسلیت در سیرجان، بخشی از کمربند کوه‌پایه زاگرس است که گفتاری که متشکل از یک کمربند دگرگونی از سنگ‌های سنگ‌پوش پایین و مجاوری با درجهٔ پایین تا بالاست که توده‌های آذرین نفوذی مافیک، حدوی و فلسیک در آنها نفود کرده‌اند (شکل 1).

[۱۲۱] در شماری از این بررسی‌ها [۷، ۸] شواهد مختصاتی دال بر آنها هستند. اما هنوز همیشه این فراهم در تکمیل سنگ‌شناسی مجموعه‌ای آخرین اولین به تفصیل یکی نشده است. هدف اصلی ما در این مقاله ارائه شواهد صحراشی سنگ‌نگاری و زئوشیمی‌ای برای رتبه‌بندی آلیش‌های توده‌های سنگ‌های سیلیسلیت است. نتایج سپری برای توصیفی و سنگ‌پایه‌ای همه سنگ‌های این مجموعه خارج از گستره‌ای که یک یا یک بیشتر و در این زمان به مبانی [۷، ۱۱] ارائه کند. بنابراین تمرکز اصلی ما در این مقاله بر سنگ‌های آلیش بافته توده‌ای نفوذی الوند به و در اینجا سنگ‌پایه‌ای انتظار سنگ‌های پایین‌تری هم‌دام.

شکل 1: نقشهٔ ساده شده‌ی زمین‌شناسی منطقه‌های همدان.
روش نمونه‌گیری

روش نمونه‌گیری شامل جهش گرانیت و چهار دیوریت که در رخت‌خونه‌ها و نمونه‌های دستی نشان‌هایی از آلبی و هضم...
سنگ‌های نفوذی مختلف از الیوبرنیت، الیوبرنیت-کلیپنی و کلیپنی-ورینیت. گرینه و کرابینت و لبیکال مانند در منطقه‌های سیاهی و سیاه‌ای به عنوان توده‌های پیشینی در بنیان‌گذاری نفوذ کردند. در برخی از نهایت‌های طبیعی، کرابینت و الیوبرنیت‌ها همچنان در اثر اثرات فلزی نیز دردست و بلندی، فلت‌های کوانتسی، فلت‌های تکنی و زیرکن گنگی در هستند به‌مدت انکر در این سنگ‌ها پایت می‌شوند (شکل ۲). زینک‌کربنات گرینه‌های Al۲SiO۵ سیلیمین و سیلیمینات، جرانت و کرابینت نیز بیشتر در این سنگ‌ها دیده می‌شوند.

سنگ‌های مافیک بیشتر از: الیوبرنیت، الیوبرنیت-کلیپنی و کلیپنی-ورینیت و لابیکال، نفوذی پایه به سمت ورینیت، کرابینت دیوریت و تونالیت. الیوبرنیت کرابینت دارای نیمه شکنار و کوارتز نفوذی از-و-کوارتز نفوذی الیوبرنیت.

شکل ۲ تصویر میکروسکوپی از نمودار مانی‌گرافات توده‌های نفوذی الیوبرنیت.
با ان تفاوت که در دیوریت‌ها این زینکوئست‌ها به طور جزئی
با کامل به سیلیمانیت تبدیل شده و به‌وسیله حاشیه‌های
فلدسپات‌ها یا غنی از اسپینل احاطه شده‌اند (شکل 5). در
سنگ‌های مونزونژانیتِ نیز زینکوئست‌های رستی‌سوز و
کردنیت با خاصیت دگرگونی به فراوانی دیده می‌شوند. این
مجموعه کاتابی در انالوژی تخریب شیست‌های میکس‌سیستمی
دگرگون شکل و به درون مگماهای گرانتی دیاکسیدینی
tولید شده در منطقه ذوب بخشی وارد شده‌اند، و یا به
وسیله مگماهای نفوذی به پیش‌های قاره‌ای فوقانی حمل
شده‌اند.

آمپیول، بلاژوپولارس و کوارتز از جمله کانی‌های اصلی دیوریت و
کوارتزدوریت هستند. در این سنگ‌ها کاهی شاهد دانه‌های
درشت کوارتز پیچیده و لغزه‌های آمپیول مافیک سوزنی
وجودات نیز و آئودیت‌های سوزنی شکل در برخی از
سنگ‌های دیوریتی پیدا شده‌اند (شکل 6).

زینکوئست‌ها و انکلوها
برونیت‌های نظیر سنتی‌سوزنی، زینکوئست‌ها و زینکوئست‌ها در
گرانت‌وئنیت‌ها به فراوانی می‌شنود و این در حالیست که
شمار این برونزیت‌ها در سنگ‌های دیوریتی و گرانت‌وئنیت به
تفویض الوندیان زیادی نیست. زینکوئست‌های آنالوژیت در
هم دو دسته سنگ‌های گرانتی و دیوریتی به‌طور می‌خورند

نکته 4 تصویر میکروسکوپی از نمونه دیوریت حاوی تیتانیت (أسف) و آئودیت سوزنی.

نکته 5 الوندیت نمونه‌ای آنالوژیت در یک مونزونژانیت-گرانت‌دوه‌ریت، ب) زینکوئست‌های آنالوژیت در حال تبدیل به سیلیمانیت با یک
حاشیه‌گی غنی از اسپینل در سنگ‌های دیوریتی ناحیه خاکو در منطقه همدان.
در سنگ‌های گیارومی، به ویژه در الیوم گیارومی و رولیتی، زینکوسترات‌های شیمیایی پیشرفتی وجود دارند.
که طی واکنش‌های مگماتیک و در یک گروه‌گیر کانی‌های پیرومانتومورفیک با دمای بالا (به‌عنوان مثال یک مجموعه اسپیت سیلیمانیت) تبدیل شده‌اند. در اطراف و داخل این
زنکوسترات هزادنیت‌های سطح‌های مجاور قابل تشخیصند:

(1) یک منطقه‌ای خارجی فلدسبانی (شکل 6) (2) یک منطقه‌ای داخلی غنی از سیلیمانیت که در یک آنتاسیت که در سیلیمانیت با زاوهای 90 درجه توسط ناحیه نامتاس زینکوسترات و
سیلیمانیت‌های سوزنی با برکنگی تصادفی به سمت مرکز
هستند (شکل 6). در این منطقه پلاژیوکلاز در کانی
سیلیمانیت به بیش از خورد.

بر اساس بررسی‌های دمی‌شناسی [17]، دمای محل تماس
ماگمایی می‌تواند با تورمینیت بسیار بالا 700 درجه سانتی‌گراد است، این
در حالی است که مجموعه کانی‌های مشاهده شده منجر
به تشکیل‌های زینکوستراتیزیت‌ها از پلاژیوکلاز در این دمای بسیار
این مجموعه تایید می‌شود، اما احتمالاً در دمای بیش از

شکل 6: اینجا ایجاد شده در یک تورمین‌پیشین در زاوهای یک ماگمای الیوم گیارومی، یک منطقه‌ای با میزان برونیت و پیرومانتومورفیک.

سیلیمانیت سوزنی توزیع شده به صورت تصادفی در مرکز برونیوم پیرومانتومورفیک.
جدول 1 مقدار Rb، Sr، Nd، Sm در سنگهای آلتین سنگی و میانگین این عناصر در سنگهای آلیش نیافته. میانگین مونوزورانتیت (G) و دیوریت (D) از داده‌های [۵ و ۹].

<table>
<thead>
<tr>
<th>Sample/Element</th>
<th>GNj G1</th>
<th>Kh G2</th>
<th>G3</th>
<th>G4</th>
<th>KhD1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>Average granite*</th>
<th>Average diorite*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb (mg/g)</td>
<td>212</td>
<td>165</td>
<td>167</td>
<td>159</td>
<td>79</td>
<td>80</td>
<td>64</td>
<td>64</td>
<td>191</td>
<td>31</td>
</tr>
<tr>
<td>Sr</td>
<td>63</td>
<td>74</td>
<td>153</td>
<td>223</td>
<td>275</td>
<td>279</td>
<td>248</td>
<td>248</td>
<td>198</td>
<td>57</td>
</tr>
<tr>
<td>Nd</td>
<td>22</td>
<td>24</td>
<td>27</td>
<td>31</td>
<td>30</td>
<td>27</td>
<td>23</td>
<td>23</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Sm</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

شکل ۷ نمودار $\frac{^{87}Sr}{^{86}Sr}$ در مقابل Nd(t) برای گرانیت و دیوریت. $G = \text{گرانیت و دیوریت} = D$.

جدول 2 محتوی ایزوترمی Pb و Rb سنگهای بلوتونیک منطقه همدان. مونوزورانتیت (G) و دیوریت (D)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rb [µg/g]</th>
<th>Sr [µg/g]</th>
<th>^{87}Rb/^{86}Sr</th>
<th>^{87}Sr/^{86}Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNj G1</td>
<td>271.7</td>
<td>133.3</td>
<td>0.719006</td>
<td>0.716559</td>
</tr>
<tr>
<td>GNj G1</td>
<td></td>
<td></td>
<td>0.718948</td>
<td>0.716559</td>
</tr>
<tr>
<td>Kh G2</td>
<td>165.4</td>
<td>73.5</td>
<td>0.724491</td>
<td>0.716559</td>
</tr>
<tr>
<td>G3</td>
<td>147.0</td>
<td>153.1</td>
<td>0.715075</td>
<td>0.716559</td>
</tr>
<tr>
<td>G3</td>
<td></td>
<td></td>
<td>0.716559</td>
<td>0.716559</td>
</tr>
<tr>
<td>G4</td>
<td>159.3</td>
<td>249.3</td>
<td>0.711006</td>
<td>0.716559</td>
</tr>
<tr>
<td>KhD1</td>
<td>79.1</td>
<td>275.3</td>
<td>0.708117</td>
<td>0.716559</td>
</tr>
<tr>
<td>KhD1</td>
<td></td>
<td></td>
<td>0.708117</td>
<td>0.716559</td>
</tr>
<tr>
<td>D2</td>
<td>79.8</td>
<td>268.5</td>
<td>0.708133</td>
<td>0.708378</td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td>0.708133</td>
<td>0.708378</td>
</tr>
<tr>
<td>D3</td>
<td>85.6</td>
<td>270.1</td>
<td>0.708183</td>
<td>0.708378</td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td>0.708183</td>
<td>0.708378</td>
</tr>
<tr>
<td>D4</td>
<td>63.8</td>
<td>267.9</td>
<td>0.707919</td>
<td>0.708378</td>
</tr>
</tbody>
</table>
المجلس پژوهش‌های و کانی‌شناسی ایران

سپاهی، نقیهی راد، شهبازی، معینی گو

شکل 8 نمودار مقدار Nd(t) موزنگراپیت‌ها از 3.2 تا 3.89 - و سنگ‌های دیوریتی آلبیش یافته از 2.78 تا 3.25 در تغییر موزنگراپیت‌ها در قسمت سنجش‌های پوسته‌ای و در سنجش‌های مورد بررسی در نزدیکی سنجش‌های دارای خاستگاه پوسته‌ای ترسیم شده‌اند.

جدول 2: محتوای ازوتومی Sm-Nd سنگ‌های پلٹونیک منطقه‌ای الوند. از طریق محاسبه Sm-Nd سن گرانیت‌ها (G) و Sm-Nd سن دیوریت‌ها (D) 165 میلیون سال بدست آمده است [10].

<table>
<thead>
<tr>
<th>نمونه</th>
<th>Sm (mg/g)</th>
<th>Nd (mg/g)</th>
<th>147Sm/144Nd</th>
<th>143Nd/144Nd</th>
<th>εNd(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnj G1</td>
<td>68.1</td>
<td>48.69</td>
<td>0.1259</td>
<td>0.512448</td>
<td>3.51</td>
</tr>
<tr>
<td>Kh G2</td>
<td>11.53</td>
<td>0.1623</td>
<td>0.1266</td>
<td>0.512446</td>
<td>3.98</td>
</tr>
<tr>
<td>2G3</td>
<td>0.1377</td>
<td>0.149</td>
<td>0.1248</td>
<td>0.512400</td>
<td>3.18</td>
</tr>
<tr>
<td>G4</td>
<td>0.1377</td>
<td>0.149</td>
<td>0.1248</td>
<td>0.512400</td>
<td>3.18</td>
</tr>
<tr>
<td>Kh-D1</td>
<td>0.1377</td>
<td>0.149</td>
<td>0.1248</td>
<td>0.512400</td>
<td>3.18</td>
</tr>
<tr>
<td>D2</td>
<td>68.1</td>
<td>48.69</td>
<td>0.1259</td>
<td>0.512448</td>
<td>3.51</td>
</tr>
<tr>
<td>1D3</td>
<td>68.1</td>
<td>48.69</td>
<td>0.1259</td>
<td>0.512448</td>
<td>3.51</td>
</tr>
<tr>
<td>D4</td>
<td>68.1</td>
<td>48.69</td>
<td>0.1259</td>
<td>0.512448</td>
<td>3.51</td>
</tr>
</tbody>
</table>

شکل 7 نمودار Nd(t) موزنگراپیت‌ها از 3.2 تا 3.89 - و سنگ‌های دیوریتی آلبیش یافته از 2.78 تا 3.25 در تغییر موزنگراپیت‌ها در قسمت سنجش‌های پوسته‌ای و در سنجش‌های مورد بررسی در نزدیکی سنجش‌های دارای خاستگاه پوسته‌ای ترسیم شده‌اند.

شکل 3. مقدار Nd(t) موزنگراپیت‌ها در 7 نمونه سنگ‌های سنجش‌های پوسته‌ای و در سنجش‌های مورد بررسی در نزدیکی سنجش‌های دارای خاستگاه پوسته‌ای ترسیم شده‌اند.

جدول 3: مقدار Nd(t) موزنگراپیت‌ها در 7 نمونه سنگ‌های سنجش‌های پوسته‌ای و در سنجش‌های مورد بررسی در نزدیکی سنجش‌های دارای خاستگاه پوسته‌ای ترسیم شده‌اند.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>Sm (mg/g)</th>
<th>Nd (mg/g)</th>
<th>147Sm/144Nd</th>
<th>143Nd/144Nd</th>
<th>εNd(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnj G1</td>
<td>68.1</td>
<td>48.69</td>
<td>0.1259</td>
<td>0.512448</td>
<td>3.51</td>
</tr>
<tr>
<td>Kh G2</td>
<td>11.53</td>
<td>0.1623</td>
<td>0.1266</td>
<td>0.512446</td>
<td>3.98</td>
</tr>
<tr>
<td>2G3</td>
<td>0.1377</td>
<td>0.149</td>
<td>0.1248</td>
<td>0.512400</td>
<td>3.18</td>
</tr>
<tr>
<td>G4</td>
<td>0.1377</td>
<td>0.149</td>
<td>0.1248</td>
<td>0.512400</td>
<td>3.18</td>
</tr>
<tr>
<td>Kh-D1</td>
<td>0.1377</td>
<td>0.149</td>
<td>0.1248</td>
<td>0.512400</td>
<td>3.18</td>
</tr>
<tr>
<td>D2</td>
<td>68.1</td>
<td>48.69</td>
<td>0.1259</td>
<td>0.512448</td>
<td>3.51</td>
</tr>
<tr>
<td>1D3</td>
<td>68.1</td>
<td>48.69</td>
<td>0.1259</td>
<td>0.512448</td>
<td>3.51</td>
</tr>
<tr>
<td>D4</td>
<td>68.1</td>
<td>48.69</td>
<td>0.1259</td>
<td>0.512448</td>
<td>3.51</td>
</tr>
</tbody>
</table>

شکل 4 نمودار Nd(t) موزنگراپیت‌ها در 7 نمونه سنگ‌های سنجش‌های پوسته‌ای و در سنجش‌های مورد بررسی در نزدیکی سنجش‌های دارای خاستگاه پوسته‌ای ترسیم شده‌اند.

شکل 5 نمودار Nd(t) موزنگراپیت‌ها در 7 نمونه سنگ‌های سنجش‌های پوسته‌ای و در سنجش‌های مورد بررسی در نزدیکی سنجش‌های دارای خاستگاه پوسته‌ای ترسیم شده‌اند.

شکل 6 نمودار Nd(t) موزنگراپیت‌ها در 7 نمونه سنگ‌های سنجش‌های پوسته‌ای و در سنجش‌های مورد بررسی در نزدیکی سنجش‌های دارای خاستگاه پوسته‌ای ترسیم شده‌اند.

پایگاه‌های دیجیتال بایدن (D)
شاوهای بافتی و ایزوتوپی استرانسیم- نتودیمیم حاصل از هضم... 511

جلد ۲۴، شماره ۳، پاییز ۱۳۹۵

خاستگاه گوشتهای خالص نشستند. برای گوشتهای جدید و برای دهه‌های Sr؛ برای گوشتهایهای حذف ۲۰۰۷ و برای دهه‌های Nd همزمانی معنی داری ۲۰۷ Rb-Sr (شکل ۹) و دیوریت‌ها (شکل ۹) به ترتیب ۱۲۰ و ۲۰۰ میلیون سال را نشان می‌دهند که البته با سن به‌دست آمده از روش Pb تفاوت دارد. بنابراین Pb و همکاران (۲۰۱۰) داده‌های همزمانی معناداری را به‌دست می‌دهند. شاوهای ایزوتوپی نشان دهنده مقدار بالاتر Sr-Nd و مقدار پایین‌تر Nd و مقدار بالاتر نمایش یافته نسبت به دیوریت‌های معمولی با آلایش یافته ۱۴۳Sm/۱۴۴Nd و ۸۷Sr/۸۶Sr. سریهای گوشتهایهای فسفات و F-۱۰۱ (جدول ۱) چنین نتیجه‌گیری می‌شود که سنگ‌های مافیک و فلزیک توده‌های تنش‌پذیر بر اثر جدایی یک ماگما واحد به موجود نیامدهان. به این دلیل که این دو گروه سنگ تاثب و مشابه نیستند.

[جدول ۱: حفظ ۹ همزمانیهای الاف (دیوریت‌ها) و دهه‌های Sr و Nd از ترتیب کسب. برای توضیحات بیشتر به متن مراجعه کنید.]

<table>
<thead>
<tr>
<th>Sample</th>
<th>SH102</th>
<th>SH104</th>
<th>SH110</th>
<th>SH147</th>
<th>SH219</th>
<th>SH32</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۴۷.۸۸</td>
<td>۴۷.۸۸</td>
<td>۴۷.۸۸</td>
<td>۴۷.۸۸</td>
<td>۴۷.۸۸</td>
<td>۴۷.۸۸</td>
</tr>
<tr>
<td>Sr₁</td>
<td>۰.۱۱۸</td>
<td>۰.۱۱۸</td>
<td>۰.۱۱۸</td>
<td>۰.۱۱۸</td>
<td>۰.۱۱۸</td>
<td>۰.۱۱۸</td>
</tr>
<tr>
<td>Nd₁</td>
<td>۰.۰۵۱۲۵۲۳</td>
<td>۰.۰۵۱۲۵۲۳</td>
<td>۰.۰۵۱۲۵۲۳</td>
<td>۰.۰۵۱۲۵۲۳</td>
<td>۰.۰۵۱۲۵۲۳</td>
<td>۰.۰۵۱۲۵۲۳</td>
</tr>
</tbody>
</table>

شکل ۹: همزمانیهای الاف (دیوریت‌ها) و دهه‌های Sr و Nd از ترتیب کسب. برای توضیحات بیشتر به متن مراجعه کنید.
بحث

بر اساس بررسی‌های پیشین، نفوذ نفوذی الوند در اثر تزریق مکرر ماده‌های پیش ریخته متفاوت، و است[I قطعه ی می‌باشد. به‌طور کلی این که از کلای‌های موجود در شیستها در ماده‌های جای خوشاند. کانی‌های ذرت‌دار همچنین آن‌ها در شیستها و احاطه‌شان از خاجه‌ها و باعث شدن آنها به سیلیمانیت و اسپینلیت گردیده است. با توجه به اینکه پورفیرولوئیدهای آنالوزیت حاکم به می ۰.۱۲% از ترکیب شیسته‌های آنالوزیت‌دار اناهیل در شکل یک دسته کننده است. اگر رابطه‌های ماده‌های دوبینی را نهایی ۵٪ از پورفیرولوئیدهای آنالوزیت در نظر بگیریم آنها ماده دوبینی حدود ۷ تا ۸ برابر این مقادیر (نسبت/مقادیر شیست به پورفیرولوئید آنالوزیت)، به‌طور نزدیک به ۳۵% ۴۰ مواد شیست‌های دو طبیعی داشت. بنابراین هر چون گیوزی می‌کنیم که ماده‌های دوبینی که دما نسبتاً بالایی داشته و

شکل ۱۰ نمودار برای سنگ‌های مافیک و فلسیک مجموعه پیلوتوتیک الوند. (بر اساس داده‌های برداشت شده از [۱۰])

سپاهی، نجفی راشد، شهبازی، معین جو

سیلیمانیت مشتق از سنگ‌های یلپی

نشانه‌های الیش ناشی از سنگ میرابان در شمار

از سنگ‌های دوبینی پیلوتوتیک الوند کاملاً مشهود است. مادرگی و رگئی در مکاها ناشی از دکل

سنگ‌های وماپنتای نفوذ کردن‌های کانی‌های با خاصیت دگرگونی نسبت است. این تغییر ترکیب کانی‌های موجب

تغییر ویژگی‌های ازون‌وی سنگ‌های با خاصیت آدرین

خصوصاً در دوبینی‌های غنی از پورفیرولوئید‌زینلیت شده

است. عدم همخوانی توزیع اندازه و ترکیب زینکرپست‌ها با

اندازه پیلو سنگ‌های درونگیر مجاور به گونه‌ای است که

امکان تبیل آن‌ها از ماده‌های مولت سنگ‌های درونگیر را
آلاسی یافته به ترتیب بیشتر و کمتر است نسبت $^{87}\text{Sr}/^{86}\text{Sr}$ سنگهای آسیش یافته (96) بیش از سنگهای نیکل معمولی (کمتر از 0.71). نسبت $^{143}\text{Nd}/^{144}\text{Nd}$ و $^{87}\text{Sr}/^{86}\text{Sr}$ سنگهای آسیش یافته به دلیل آلاین دی و نیکل معمولی از ترکیب بهره‌گیری‌های مثبت و سمت ترکیب پوسته‌ای تر یافته است.

ب ش دلیل پیچیدگی سنگرزی پلیتوکس الوند و وجود تغییرات مهاجرات و کربنات مولکولر در سنگهای دبوریتی آسیش یافته و فرآیندهای همجون آلاین به سنگهای نیکل متفاوت به وجود شدند. به سبب آلاین به سنگهای میانی ترکیب پوستهای بهبودی در آلاین و نیکل معمولی از ترکیب بهره‌گیری‌های مثبت و سمت ترکیب پوسته‌ای تر یافته است.

مراجع

[1] ایرانی م، بررسی پتروپتروژاس نوده‌گر انتی‌الوند و الوند نیکل (1372).
[2] مادرانی م، بررسی پتروپتروژاس سنگهای آسیش یافته و درک و مودبان منطقه جنوبی غربیهای همان، پایه‌نامه کارشناسی ارشد، دانشگاه شهید بهشتی نیکل (1372).
[3] هادی‌پور چمی م، مادرنرسیس و مهاجرهای منطقه همان، پایه‌نامه کارشناسی ارشد، دانشگاه شهید بهشتی (1372).
[4] ترابکی‌یه، سرپرگردهای نیکل و مایکروسیپیک گیمینتیهای همان، پایه‌نامه کارشناسی ارشد، دانشگاه شهید بهشتی نیکل (1372).

برداشت

در مقایسه با سنگهای غیر آسیش یافته از کمتر آلاین بیشتر و آلاین از کمتر آلاین بیشتر، سنگهای غیر آسیش یافته الوند یافته، به وجود آلاین سنگهای میانی مورد آلاین و $^{143}\text{Nd}/^{144}\text{Nd}$ و $^{87}\text{Sr}/^{86}\text{Sr}$ سنگهای نیکل معمولی از ترکیب بهره‌گیری‌های مثبت و سمت ترکیب پوسته‌ای تر یافته است.

$^{143}\text{Nd}/^{144}\text{Nd}$ و $^{87}\text{Sr}/^{86}\text{Sr}$ سنگهای نیکل معمولی از ترکیب بهره‌گیری‌های مثبت و سمت ترکیب پوسته‌ای تر یافته است.

